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Abstract: Despite the extensive work carried out on developing fuzzy logic controllers (FLC) that is either more intelligent/ adaptive or employs fewer rules, there seems to be a lacking of a comprehensive explanation on how the proposed FLC scheme came about as most claimed that it was by trial and error and /or experience. This paper attempts to fill in this gap, by providing an in-depth explanation on how the Adaptive Neuro Fuzzy Inference System (ANFIS) can be used to develop FLC that are not only adaptive, but also use as few as 15 rules. This is achieved by understanding the ANFIS parameters involved and taking into consideration how each parameter affects the resulting speed control performance of the FLC. The ANFIS parameters studied are the type and range of training data, initial parameters of the FLC architecture and training method that should be used to train a FLC to be adaptive. The simulations were carried out in the MATLAB® environment.
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1. 
Introduction

Though conventional PI controllers have been widely utilized as speed controllers for high performance ac motor drives (HPACMD), the fixed gains of these type of controllers is responsible for making these drive systems very sensitive to motor parameter variations, load torque and speed disturbances [1-2, 5-6]. HPACMD require fast and accurate speed response, quick recovery of speed from any disturbances and sensitivity to motor parameter variations [2, 3]. For the motor drive to be capable of continuously running at its desired response under different operating conditions (speed command tracking, speed command and load torque disturbances, parameter variation), its speed controller has to be capable of self- tuning, or adapting, its gains automatically online in response to these different operating conditions. These types of controllers are known as adaptive controllers. 

Though there are many types of adaptive control techniques that exist to assist control designers to develop adaptive speed controllers, their control principle falls generally in either one of the two classifications of adaptive control techniques; motor (or plant) model- based or Artificial Intelligence (AI) – based [1]. Self- Tuning Control, Model Referencing Adaptive Control (MRAC) and Sliding Mode (or Variable Structure) Control and Adaptive Back Stepping Control are examples of adaptive control techniques that are based on the mathematical model of the plant  [1]. Adaptive control techniques such as the Expert System Control, Fuzzy Control, Neural Control, and Genetic Algorithm Control are AI - based techniques that essentially embeds the experience and intuition of the human plant operator, designer and/ or researcher into the system [1]. These controls are also known as intelligent controls as they are designed to have the computing capability to learn, self- organize and/ or self- adapt its parameters to enable the plant’s response to be robust towards machine parameters and load torque variations [1].

Recent literature has paid much attention to the potential of fuzzy control in machine drive applications [4-5]. FLC has the advantages of providing robust performance for both linear and non-linear plant functions, and convenience as it does not require knowledge of the plant’s mathematical model [1-2, 14]. However, the qualitative design of the FLC is entirely heuristic, and thus difficult to obtain a systematic design as it is based on one’s experiences and expert knowledge about the process being controlled [4, 13]. Besides being subjective and heuristic, the determination of its fuzzy rules, input and output scaling factors, and the choice of membership functions depend on trial and error that makes the design of the FLC a time- consuming task [3-4]. As means of overcoming the disadvantages of the FLC, some efforts have been made on the use of neural networks (NNs) to design the FLC [1, 3, 6, 10]. This neural fuzzy approach is a form of a hybrid intelligent system that combines at least two intelligent technologies, such as those that were mentioned earlier [6]. 

The NN gives the FLC the ability to learn systematically from a given set of training data instead of resorting to time- consuming trial and error methods. Among the advantages [1, 6, 9-12] of the ANN is that it has fast performance due to its massive parallel input- parallel output multidimensional computing system and distributive computation. The network architecture is inherent to noise and is also fault tolerant due to its distributed knowledge/intelligence throughout the network. This makes the network virtually unaffected by a few erroneous weights or destroyed connections. However, NN is a complex subject; if the model is not trained with sufficient accuracy, the stand alone neural model may not be stable as was encountered by the authors of [3]. An important type of neural fuzzy system is the ANFIS, which is the topic of discussion of this paper.

