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Abstract: Electromagnetic simulation in a device which contains the conducting laminations, takes into account a circulation of induced current. This current is often produced in the heterogeneous medium by the pile of all layers. The space between two successive layers provokes a discontinuity of the environment and income complex study. To simplify the complexity of the calculation, we use average size. Problem can be resolved by the replacement of the diverse conducting laminations by a homogeneous material with new physicals average properties.
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1. Introduction
In the electromagnetic systems, one often meets heterogeneous materials [1-8]. The numerical modeling of these devices starts from a description of their geometries and materials of their constitutions. This modeling is based on the solution of partial derivative equations characterizing the physical phenomena evolving/moving in these systems. Knowing that, in these equations, certain coefficients characterize the physical properties of materials. Sometimes but, it is necessary to take account of non-linearity, the influence of the external parameters and the anisotropy.
One finds the anisotropy in a formed magnetic circuit of several materials finely mixed like an isolated sheet stacking. Knowing that in the presence of insulators, in the direction of stacking, the permeability does not have the same value in all the directions, on the other hand, conductivity has only one component according to the normal direction with the sheet stacking. It is theoretically possible to numerically take them into account by describing all iron sheets and the existing insulation, but, that led, in practice, with too heavy systems to solve even impossible to treat [4]. To overcome this problem, we propose the use of the techniques of homogenization. These results in the replacement of heterogeneous stacking by a homogeneous medium with physical properties equivalent deduced from the initial physical properties [4].

2. Evaluation of electromagnetic fields for one-dimensional model in a conducting sheet 
We can formulate the differential equation most general which governs the distribution of the density of current in a conducting part (sheet) crossed by a variable flow with linear behavior in dynamic mode by [5]: 
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(1) 

If the density of current has only one component according to the y direction and its variation according to x direction is can write:
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 the equation (1) will take the form:
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Fig. 1. Dimensioning of a conducting sheet.
2.1. Analytical resolution of the differential 

equation  

The induction field 
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 is related to the density of current 
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 by [6-8]: 
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One can then formulate the solutions of the differential equations of our problem: 
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(4)
From the microscopic point of view, only the eddy currents are snuff in account. The pace of the density of these currents is odd, starting from the initial conditions one can put the expressions (3) and (4) in their final forms:
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Where 
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 are respectively the amplitudes of the density of the currents and magnetic induction 

It is noticed that the density of current can change direction compared to surface. 
3. Formulation of the average sizes and the losses computation 
3.1. Formulation of the permeability and conductivity homogeneous 
On the basis of the fact of having supposed précédament that only the odd part of the density of the current is taken into account. We suppose in all that follows that the distribution of the density of the current is unspecified what will generalize our study.
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Fig. 2. sheet stacking in two dimensions.
"a" is the thickness of sheet,
"e" is the thickness of insulator,
"i" is the classification of sheet,


[image: image15.wmf]-

i

J

 and 
[image: image16.wmf]+

i

J

 are the tangential components of the density of the current in the surface of the sheet "i",
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are the tangential components of the density of the magnetic field in the surface of the sheet "i".

The expressions of the average local sizes are expressed either by the integral in the field of the study, or by the average of the tangential components of the sizes such as: 
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with:
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Research describes that the significant values of the magnetic field as well as the density of the current which crosses sheet can be expressed according to their tangential components.


[image: image24.wmf](x)

f

 

J

(x)

f

 

J

(x)

J

i

2

i

i

1

i

+

-

+

=








 
























(11)

[image: image25.wmf](x)

f

 

H

(x)

f

 

H

(x)

H

i

2

i

i

1

i

+

-

+

=







 






















(12)
Where: 

"x" is the normal co-ordinate of stacking,

"(" is the thickness of skin,

"j" is the imaginary unit.
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 are complex functions whose expressions are given by:
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and
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It is noticed that there is a resemblance between the expression (11) and the solution of the differential equation (2).
3.1.1. The homogeneous permeability  

The expression 
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shows that the homogeneous permeability is a complex size: 
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is the relative permeability, it is proportional to the average of the magnetic energy stored in sheet.
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 is the imaginary part, it is proportional to the losses by eddy currents in a ferromagnetic material. Generally, 
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From the equation (8) of 
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[image: image37.wmf]m

m

: 

[image: image38.wmf]ú

û

ù

ê

ë

é

+

d

+

+

d

m

+

m

=

m

e

2

a

)

j

1

(

th

)

j

1

(

2

)

e

a

(

r

0

m













(15)
3.1.2. Homogeneous conductivity

The expression 
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 shows that homogeneous conductivity is also a complex size. According to the expression (7) and the complex functions of forms (13) and (14) one the expression deduces from the density of the current according to its tangential components:
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The current crosses stacking in the vertical direction, and the component of the current according to direction x is null. Thus the electric field describes by the equation (9) becomes: 
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The expression of homogeneous conductivity '(m' is obtained to me starting from the expressions (16) and (17). This expression is given by: 
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Thus, starting from the average sizes, electric conductivity in the normal direction of stacking was given.
Once that the permeability and the conductivity of the homogeneous medium are formulated, we can pass to calculation losses.  

