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Abstract :  
A high performance advanced static VAR compensator (ASVC) which uses a three-level voltage source inverter is presented and analyzed in this paper. The paper shows an analysis based on the modeling of the system in d-q axis to facilitate the design of the control method..

This paper not only describes the closed loop reactive power control design procedure but  also deals with the study on the application of the Advanced Static Var Compensator (ASVC) for the control of such power in distribution system.

Furthermore, the dynamic behaviour of the system is  analysed using Simulink with PLECS toolbox through a set of simulation tests under various transient conditions. The results obtained may lead to correct design of a robust controller for reactive power applications. 

Key Words: ASVC, modeling, NPC inverter, Control, PWM, PLECS, VAR
1. Introduction

As to this day, reactive power has not a real physical meaning, but is recognized as an essential factor in the design and good operation of the power system.
Power transfer in most integrated transmission systems is constrained by transient stability, voltage stability, and/or power stability. Reactive power (VAR) compensation or control is an essential part in a power system to minimize power transmission losses, to maximize power transmission capability, and to maintain the supply voltage. It is increasingly becoming one of the most economic and effective solution to both traditional and new problems in power transmissions systems [1-5]. It is well-established practice to use reactive power compensation to control the magnitude of the voltage at a particular bus bar in any electric power system. In the past, synchronous condensers, mechanically switched capacitors and inductors, and saturated reactors have been applied to control the system voltage in this manner.[6,7]
Recent advances in the power handling capabilities of static switches devices such as IGBT with voltage rating up to 4.5kv commercially available, has made the use of the voltage source inverters (VSI) feasible for high power applications [8,9].  The fast growing development of ultra rapid power switching devices and fast and efficient controllers has lead to flexible control of electric power system. Moreover, the increases in use of converters for large scale reactive power compensation have been reported [10-12]. 

High power and high voltage conversion systems have become very important issues for the power electronic industry handling the large ac drive and electrical power applications at both the transmission and distribution levels.

As a result, a variety of VSI based equipment such as the static compensators (STATCOM) are used to make flexible AC transmission systems (FACTS) possible. The ability of these FACTS equipments to control reactive power system as well as to improve system stability may need to use VSI with high voltage and high power capabilities [13,14]. 

This is not possible for a two-level inverter, as the semiconductor devices must be connected in series to obtain the required high-voltage operation. 

Recently the multilevel pulse width modulation (PWM) converter topology for reactive power compensation has also been reported [15-17] has drawn tremendous interest in the power industry since it can easily provide the high power required for high power applications for such uses as static var compensation, active power filters, and so that large motors can also be controlled by high power adjustable frequency drives.

The most popular structure proposed as a transformer less voltage source inverter is the diode clamped converter based on the neutral point clamped  (NPC)  converter proposed by nabae[2]. It has the advantages that the blocking voltage of each switching device is one half of dc link voltage and the harmonics contents output voltage are far less than those of two-level inverter at the same switching frequency.

The main motivation for such converters is that current is shared among these multiple switches, allowing a high converter power rating than the individual switch VA rating would otherwise allow.  As the number of levels increases, the synthesized output waveform, a staircase wave like, approaches a desired waveform with decreasing harmonic distortion, approaching zero as the number of levels increases.  
The main purposes of the paper are not only to illustrate the modelling and analysis of this  type of inverter used for static var compensation [18-19], but also to describe the closed loop reactive power control design procedure. Finally, a simplified mathematical model of the ASVC is derived, and various simulation results presented using PLECS Toolbox under simulink [20,22] under various transient conditions of the proposed ASVC model and its control.

2. Main Circuit and Operating Principle
2.1. Main circuit configuration

The static VAR compensator (ASVC) which uses a three-level converter of the voltage source type is shown in Fig.1.  

The main circuit consists of a bridge inverter made up of twelve power GTO's with antiparallel diodes, which is connected to the three-phase supply through a reactor, X of small value. Two capacitors are connected to the dc side of the converter. 

The structure of one leg of the inverter itself is made up of four pairs of diode-GTO forming a switch and two diodes allowing to have the zero level point of the inverter output voltage.
2.2. Operating principle

The operation principles of the system can be explained by considering the per-phase fundamental equivalent circuit of the ASVC system as shown in Fig.2.
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 Fig.1. Power Circuit of the ASVC
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Fig.2. Per-phase fundamental equivalent circuit

In this figure, Ea1 is the ac mains voltage source. Ia1  and Va are the fundamentals components of current and output voltage of the inverter supply respectively.