The rest of this paper is a compilation of the results and conclusions of the findings and observations that were collected over the course of the duration of the development of the author’s adaptive control algorithm known as Function Torque Adapted Gains Fuzzy Inference System (FTAG FIS). The FTAG FIS was developed using the MATLAB® Fuzzy Logic Toolbox ANFIS Editor GUI for a HPACMD. The design of the proposed controller incorporates a function known as FTAG that automatically adjusts the output gain of the FLC according to the load applied onto the motor, effectively eliminating the need for the control designer to adjust the input- output gains of the FLC manually by trial and error. The FTAG FIS algorithm guarantees the closed loop performance of the motor even when the motor is subjected to significant and unpredictable motor parameter variations and load torque disturbances at both low and high speeds. An outstanding advantage of the FTAG FIS algorithm is that it used only 15 rules in its rule base, which is less than half the number of rules that is being used in many other FLC that has been proposed in other papers such as in [4-5, 13-14]. 

However, though there are many papers written on the many different types of adaptive control techniques employed to develop HPACMD speed controllers, the focus of most of them are to relay details such as how the developed controller works and how it improves the performance of the motor over other types of controllers. There seems to be a lacking of papers that gives an account of reasoning, explanations, findings and observations that have led to the development of the proposed control algorithm. There are even less papers on adaptive controllers for HPACMD that were developed using ANFIS. Books such as [1, 6, 9-10] concentrate on explaining the concept of how ANFIS works rather than how it can be used to develop an adaptive speed controller for HPACMD. This paper seeks to fill these gaps. The paper is organized as follows: in Section 2, the concept of the ANFIS technique is explained; in Section 3, the section is divided into Sections A, B, and C that respectively cover the issues of the training data, initial FIS architecture and training method that should be accounted for when developing an adaptive speed controller for a HPACMD using ANFIS; and finally, in Section 4, concluding remarks end the paper.

2. 
Concept of ANFIS

The ANFIS was proposed by Roger Jang from the Tsing Hua University, Taiwan, back in 1993. According to Jang, the ANFIS is a NN that is functionally equal to a Sugeno type inference model [6]. It is a hybrid intelligent system that synergies the advantages offered by ANN and Fuzzy Logic (FL) technology into one system. Thus, to understand the concept of ANFIS, one needs to understand the concept of ANN and FL.

A. Fuzzy Logic (FL)
The general methodology of reasoning in FL is by the IF…THEN rules. The principles of fuzzy control is based on the fuzzy set theory, which states that a particular object has a degree of membership (DOM) in a given set that may be anywhere between 0 and 1 (hence, the term ‘multi- valued logic’). Fig. 1 below [1] shows a fuzzy inference system (FIS) which basically consists of a formulation of the mapping from a given input set to an output set using fuzzy logic. This mapping process consists of five main steps.
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Fig. 1. A two- input, three- rule fuzzy system using Sugeno (zero- order) method.

The first step in the mapping process is to fuzzify the crisp input variables, X and Y, which is done by mapping them to the membership functions of the fuzzy variables. A membership function (MF) is a curve that defines how the values of a fuzzy variable in a certain region are mapped to a membership value μ (or DOM) between 0 and 1 [1]. The curve may be triangle, trapezoidal, bell, Gaussian, or any other polynomial based curves. The second step in the mapping process is the application of the fuzzy operator (AND, OR, NOT) in the IF (antecedent) part of the rule [1]. If the AND operator is specified in the rule, the degree of fulfilment of rule n (DOFn) will be the minimum of the two DOMs μn(X) and μn(Y) of that rule. If the OR operator is specified instead, then it will be the maximum of the two. The third step in the mapping process is the implication from the antecedent to the consequent (THEN part of the rule) [1]. As the ANFIS is based on the Sugeno type inference model, only the Sugeno implication method will be explained here. The Sugeno method can be defined in two ways: the zero order and the first order method. In the Sugeno zero order method, the fuzzy output MFs are only constants; as in the fuzzy output, Zn = constant, Kn, as shown above. In the Sugeno first order method, the fuzzy output MFs have linear relations with the inputs; as in the fuzzy output, Zn, is mathematically expressed as, 
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where all the A’s are constants. The fourth step in the mapping process is the aggregation of the consequents across all the rules [1], where the total fuzzy output, Zf, is the union (OR) of all the individual fuzzy outputs, Zn. The final step in the mapping process is the defuzzification of the total fuzzy output, Zf, to Z0, where Z0 is the crisp output value of the FIS as a result of the crisp input values X and Y. The defuzzification formula for a Sugeno FIS

type is, 
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(2)

where n denotes the rule number, and N, the total number of rules in the rule base. This defuzzification method of the Sugeno FIS is known as the weighted average method [6].