3.2.     Computation of the losses 
3.2.1.  Calculation of the losses starting from the   

            sizes local

One choosing an unspecified distribution of the density of  the current, previously supposed, one sees well according to figure 3 that the function 
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with: 
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From figure 2, we can write: 
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Fig. 3. Decomposition of the pace of the current in two functions pair and odd.

One calls 
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 the losses calculated starting from the local sizes (analytical expression of the density of the currents), one can thus write: 
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 is the combined function of the density of the currents.
According to figure (3) the decomposition of the function 
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 in two functions pair and odd enables us to write the expression (19) pennies the form: 
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By development of mathematical calculations, one leads to the following final expression: 
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3.2.2. Calculation of the losses starting from the 

average sizes  

We call the losses calculated starting from the average sizes: 
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That is to say the following notation: 

with: 
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From the macroscopic point of view, the density of the average current is no null, which produces losses by conduction in the medium, thus, term A can be calculated by the product of the average electric field and the combined expression of the average density of current In much of problems the electro technical ones, which utilize the Maxwell's equations, the displacement currents are negligible, this is justified by the weak work frequencies. In our case the losses by eddy currents alone intervene (term II).
According to the equations (7), (8), (9), (10) and (22) one deduces the final form from the losses calculated starting from the average sizes: 
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The comparison of the two expressions (21) and (23) enables us to conclude that:
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The comparison between the losses calculated starting from  the average sizes and the losses calculated starting from the local sizes, shows the good choice of the equivalent physical properties,  which adapt to the Maxwell's equations for the new homogeneous medium which replaced the heterogeneous starting medium.

4.  Numerical results

After having calculated the homogeneous permeability and conductivity, one can adapt all that one has just seen with the various electro technical applications. In this particular case and as example of application we chose the laminated magnetic structures (the transformer).

We go in what will follow to present, the evolution, according to the frequency, of the permeability and conductivity homogenized in a range of calculation lower than the high frequency. It acts indeed, and for a better interpretation of the representation according to the frequency, of the 
reports: 
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One considers the part stacking to constitute it of a sheet (medium 2) thickness "a", and of the insulator (medium 1) thickness "e".

Tab. 1. Physical and geometrical characteristics of the sheet stacking.
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 is the absolute magnetic permeability of the vacuum, 
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 is the relative permeability of the medium,
The frequency "f" is included between (0,001 ; 100000) [Hz].
Stacking is in x direction and the variations of the electric and magnetic phenomena are the same ones according to y and z directions.
The equivalent expressions of the variation of the permeability and conductivity (real and imaginary parts), according to directions y or z (perpendicular direction of stacking) obtained by the technique of the homogenization, are strongly dependent on the frequency. Figure (4) gives an outline of this dependence. 

5.  Comment 
One can say that in low frequencies (tendency towards the static mode), only the real parts intervene. On the other hand, for high frequencies all the parts are real or imaginary tend towards zero, which implies the presence of other phenomena, like the capacitive effect and displacement currents between the sheets, which make the study much more complex and requires adequate models.


[image: image81.wmf]0.0001

0.001

0.01

0.1

1

10

0.001

0.1

10

1000

100000


Fig. 4. Pace of the homogeneous permeability.

   a. real Part 

          b. imaginary Part 

5.  Conclusion

In this work, we proposed a method for calculation able to ensure a dynamic modeling of the electro technical systems having isolated ferromagnetic sheets. This methodology is based on the use of a technique of homogenization. This technique allows the improvement as of the speed even the precision on calculations at the time of the modeling of the systems in question for their design or their optimization.

This technique consists in finding properties average macroscopic equivalent (conductivity, permeability...) making it possible to replace a heterogeneous material by a homogeneous material (possibly anisotropic) and physically behaving in an equivalent way, and which checks the Maxwell's equations. It is the step which we took in dynamic mode in our work.
Moreover, the knowledge of the behavior of the variation of the anisotropic permeability in the direction of stacking, makes it possible to establish a calculation programmed in two or three dimensional for a magnetodynamic problem, and which takes into account the complex expressions and the anisotropy of the physical parameters averages.

This study could be the extension object to certain simple configurations which are usually met in Electric Genius. The sheet stacking with linear magnetic behavior is classified like a particular case in the dynamic modeling of the structures electrical engineering.
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