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Abstract: Selective regressors and selective coefficient 
update (partial updating) of affine projection algorithm 
(APA) is two effective schemes which can reduce the 
computational load and power consumption in adaptive 
filter implementations. In addition to selective regressors 
and selective coefficient update, computational load of APA 
can be reduced by making use of sub-band processing 
techniques with applying the set-membership concepts in all 
sub-bands. In this paper, at first, the new implementation of 
adaptive algorithms technique will be considered in wavelet 
packet domain using multiple independent adaptive filters. 
In the second step, we apply the APA to the proposed 
structure and incorporate a data selection strategy based on 
the set-membership concepts with considering reduction of 
the computational complexity using selective coefficient 
update and selective regressors in each packets, 
simultaneously. Also selective coefficient update NLMS 
Algorithm is used in the proposed structure for further 
confirmation of proposed algorithm. Simulation 
experiments confirm the effectiveness of the proposed 
algorithm in terms of reduced computational complexity 
and rate of convergence. 
 
Key words: Selective Regressor, Selective Coefficient 
Update, Partial Updating,  Data-Selective,  Affine 
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1. Introduction. 

Adaptive filters have been found many applications in 
a wide range of diverse fields such as communications, 
control, radar, sonar, acoustic, and speech processing. 
The least mean-square (LMS) and the normalized LMS 
(NLMS) algorithms are the most widely used adaptive-
filter algorithms in engineering applications due to their 
low computational complexity. Unfortunately, the 
convergence speed of the algorithms deteriorates 
significantly when the input signals to be color or 
highly correlated [1]. For highly correlated input 
signals the affine projection (AP) algorithm offers 
faster convergence than the LMS and NLMS 
algorithms. The computational complexity, however, 
has been a weak point in the implementation of APA. 
As an attempt to solve this important problem, sub-
band processing schemes have been proposed in 
adaptive filter structures [2-3]. Multirate filtering 

techniques have been used over the past few years with 
attention to sub-band decomposition [4]. In sub-band 
processing, not only computational complexity can be 
reduced but also the rate of convergence can be 
improved [4-6]. 

In [7], we proposed an efficient structure for 
implementation of adaptive algorithm based on wavelet 
packet transform. This method increases the initial 
convergence speed without any more computations, 
approximately. The basic idea underlying in our 
proposed structure [7], is to decompose the spectral 
content of the signal into uniform frequency sub-bands, 
according to the desired frequency resolution. In the 
last step we applied several adaptive algorithms to 
corresponding packets, simultaneously.  

A number of partial update algorithms have been 
proposed to reduce the computational complexity. The 
partial update algorithms deal with updating a selected 
subset of the filter coefficients at sequential iterations 
and hence they can reduce the computational 
complexity [8 -11]. Because of the great demand 
placed on expensive real-time resources such as power 
consumption and memory, computational complexity 
of adaptation of filter coefficients can become 
prohibitively expensive [8,11]. 

Another efficient approach to reduce the 
computational complexity is applying a set-
membership filtering (SMF) approach to adaptive 
filtering [11]. In addition to these mentioned methods, 
in order to reduce complexity of APA, a subset of 
regression inputs based on optimal selection of 
regressions has been selected in sequential iterations 
[12]. 
Besides of wavelet packet implementation advantage, 
the proposed method in this paper enjoys from two 
useful methods. First, low computational complexity is 
obtained with considering the selective coefficient 
update, selective regressors for APA and second, the 
sparse updating related to the set-membership 
framework. 

This paper is organized as follows. Section 2 briefly 
reviews the LMS, NLMS, APA, Set-Membership 
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filtering technique [11], SCU-APA algorithms [13], 
SCU-NLMS [11], SM-APA method [1, 14], wavelet 
packet transform [15] and SR-APA [12]. The proposed 
algorithms named as WPTD-SM-SCU-NLMS, 
WPTD-SM-SCU-APA and WPTD-SM-SR-APA will 
be described in section 3. Complexity requirements are 
represented in section 4. Simulation experiments 
which illustrate the performance and computational 
complexity of the proposed method will be shown in 
section 5. Finally conclusions are given in section 6. 

Fig 1.  A typical block diagram of adaptive filter 
 
  
2. Background materials 

2.1. LMS Algorithm 
Figure (1) shows a block diagram of typical adaptive 
filter where u(n), d(n) and e(n) are the input, desired 
and output error signals, respectively. Here, w(n) is the 
M×1 column vector of the filter coefficients at iteration 
‘n’. The desired signal is assumed to have the following 
linear data model: 

( ) ( ) ( ) ( )Td n n n v n= +u w                                             (1) 

Where u(n)=[u(n), u(n-1), ..., u(n-M+1)]T is the input 
signal, v(n) is the measurement noise which is assumed 
to be zero mean, white, Gaussian, and independent of 
u(n), and w(n) is the unknown filter coefficients. 
The least-mean-square (LMS) algorithm is the most 
widely used among various adaptive algorithms 
because of its simplicity and robustness. The LMS 
algorithm is based on the steepest-descent technique 
which was proposed by Widrow and Stearns [16] to 
study the pattern-recognition machine. The LMS 
algorithm updates the weight vector of an adaptive 
filter as follows: 
( 1) ( ) ( ) ( )n n n e nµ+ = +w w u                                       (2) 

Where µ is the step size of the algorithm which can 
controls the stability and the convergence rate of the 
adaptive filter. 