B. Artificial Neural Network (ANN)
An ANN is a model that is made to simulate the biological nervous system of the human brain. It is trained, not programmed such as the rule based FLC, to learn by example from the sets of input- output training data fed into it. The ANN results from the interconnection of artificial neurons via weights that act like gains. A non- linear activation function contributes to the non-linear transfer characteristics of a neuron, which permits non-linear input output mapping in a NN. Due to the fact that the interconnection of biological neurons is not well understood, numerous NN models exist. However, these models can generally be classified as feedforward and feedback/recurrent networks. Once the appropriate NN model has been designed and/or selected, the network is trained to give out the corresponding desired patterns at the output; this can be accomplished offline or online using either the supervised, unsupervised/self or reinforced learning/training method.

The learning process of the network has been illustrated simply in Fig. 2 [11], where the values of the weights are adjusted by the training algorithm until the network output matches the target. The training algorithm is usually a function of the error between the desired output and the NN output. The training continues until the error between the target and network output has been driven to zero, or to an acceptable level. 
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Fig. 2. Simplified schematic of the ANN training process.

C. Adaptive Neuro Fuzzy Inference System (ANFIS)
Though the MFs of the FIS has to be manually adjusted by trial and error, the FIS acts like a white box, meaning that the control designers are able to understand how the controller reached its solution. On the other hand, the NN can learn, but acts as a black box as to how it had reached to a particular solution. By employing the NN approach to develop the parameters of the FIS, the FIS is somewhat given the ability to learn from a given set of training data, just like an ANN. At the same, the solution provided by the network is mapped out onto the FIS. Hence, the solutions can be explained in linguistic terms. This learning process of the FIS has been illustrated in Fig. 3 [1], where the parameters of the MFs and Sugeno output functions, f1 and f2, are adjusted by the Backpropagation (BP) algorithm (one of many training algorithms) until the FIS output matches the target. 
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Fig. 3. Corresponding ANFIS structure for a Sugeno fuzzy inference system.

Layer 1 is the fuzzification layer, where the neurons in this layer perform fuzzification. The subscript numbers 1 and 2 refer to the rule number. The outputs of this layer are the DOMs of each input with respect to the MFs it has been mapped to. Layer 2 is the rule layer, where each neuron corresponds to one rule in the rule base. The outputs W1 and W2 are respectively the DOF for the first and second rule, which are then normalized in Layer 3. What happens here is that the ratio of the DOF of one rule to the sum of all the DOFs from each rule is calculated out to determine the overall contribution of that particular rule to the final result, F. The function of Layer 3 can be expressed mathematically as,
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Layer 4 and 5 are the defuzzification and summation layer respectively, which, together, carries out the calculation of equation (2) to determine the overall ANFIS output, F. In this case, Zn = fn and DOFn = Wn. The calculated output F of the FIS network is then compared with the desired output, Fd, which has been generated as the input- output, training data pairs. The error ( between them is fed into the BP training algorithm that in turn, trains (or adjusts) the parameters of the FIS; for example, the constants of the Sugeno fuzzy output (membership) function f1 and f2, and the parameters of the input MFs.

