Main Article Content

S.Sankara kumar
M.Willjuice Iruthayarajan
T.Sivakumar T.Sivakumar

Abstract

In this paper, Selective Harmonic Elimination (SHE) technique is utilized to reduce the dominant lower order frequencies present in the output voltage waveform of cascaded H-Bridge Multilevel Inverter (CHBMLI). Chaotic Gravitational Search Algorithm (CGSA) is applied to obtain the optimal switching angles, modulation index and input voltage values of seven level and eleven level cascaded multilevel inverter. The results obtained from various chaotic maps are compared with the already reported firefly and differential search algorithm based MLI for fixed input voltages and modulation index. From the simulation results, it is found that the Tent chaotic map (CGSA10) of CGSA provides better performance with minimum lower order harmonics and Total Harmonic Distortion (THD). The statistical performance analysis also confirms that the Tent chaotic map of CGSA provides consistent solutions with minimum standard deviation values as compared with other chaotic maps embedded in GSA.

Article Details

References

[1] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L.G. Franquelo, W. Bin, J.Rodriguez, M.A. Perez, J.I. Leon, , [1] , Recent advances and industrial applicationsof multilevel converters, IEEE Trans. Ind. Electron. 57 (8) (2010) 2553–2580.
[2] Rodriguez, Jose, Jih-Sheng Lai, and Fang Zheng Peng. , [2], "Multilevel inverters: a survey of topologies, controls, and applications." IEEE Transactions on industrial electronics 49.4 (2002): 724-738.
[3] H. S. Patel and R. G. Hoft, , [3], “Generalized harmonic elimination andvoltage control in thryristor inverters: part I—harmonic elimination,” IEEE Trans. Ind. Application., vol. 9, pp. 310–317,May/June 1973.
[4] H. S. Patel and R. G. Hoft, , [4], “Generalized harmonic elimination and voltage control in thryristor inverters: part II—voltage control technique,” IEEE Trans Ind Applicat., vol. 10, pp. 666–673,Sept./Oct. 1974
[5] Chiasson, J.N., Tolbert, L.M., McKenzie, K.J., Du, Z.: , [5], ‘Elimination of harmonics in a multilevel converter using the theory of symmetric polynomials and resultants’, IEEE Trans. Control Syst. Technol., 2005, 13, (2), pp. 216–223.
[6] Chiasson, J., Tolbert, L., McKenzie, K., Du, Z.: , [6], ‘Eliminating harmonics in a multilevel converter using resultant theory’. IEEE 33rd Annual Power Electronics Specialists Conf., 2002, PESC’02, 2002, 2002
[7] F. Filho, H.Z. Maia, T.H.A. Mateus, B. Ozpineci, L.M. Tolbert, J.O.P. Pinto, [7], Adaptive selective harmonic minimization based on ANNs for cascade multilevel inverters with varying DC sources, IEEE Trans. Ind. Electron. 60 (May (5)) (2013)1955–1962.
[8] Ozpineci, B., Tolbert, L., Chiasson, J, [8], ‘Harmonic optimization of multilevel converters using genetic algorithms’, IEEE Power Electron. Lett., 2005, 3, (3), pp. 92–95
[9] Kavousi, A., Vahidi, B., Salehi, R., et al.: , [9], ‘Application of the bee algorithm for selective harmonic elimination strategy in multilevel inverters, IEEETrans. Power Electron., 2012, 27, (4), pp. 1689–1696.
[10] Ray, R.N., Chatterjee, D., Goswami, S.K.: , [10], ‘Harmonics elimination in a multilevel inverter using the particle swarm optimisation technique’, IET Power Electron., 2009, 2, (6), pp. 646–652.
[11] Taghizadeh, H., Hagh, M.T., [11], Harmonic minimization in multilevel inverters using modified species-based particle swarm optimization’, IEEE Trans.Power Electron., 2009, 24, (10), pp. 2259–2267.
