A ROBUST DYNAMIC CONTROLLER DESIGN OF SYNCHRONOUS BUCK CONVERTER FOR EXTREME LOADED CONDITION
Main Article Content
Abstract
Buck converters are the powering unit for consumer and medical electronics systems however they will have considerable switching and power losses. The power losses occurring on diodes in such converter can be avoided by designing Synchronous Buck Converter (SBC). In this proposed work two types of controller namely dual loop and Dynamic Evolution (DE) control is designed for SBC. Dual loop control has very faster response with very good set point tracking for normal load variations. But for drastic load variations or extreme load conditions; the controller performance of dual loop controller degrades. SBC with DE control however provides robust performance for drastic load variations. This robust performance measures are compared with Simulink as well as hardware results. In this paper, the drastic load changes are designed in hardware circuit using a programmable switch to create a load variation environment and the SBC with proposed DE controller is tested for robustness in this environment. The efficiency of proposed controller has been found to be greater than any conventional converter with satisfied performance measures.
Article Details
References
[1] Tsang, K. M., & Chan, W. L., Cascade controller for DC/DC buck convertor, IEE Proceedings-Electric Power Applications, 152 (4), 827-831., 2005
[2] Uran, S., & Milanovic, M., State controller for buck converter, IEEE, Vol. 1, pp. 381-385, 2003
[3] Chander, S., Agarwal, P., & Gupta, I, Auto-tuned, Discrete PID Controller for DC-DC Converter for fast transient response., In: Power Electronics IICPE, IEEE International Conference on (2010), pp. 1-7, India
[4] Kapat, S., & Krein, P. T. , Formulation of PID control for DC–DC converters based on capacitor current: A geometric context. , IEEE Transactions on Power Electronics, 27(3), 2012, p. 1424-1432.
[5] Perry, A. G., Feng, G., Liu, Y. F., & Sen, P. C., A design method for PI-like fuzzy logic controllers for DC–DC converter., IEEE Transactions on Industrial Electronics, 54(5), 2007, p. 2688-2696.
[6] Zhang, C., Wang, J., Li, S., Wu, B., & Qian, C., Robust control for PWM-based DC–DC buck power converters with uncertainty via sampled-data output feedback. , IEEE Transactions on Power Electronics, 30(1), 2015, p. 504-515.
[7] Samosir, A. S., & Yatim, A. H. M, Dynamic evolution control for synchronous buck DC–DC converter: Theory, model and simulation. Simulation Modelling, Practice and Theory, 18(5), 2010, p. 663-676.
[8] Oliva, A. R., Ang, S. S., & Bortolotto, G. E. , Digital control of a voltage-mode synchronous buck converter. , IEEE Transactions on Power Electronics, 21(1), 2006, p. 157-163.
[9] Şahin, M. E., Okumuş, H. İ., & Aydemir, M. T., Implementation of an electrolysis system with DC/DC synchronous buck converter. , International Journal of hydrogen energy, 39(13), 2014, p. 6802-6812.
[10] Yousefzadeh, V., Babazadeh, A., Ramachandran, B., Alarcón, E., Pao, L., & Maksimovic, D. , Proximate time-optimal digital control for synchronous buck DC–DC converters, IEEE Transactions on Power Electronics, 23(4), 2008, p. 2018-2026.
[11] Yang, Z., Ye, S., & Liu, Y. F., A new resonant gate drive circuit for synchronous buck converter., IEEE Transactions on Power Electronics, 22(4), 2007, p. 1311-1320.
[12] Sumsurooah, S., Odavic, M., Bozhko, S., & Boroyevich, D., Robust stability analysis of a dc/dc buck converter under multiple parametric uncertainties., IEEE Transactions on Power Electronics, 33(6), 2018, p. 5426-5441.
[13] Raviraj, V. S. C., & Sen, P. C. , Comparative study of proportional-integral, sliding mode, and fuzzy logic controllers for power converters., IEEE Transactions on Industry Applications, 33(2), 1997, p. 518-524.
[14] Naik, B. B., & Mehta, A. J. , Sliding mode controller with modified sliding function for DC-DC Buck Converter., ISA transactions, 70, 2017, p. 279-287.
[15] Panda, A. K., Sarode, S., & Tejavathu, R., A novel active auxiliary circuit for efficiency enhancement integrated with synchronous buck converter., International Journal of Circuit Theory and Applications, 44(12), 2016, p. 2043-2057.
[2] Uran, S., & Milanovic, M., State controller for buck converter, IEEE, Vol. 1, pp. 381-385, 2003
[3] Chander, S., Agarwal, P., & Gupta, I, Auto-tuned, Discrete PID Controller for DC-DC Converter for fast transient response., In: Power Electronics IICPE, IEEE International Conference on (2010), pp. 1-7, India
[4] Kapat, S., & Krein, P. T. , Formulation of PID control for DC–DC converters based on capacitor current: A geometric context. , IEEE Transactions on Power Electronics, 27(3), 2012, p. 1424-1432.
[5] Perry, A. G., Feng, G., Liu, Y. F., & Sen, P. C., A design method for PI-like fuzzy logic controllers for DC–DC converter., IEEE Transactions on Industrial Electronics, 54(5), 2007, p. 2688-2696.
[6] Zhang, C., Wang, J., Li, S., Wu, B., & Qian, C., Robust control for PWM-based DC–DC buck power converters with uncertainty via sampled-data output feedback. , IEEE Transactions on Power Electronics, 30(1), 2015, p. 504-515.
[7] Samosir, A. S., & Yatim, A. H. M, Dynamic evolution control for synchronous buck DC–DC converter: Theory, model and simulation. Simulation Modelling, Practice and Theory, 18(5), 2010, p. 663-676.
[8] Oliva, A. R., Ang, S. S., & Bortolotto, G. E. , Digital control of a voltage-mode synchronous buck converter. , IEEE Transactions on Power Electronics, 21(1), 2006, p. 157-163.
[9] Şahin, M. E., Okumuş, H. İ., & Aydemir, M. T., Implementation of an electrolysis system with DC/DC synchronous buck converter. , International Journal of hydrogen energy, 39(13), 2014, p. 6802-6812.
[10] Yousefzadeh, V., Babazadeh, A., Ramachandran, B., Alarcón, E., Pao, L., & Maksimovic, D. , Proximate time-optimal digital control for synchronous buck DC–DC converters, IEEE Transactions on Power Electronics, 23(4), 2008, p. 2018-2026.
[11] Yang, Z., Ye, S., & Liu, Y. F., A new resonant gate drive circuit for synchronous buck converter., IEEE Transactions on Power Electronics, 22(4), 2007, p. 1311-1320.
[12] Sumsurooah, S., Odavic, M., Bozhko, S., & Boroyevich, D., Robust stability analysis of a dc/dc buck converter under multiple parametric uncertainties., IEEE Transactions on Power Electronics, 33(6), 2018, p. 5426-5441.
[13] Raviraj, V. S. C., & Sen, P. C. , Comparative study of proportional-integral, sliding mode, and fuzzy logic controllers for power converters., IEEE Transactions on Industry Applications, 33(2), 1997, p. 518-524.
[14] Naik, B. B., & Mehta, A. J. , Sliding mode controller with modified sliding function for DC-DC Buck Converter., ISA transactions, 70, 2017, p. 279-287.
[15] Panda, A. K., Sarode, S., & Tejavathu, R., A novel active auxiliary circuit for efficiency enhancement integrated with synchronous buck converter., International Journal of Circuit Theory and Applications, 44(12), 2016, p. 2043-2057.