The ANFIS training of the FIS continues either until the error ( equals the specified error tolerance (which is usually left at 0) or when the specified number of epochs has been reached, whichever comes first. One epoch refers to one training round; in one training round, the ANFIS passes all the training data pairs through the FIS architecture that has been loaded into it, and then adjusts the parameters of the FIS. A second pass of the training data refers to a second epoch, and so forth. The checking data is normally used to compare the trained FIS output with input output pairs of data that has been corrupted, such as with noise. The testing data, on the other hand, is used to compare the trained FIS output performance with input- output data pairs that have not been used to train the FIS. Both the checking and testing data serve to determine whether the trained FIS has over fitted itself to the given training data, such that it is unable to recognize any other types of inputs besides the ones it has been trained with. A FIS has been trained successfully when it is able to generalize its response for all types of inputs apart from those that it has been trained with. There are two ANFIS parameter optimisation method options to choose from; they are hybrid (the default, mixed least squares estimation (LSE) and BP) and backpropa (BP) [12]. The MATLAB® ANFIS Editor GUI is limited to training Sugeno type FIS only. A more comprehensive explanation on the use of the MATLAB® ANFIS Editor GUI is provided in [12]. 

3. 
Analysis of Simulated Speed Responses

The ANFIS training were carried out using the MATLAB® ANFIS Editor GUI that has just been described. The training data were generated separately from the PI speed controller of the MATLAB® Simulink control drive scheme model of the permanent magnet synchronous motor (PMSM); a 370W, 230 AC, 8 poles, 6000 rpm motor, of 0.6 Nm nominal stall torque and 0.25 kgcm2 motor inertia. Before developing the adaptive speed control algorithm for the dynamic model of the motor, it was developed initially on its reference model. This was based on the theoretical reasoning that a vector controlled, dynamic model of a HPACMD can be controlled as how one would with a separately- excited dc motor drive. Hence, the developed speed control algorithm of the reference model should be a good approximate to that which is required by its dynamic counterpart. Therefore, in speed control design, it is irrelevant whether the dynamic machine is a dc machine or a vector controlled ac machine and the results of the study are universally applicable to all HPACMD, as long as the speed controller is under consideration [15]. However, in doing so, an extensive experimentation on determining the best method that generates the most appropriate training data from which the FIS can learn from, the best initial FIS architecture parameters that has the best learning ability, and the most appropriate training method to train the FIS had to be continuously carried out. These issues will be addressed next in this section.

A. Training Data

The training data acts as the learning material that ANFIS uses to train the FIS. Thus, it is imperative to understand how aspects of the training data such as its type, number, manner of distribution and range influence the ANFIS training result. All these will be covered in this section.

i. Type of Training Data

One of the main concerns with developing an adaptive speed controller using ANFIS is whether the training data that was generated at one particular operating condition of the motor would be sufficient enough to train the FIS to effectively control the speed of the motor at its other operating conditions. In other words, is the generated data sufficient enough for the FIS to generalize for all the other types of operating conditions besides those at which the training data was generated from? 

[image: image8.emf]00.010.020.030.040.050.060.070.080.09

0

1000

2000

3000

4000

5000

6000

7000

time, t (s)

Speed, N (rpm)

Comparing the Speed Control Performance between using Sugeno

Zero- and First Order Method at High Speed, Rated J&B.    

Zero Order, i/p gain 100

Reference Speed

First Order, i/p gain 10000


Fig. 4. A graphical representation of the different operating points (conditions) of the motor during running, assuming rated load.

Referring to Fig. 4, the motor may operate at any of the points that make up the volume of the cube. At Node 1, for example, the motor is running at maximum inertia Jmax, friction Bmax, resistance Rmax, and inductance Lmax. On expanding the dimension here, this cube represents the operating conditions of the motor at its rated, or full load (FL) only. For an adaptive speed controller, it has to be able to adapt to other load conditions as well. Fig. 5(a) shows that the speed control performance of the FIS that was trained at rated motor parameters (Jrated and Brated) and at No Load (NL) condition, deteriorated at FL condition. Does this mean that one has to train the FIS with training data that is generated from all the possible operating conditions of the motor for it to learn to be adaptive?

An answer to that is this: the trained FIS will not know how to respond to situations that it has not been trained for, but it can be trained with data that has been generated at a few prime situations that may be able to help it generalize for other untrained situations. For example, a FIS was trained with training data that was generated at the two extreme ends of the motor’s operable load application; NL and FL condition. The FIS, however, was not trained specifically for different motor parameters (such as J and B) besides rated values because the results in Fig. 5(b) indicated that the trained FIS was able to adapt to large changes in the motor parameters relatively better than to changes in the load. By this method of training, it was hoped that the trained FIS would not only be able to adapt to the motor’s NL and FL condition, but also to the other loads in between that it was not specifically trained for.
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(b)

Fig. 5. Comparison of the speed control performance of the ANFIS trained FIS between (a) FL and NL motor operation and (b) rated and maximum motor parameters.