[12] Kumle, A.N., Fathi, S.H., Jabbarvaziri, F., et al.: , [12], ‘Application of memetic algorithm for selective harmonic elimination in multi-level inverters’, IET Power Electron., 2015, 8, (9), pp. 1733–1739.
[13] Etesami, M.H., Farokhnia, N., Fathi, S.H.: , [13], ‘Colonial competitive algorithm development toward harmonic minimization in multilevel inverters’, IEEETrans. Ind. Inf., 2015, 11, (2), pp. 459–466
[14] Salehi, R., Vahidi, B., Farokhnia, N., et al.: , [14], ‘Harmonic elimination and optimization of stepped voltage of multilevel inverter by bacterial foraging algorithm’, J. Electr. Eng. Technol., 2010, 5, (4), pp. 545–551
[15] Babu, T.S., Priya, K., Maheswaran, D., et al.: , [15], ‘Selective voltage harmonic elimination in PWM inverter using bacterial foraging algorithm’, SwarmEvol. Comput., 2015, 20, pp. 74–81
[16] Taghizadeh, H., Hagh, M.T.:, [16], .:‘Harmonic elimination of cascade multilevel inverters with nonequal dc sources using particle swarm optimization’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 3678–3684
[17] M.Gnana Sundari, M.Rajaram, Sujatha balaraman, [17], “Application of improved firefly algorithm for programmed PWM in multilevel inverter with adjustable DC sources”, Applied soft computing, 41(2016),169-179.
[18] Rashedi.E, Rashedi.E, Nezamabadi-pour, Saryazdi, [18], “GSA: A gravitational search algorithm”, Information science,179(2009),2232-2248.
[19] Serhat Duman, Ugur Guvenc, Yusuf sonmez, Nuren Yorukeren, [19], “Optimal power flow using gravitational search algorithm”, Energy conversion and management,59(2012),86-95
[20] Shukla, A.; Singh, S.N. , [20], Multi-Objective Unit Commitment With Renewable Energy Using GSA Algorithm.INAE Lett. 2016, 1, 21–27.
[21] Chatterjee, A.; Roy, K.; Chatterjee, D, [21], A Gravitational Search Algorithm (GSA) based Photo-Voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator. Energy 2014, 74, 707–718.
[22] Sarjila, R.; Ravi, K.; Edward, J.B.; Kumar, K.S.; Prasad, A, [22], Parameter Extraction of Solar Photovoltaic Modules Using Gravitational Search Algorithm. J. Electr. Comput. Eng. 2016, 2016, 2143572.
[23] Mirjalili, S.; Gandomi, [23], A.H. ‘Chaotic Gravitational Constants for The Gravitational Search Algorithm’. Appl. Soft Comput. 2017, 53, 407–419
[24] González, Daniel Zaldívar, Erik Cuevas, Marco Pérez-Cisneros,Fernando Fausto and Adrián González, [24], A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells’ Energies 2017, 10, 1052, 1-24
[25] Sourabh kundu, Arka deb burman, santu K.Giri, Sarbani Mukherjee, Subrata Banerjee, [25] , Comparitive study between different optimization techniques for finding precise switching angle for SHE-PWM of three phase seven-level cascaded H-Bridge inverter”, IET Power Electronics, 2017,1-10
[26] B. Atlas, E. Akin, A.B. Ozer, [26] , Chaos embedded particle swarm optimizational gorithms, Chaos, Solitons Fractals 40 (2009) 1715–1734.
[27] B. Atlas, [27] , Chaotic bee colony algorithms for global numerical optimization,Expert Syst. Appl. 37 (2010) 5682–5687.
[28] B. Atlas, [28] , Chaotic harmony search algorithms, Appl. Math. Comput. 216(2010) 2687–2699.
[29] J. Yao, C. Mei, X. Peng, Z. Hu, J. Hu, [29], A new optimization approach-chaos genetic algorithm, Syst. Eng. 1 (2001) 105.
[30] G. Zhenyu, C. Bo, Y. Min, C. Bing gang, [30], Self-adaptive chaos differential evolution, Adv. Nat. Comput. (2006) 972–975.
[31] A. Gandomi, X.S. Yang, S. Talatahari, A. Alavi, [31], Firefly algorithm with chaos, Commun. Nonlin. Sci. Numer. Simulat. (2012).
[32] Thomas.M.Blooming, Daniel J.Canovale, [32], Application of IEEE STD 519-1992 Harmonic limits