The ASVC is connected to ac main through a reactor L and a resistor R representing the total loss in the inverter.
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Fig.3. Phasor Diagram for leading and lagging mode

As shown in Fig.3, by controlling the phase angle '(' of the inverter output voltage, the dc capacitor voltage Uc can be changed. Thus, the amplitude of the fundamental component Ea1 can be controlled. 
3. Modelling Procedure
3.1 Mathematical model of the ASVC 

Fig.4 shows a simplified equivalent circuit of the ASVC [20]. 

Using matrix form, the mathematical model is given by
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(1)
The model of the inverter output  voltage is given by


[image: image6.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

-

-

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

2

4

3

4

3

4

3

1

2

1

2

1

2

1

.

.

.

.

.

.

2

1

1

1

2

1

1

1

2

3

1

c

C

C

B

B

A

A

c

C

C

B

B

A

A

c

b

a

U

S

S

S

S

S

S

U

S

S

S

S

S

S

e

e

e

(2)
With:

Ski : The switching function, is either 1 or 0 corresponding to on and off states of the switch Qki respectively.

K     :  Names of arms ( A, B ,C ).

i      :  number of switches of one arm (i = 1,2,3,4)

The DC side currents are given by
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And the DC side capacitor voltages are given by
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Equations (1) to (4) represent the mathematical model of the STATCOM in  ABC Frame. 
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Fig.4. Equivalent Circuit of the ASVC
3.2. Modelling  of  the network 

Fig.5 represents the ASVC connected to Network bus for regulating the local load reactive power.
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Fig.5.   STATCOM connected to the network

The parts of the figure grouped under the dotted line are redrawn in Fig.6 to be  modelled  using the PLECS Toolbox [22].
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Fig .6. PLECS circuit representation
4. Reactive power Control

The control of the ASVC was designed to compensate the reactive power of the local load.
To achieve a simple design of the control, equations depicted above must be transformed in d-q Frame and linearized under the following assumptions [6].

· Disturbance is small

· The second-order terms are dropped

· The quiescent operating o is near zero

The annotation  is introduced to indicate the perturbed values. 
We obtain equation (6) in state space form 

[image: image13.wmf]a

w

w

D

×

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

+

ú

ú

ú

û

ù

ê

ê

ê

ë

é

D

D

D

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

D

D

D

0

0

1

0

2

0

0

L

co

do

qo

co

do

qo

V

L

U

i

i

C

D

L

D

L

R

L

R

U

i

i

dt

d

 (6)


[image: image14.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

D

D

D

-

=

D

co

do

qo

L

U

i

i

V

Qc

0

0


Small signal equivalent model system is used to calculate the transfer function of the system equation (7).


[image: image15.wmf])

(

)

(

)

(

)

(

)

(

s

B

s

A

s

s

Q

s

G

C

=

D

D

=

a




(7)
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5. Transient Simulation

To check the validity of the model described above a set of simulation tests have been carried out to analyse the system under steady state and transient conditions using PLECS. 
Based on the model of the inverter and the network described   in section 3, a Simulink model depicted by Fig.7 was built.
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Fig.7. Simulink model of the system

Figures 8 to 9 represent the dynamic response of the compensator for switching from capacitive to inductive mode of reactive load.
Figure 8 illustrate the variation of  load and ASVC reactive power, it shows that the compensator has a good response. At the time of 0.5 sec we connect the ASVC to the line bus thus absorbing inductive power, the load is in capacitive mode. At the time of 2 sec the ASVC   is generating leading vars  whereas the load is in inductive mode.
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Fig.8. Reactive Power Variation  of  the Load and ASVC 
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Fig.9. Dc side voltage variation

6. Conclusion

A study and mathematical modelling of the dynamic performance analysis of an Advanced Static Var Compensator (ASVC) using three-level voltage source  inverter has been presented in this paper.

The dynamic behavior of the system was analysed using  a tool box named PLECS through a set of simulation tests which have lead  to the design of an inexpensive controller for reactive power applications. 

From the results of the simulations and the mathematical modelling developed in this paper, we have directed our future research work to add time domain voltage source model of arc furnace. This  may lead to design a  faster and robust control to reduce Var caused by the rapid variation in the arc furnace current.
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