The results in Fig. 6 verifies the effectiveness of training a FIS at two ‘extreme’ load conditions, NL and FL, i.e. the minimum and maximum load conditions that the motor can operate at. This is an important finding as this goes to show that the FIS does not need to be trained for every load and parameter condition that the motor faces, and that training the FIS at NL and FL (at rated motor parameters) is sufficient for the FIS to generalize for all other load conditions.
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Fig. 6. Comparing the speed control performance between a FIS that has been trained for NL condition only, and a FIS that has been trained at NL and FL condition.

ii. Number of Training Data

From here, it would seem that the next obvious thing to do was to generate more training data from other load conditions to further improve the above control performance. However, another concern regarding training data is the amount of training data that is allowable to train the FIS. In [16], it is mentioned that determining that ‘right’ number of training data to train is frequently a process of trial and error. With too many data, the FIS would simply memorize the data (no generalization), but on the other hand, with too few data, the FIS would be prevented from learning the relationships among the variables. Not only that, the amount of training data is also dependent on the FIS architecture [12, 16]. Though there are a few heuristics in estimating the number of training data to use, the author abided by the design criteria suggested in [12], where the number of training data pairs should be several times larger than the number of FIS parameters being estimated. Naturally, the FIS parameters increase as the number of MFs increases. Though the ratio between data and parameters varies from case to case, a ratio of about five was used as illustrated in an ANFIS training example in [12].

To help determine whether this chosen ratio was appropriate, a comparison was made between the speed control performance of a FIS whose input was defined by five MFs and another FIS that was defined by nine. Though the latter has more FIS parameters to be estimated by ANFIS, both were trained with the same number of training data. It was found that the control performance of the five MF FIS was generally far better than the nine MF FIS, regardless of the input output gains used. Theoretically, using nine MFs should give better control performance than five since there are more rules and more control parameters involved. However, when the nine MF FIS was retrained with five times more training data than the five MF FIS, it was found that it performed better than the five MF FIS, especially in its percentage over and undershoot during load changes at low speeds. Hence, in order to attain a justified comparison between any ANFIS trained FIS, the number of training data used must be in proportion to the number of FIS parameters being estimated by the ANFIS. 

It is desired not to resort to using more training data with more MFs per input because more training data would require longer training time, which can span anything from 10 minutes to a few days, depending on the number of data available, even with a high performance PC. Besides that, reducing the number of MFs in the control algorithm will reduce the computation time during real time implementation.

iii. Distribution of Training Data

Another concern with regards to the training data is the manner in which the data is distributed, or arranged, as it is passed through the ANFIS to train the FIS. For example, does it matter if all the NL training data type was passed through ANFIS first before the FL data type? Would this result in a FIS that may perform better at one condition than the other? This was verified by comparing the speed control performance of a FIS that was trained with ‘sequenced’ data with one that was trained with random data. ‘Sequenced’ here implies that all the NL data were passed through first before the FL data, whereas random implies that the NL and FL data were passed through in random order. From this, it was found that it does not matter whether the different types of training data pairs were passed through the ANFIS in random or sequence order as both FIS had similar performance.

iv. Range of Training Data

The control performance of several FIS that were trained with data that were generated at different ranges of speed changes was also compared to see the amount of influence that it had on the training performance of the FIS. In the initial FIS trainings, random step speed command changes between (6000 rpm were applied to the motor. It was later, that the speed error, e, and command current, Iq*, were generated from 0-6000 rpm speed changes because hypothetically, the FIS should be able to generalize for the reverse motoring (negative speed commands) mode of the motor. During the earlier part of the development of the FTAG FIS, it was thought that by narrowing the range of the random step speed command changes onto the motor would result in smaller training error, and thus, better FIS control performance. For example, a FIS that was trained with a set of training data that fell within (1 rpm performed better than the one that was trained with 0- 6000 rpm data. However, it was later discovered that the FIS should be trained with data that will allow the FIS to learn about the different behaviours of the data at different speed ranges. In other words, the set of training data should consist of information that will tell the FIS how it should behave at low, mid and high speed command changes. For example, speed changes of 0 - 1 rpm, 1 - 0 rpm, 0 - 10 rpm, 10 - 0 rpm, and so forth until the rated speed were applied, and then the respective input output data that were collected were combined together. To reduce the amount of training data (to reduce training time), redundant data such as those that are repetitive during steady state response can be removed, leaving only the data that contains information of the transient response.

B. Initialisation of FIS Architecture

As with the training data, there are also a few concerns regarding the initialisation of the FIS architecture that would be used for training. Among these concerns are the number and type of MFs that should be used to define the input(s), the number of inputs and thus, the number of rules the controller should have. As it was mentioned before, the training data is likened to the learning material used to train the FIS. The initialisation of the FIS architecture, on the other hand, is like the child being taught with that learning material presented to it by the ANFIS, which acts like the teacher in this analogy. The initial parameters of the FIS before training determine how fast or slow the FIS learns. This will be covered next.
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Fig. 7. Comparing the speed control performance between 9, 7, 5, and 3 MFs FIS at (a) Low Speed (5 rpm) and (b) High Speed (6000 rpm). Rated J and B.

i. Number of Input MFs

As it was mentioned before, the control performance of a FIS that has more MFs is generally better than one that has less. This is naturally due to the fact that each point in the input and output spaces are more narrowly mapped onto the DOM between 0 and 1 if is defined by many MFs [12]. However, it was desired to determine the least number of MFs that can be used (to define the input and output of the FIS) that will give a speed control performance that is acceptable and within limits as one that has many MFs. This is to reduce the number of MFs and rules in the adaptive speed control algorithm for easier implementation and faster execution time.

The results in Fig. 7 show that all four FIS have similar speed control performance during step changes in loads at high speeds (upon training each FIS with both NL and FL training data type). However at low speeds, the speed control performance from using seven or even nine MFs to define the input does not seem to be as good as using five MFs. This could be very much due to the fact that both the seven and nine MFs FIS were trained with the same amount of training data as the five MFs FIS; it has been highlighted in Section A.ii on the importance of training the FIS with an amount of training data that is in proportion to the number of FIS parameters being estimated by the ANFIS. However, this matter in validating this comparison was not pursued further as it was desired to retain the fewer number of MFs. As for the three MFs FIS, it was found that it still did not perform any better than seven MFs FIS even though the number of training data was reduced in proportion to its number of parameters. This could be due to the insufficient number of parameters in the FIS to learn properly. Thus, using five to define an input seems to provide the most acceptable performance that is sufficiently good enough for the purpose at that time.
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Fig. 8. Comparing the speed control performance between using linear and constant Sugeno output MFs at (a) Low Speed (5 rpm) and (b) High Speed (6000 rpm).

ii. Sugeno Zero or First Order Method

A speed control performance comparison was also made between a FIS that employed the Sugeno zero order method (constant output MFs) and one that employed the Sugeno first order method (linear output MFs). The results from the comparison in Fig. 8 clearly show that the Sugeno first- order method offers far better performance than the Sugeno zero- order method.

iii. Type of MF

It was explained before that the inputs of the FIS can be defined by different types of MFs, such as triangle, trapezoidal, bell, Gaussian, or any other polynomial based curves. During the development of the FTAG FIS algorithm, a number of comparisons were initially carried out between the triangle, trapezoidal, bell, and Gaussian MFs to understand and identify which MF type was most well suited to be used in an adaptive fuzzy control algorithm. One of the important comparisons that were carried out was the speed control performance comparison between using triangle/trapezoidal, bell and Gaussian MFs to define the one input FIS that underwent the ANFIS training. From here, it was found that the performance of the FIS that uses either triangle/ trapezoidal or Gaussian MF curves was very much dependent on the input and output gains that were used and the operating condition of the motor it was running at. For example, the same gain that was used in one operating mode cannot be used in another mode, whereas in some speed ranges, it was unable to track the command speed at all. This was not the case for the FIS that had used bell MFs curves. To sum up, the bell type MF seems to provide the most robust speed performance that could be attributed to its characteristics that ‘is continuous, differential and always has some finite value’ [1]. However, having said that, this is inconclusive as it also depends on the parameters of the training data that were used to train the FIS, which has been covered in Section 3A. For example, the author finally resorted back to using the more commonly used trapezoidal MFs to define the two inputs of the FTAG FIS. This was because the bell type MF was unable to capture the dynamic information provided by the training data that were generated from the dynamic model of the motor; previously was from the motor’s reference model.

iv. Initial Parameters of MFs

During the early development of the FTAG FIS, where it was initially developed on the reference motor model, ANFIS training was carried out using the initial parameters of the input MFs that were predefined by the FIS editor. By default, the FIS editor would spread all the MFs equally across the specified range (the universe of discourse). However, during one of the ANFIS training, the input MFs were initialised differently from its usual ‘spread’, and it was observed that the resulting training performance improved vastly over the previous FIS that had been trained with the default ‘spread’. This led to the next work of verifying that observation by initialising three FIS for training, each of which the input MFs have been distributed differently across the FIS input range. These three different methods were given the names Spread, Wide and Narrow, which have been defined graphically in Fig. 9 (a), (b) and (c), respectively. It may have been observed that seven bell MFs were used to define the input variable instead of five. This was because at that point of time, it was yet to be discovered the effectiveness of using five MFs. Fig. 9 (i), (ii) and (iii) correspond to the resulting speed control performance from using Spread, Wide and Narrow initialisation. These 
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Fig. 9: Comparing the speed control performance between different initializations of the input MFs’ parameters (defined as Spread, Wide and Narrow initializations) at random step speed commands of (6000 rpm. (a), (b) and (c), respectively, represent the initial arrangement, or distribution, of the input bell type MFs for Spread, Wide and Narrow before training. (i), (ii) and (iii), respectively, represent the resulting speed control performance of a Spread-, Wide- and Narrow- initialized FIS after training.

results clearly indicate the influence that the manner in which the parameters of the input MFs are initialised has on the training performance. In this case, the ‘narrow’ initialisation of the input MFs has the best performance as it does not require any gain adjustment or bias removal. However, the final developed FTAG FIS algorithm employed the ‘spread’ initialisation for training because both the triangle and trapezoidal MFs could not be trained when it was initialised using the ‘narrow’ method.

v. Number of Input Variables and Rules

During the initial development stage of the FTAG FIS, the FIS was initialised to have one input and one output for training. At that time, the one input FIS that had the best speed control performance was the trained FIS that had five bell type input MFs, and thus, five rules, and trained with (1 rpm range data. The only one obvious problem with that FIS was that it performed poorly during load changes, with unacceptable percentage over and undershoots. Hence, an extra input variable named Change in Speed Error, ce (rad/s), was added to determine whether increasing the number of input variables to the FIS would improve its performance from that aspect. Besides, most papers such as [9-11, 15-16] talk about FIS that has two and not one input, especially those that are used as motor speed controllers. The (1 rpm training data for the second input of the FIS was generated from the reference motor model. As the ANFIS Editor can only train a FIS that has a minimum of two MFs per input, the second input was defined by three bell type MFs. The 15 rules base that was used is as follows: 

	ce (rad/s)

e (rad/s)
	ep < e
	ep = e
	ep > e

	wm >> wm*
	GR1
	GR2
	GR3

	wm > wm*
	R1
	R2
	R3

	wm = wm*
	NC1
	NC2
	NC3

	wm < wm*
	I1
	I2
	I3

	wm << wm*
	GI1
	GI2
	GI3


Table 1. The rule base that was used for the two input FIS, rpm1_input2.fis. wm: actual motor speed, wm*: desired motor speed, ep: previous speed error, e: current speed error, GR: Greatly Reduce, R: Reduce, NC: No Change, I: Increase, GI: Greatly Increase.

Here is an example of a rule taken from the table:

IF wm is very much slower than wm*, i.e. e is wm << wm*,

AND e is the same as ep, i.e. ce is ep = e,

THEN let Iq* = GI2, so that the actual motor speed can catch up with the command speed. 

The reason 15 different output linear MFs were used to define the output was because the number of output MFs must be equal to the number of rules in the FIS rule base when using the MATLAB ANFIS Editor to train. That is why the author could not use the same output linear MF to represent G1, G2 and G3 as G, or I1, I2 and I3 as I, and so forth, such that the number of output MFs can be reduced to just five- GR, R, NC, I and GI.

As for the initialisation of the Sugeno output linear MFs, its influence in the training was verified by comparing the resulting speed control performance of two FIS; one FIS whose output linear function constants (for example the A’s in equation (6)) were all initialised to zero whereas in the second FIS, the constants were predefined and ‘equally’ distributed by the FIS editor. From this comparison, it was found that the initial parameters of the output MFs make no difference to the resulting performance of the trained FIS; the resulting trained FIS parameters are identical to one another. 

A possible reason why the initial parameters of the output MFs does not have as much influence on the ANFIS training (performance) as the input MFs would be due to the fact that during an ANFIS training, the Sugeno output MFs are trained first before the parameters of the input MFs are adjusted [1]. Hence, regardless of the initialisation of the Sugeno output MFs, the training algorithm will adjust its parameters first, until either the specified error tolerance or number of training epochs has been reached. However, how well the output MFs are trained depends on the manner in which its input MFs have been initialised. 

From Fig. 10, it can be seen that the FIS that has two inputs has better speed control performance during step load changes, even at a speed as low as 1rpm. It was also verified that as the speed command increases, the performance of the two input FIS improves further. However, at higher speeds, the performance of the one input and two input FIS are similar. 


Fig. 10. Comparing the speed control performance between a 2 input FIS and a 1 input FIS at a low speed of 1 rpm. A fixed input gain of 20 was used in both cases.

C. Training Method

The ANFIS Editor uses either backpropagation or a combination of LSE and BP for MF parameter estimation. One is not necessarily better than the other as it is dependent on the nature of the training data that the FIS is being trained to map. Throughout the development of the adaptive speed control algorithm, the hybrid FIS model parameter optimisation method was employed. A comparison between the two optimisation methods were not carried out. As for the choice of the training error tolerance, it was left at the default zero value. However, a quick test was carried out to determine whether there was a difference between the resulting training performance after a FIS has been trained for just 5 epochs and then for 20 epochs. It was found that the FIS does not need to be trained anymore than it takes for its training error to converge to a constant. Hence, if the training error converges from the second epoch onwards, the FIS does not need to be trained anymore than that.

4. 
Conclusion

This paper has presented the results of an extensive comparative study related to the ANFIS parameters that are involved in the development of an adaptive FLC for high performance ac drives. The ANFIS parameters encompassed by the study include the type, number, distribution and range of the training data that is most suitable to be used to train the FIS during the ANFIS training, initialisation of the FIS architecture i.e. the number of input MFs, the type of Sugeno inference model (Zero or First Order method), type and initial parameters of the MFs, and the number of input variables and rules, that will facilitate the FIS to learn efficiently and effectively, and lastly, the training method that is most appropriate to be employed to train the FIS. The transients are examined for both high (at rated speed) and low (<1% rated speed) speeds commands, as well as at the motor’s FL and NL condition, thus enabling a thorough analysis to be made. The main conclusions may be summarized as follows:

· The training data should contain sufficient information that will represent the sort of data that the FLC will be facing during its operation on the motor, such that the ANFIS trained FLC will exhibit the best response to the data it receives at its input. However, there should be balance between the number of data and the number of FIS parameters being adjusted by ANFIS, which corresponds to the number of MFs being utilized.

· The initialisation of the FIS architecture is an important element in the training as it determines how efficiently it can capture the information stored on the training data. Again, determining which FIS architecture works best for the application depends on the complexity of the nature of the training data that it is trying to learn from.

· The training does not need to be carried out any longer that it needs for the training error to converge. The faster the error converge, the better is the learning ability of the FIS being trained.
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