2.2. NLMS Algorithm 

It is well known that the NLMS algorithm can be 
derived from the solution of the following 

optimization problem: 
2( ) ( 1) ( )J w n n= + −w w                                          (3) 

Subject to 
( ) ( ) ( 1)Td n n n= +u w                                                (4) 

Using the method of Lagrange multipliers, solving the 
Optimization problem leads to the following recursion 
equation: 

2( 1) ( ) ( ) ( )
( )

n n n e n
n
µ

+ = +w w u
u

                            (5) 

Where e(n)=d(n)-uT(n)w(n) and µ is the step-size 
that determines the rate of convergence and excess 
MSE. 

2.3. Affine Projection Algorithm (APA) 
Suppose that desired signal d(k) can be modeled  as 

following:  
( ) ( ) ( )u w= +Td k k v k                                              (6) 

Where v(k) denotes the measurement noise, w is an 
unknown column vector and u(k) denotes M×1 column 
input regression vectors as: u(k)=[u(k), u(k-1), …, u(k-
M+1)]T 
Using the LMS algorithm, anyone can obtain the 
following recursion formula about APA [12] as: 

* * 1( ) ( 1) ( )( ( ) ( )) ( )w w U U U e−= − +k k k k k kµ          (7) 
where e(k)=d(k)-UT(k)w(k-1) is error vector and 
d(k)=[d(k), d(k-1), …, d(k-K+1)]T is the desired vector 
signal and U(k)=[u(k), u(k-1), …, u(k-K+1)] which is 
a M×K data matrix. 

2.4. Set – Membership Filtering (SM) 
In set-membership filtering (SMF) [17], the filter 

coefficient vector w  is designed to achieve a specified 
bound on the magnitude of the output error. Several 
valid estimates of w  satisfy the chosen bound on the 
output error at instant k . Let kH  denote the set 
containing all vectors w  for which the associated 
output error at time instant k  is upper bounded in 
magnitude by γ , i.e., 

{ }:N T
k k kH w R d γ= ∈ − ≤w u                                    (8) 

Where kH  is referred to as the constraint set, and its 
boundaries are hyperplanes. Finally, defining the exact 
feasibility set as kψ  to be the intersection of the 
constraint sets over the time instants such: 1,..., ,i k=  
i.e., 

1

k

k i
i

Hψ
=

= I                                                                  (9) 

   The idea of set-membership adaptive recursion 
techniques (SMART) [17] is to adapt the coefficient 
vector such that it will always remain within the 

( )nw +-
( )nu ( )e n( )y n

( )d n

Adaptive 
algorithm
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predefined feasibility set. 

2.5. Selective coefficient update APA (SCU-APA) 

Let us partition the regression vector u(k) and the 
assosiated filter coefficients vector w(k) into P blocks 
whose their length equal L = M/P as the follows: 

1 2( ) ( ),  ( ),  ..., ( )
TT T T

Pk k k k⎡ ⎤= ⎣ ⎦w w w w  

1 2( ) ( ),  ( ),  ..., ( )
TT T T

Pk k k k⎡ ⎤= ⎣ ⎦u u u u  
Also with considering the optimisation problem with 
multiple constraints as: 

2

21 ( 1)
min min ( 1) ( )

w
w w

≤ ≤ +
+ −

i
i ii P k
k k                                (10) 

Subject to ( ) ( 1) ( )dU w + =T k k k  
with the number of constraints 1≤k≤L. 
For each block { }1,2,..., ,i P∈ the cost function is 

2

2
( ) ( 1) ( ) ( ( ) ( ) ( 1))dw w U wλ= + − + − +T T
i i iJ k k k k k k

Where [ ]1 2 ... K= λ λ λλ is the vector of Lagrange 

multipliers. Setting ( ) 0( 1)
i

i

J k
k

∂ =∂ +w  gives 

2( ( 1) ( )) ( )i i ik k k+ − =w w U λ                               (11) 
Where  

[ ]( ) ( ) ( 1) ... ( 1)i i i i L Kk k k k K
×

= − − +u u uU  
Premultiplying both sides of (11) by ( )T

i kU and 
assuming that the K K× matrix ( ) ( )T

i ik kU U is full-
rank, we can obtain equation (12) as: 

12( ( ) ( )) ( )( ( 1) ( ))T T
i i i i ik k k k k−= + −U U U w wλ      (12) 

Substituting (12) into (11) and using the constraint as 
(10), we can get the equation (13) as: 

1( 1) ( ) ( )( ( ) ( )) ( )T
i i i i ik k k k k k−+ = +w w U U U e      (13) 

Where ( ) ( ) ( )e U w= Tk k k is the 1K × error vector. 
With introducing a small positive stepsize as µ, we 
obtain the AP algorithm for a fixed block update as: 

1( 1) ( ) ( )( ( ) ( )) ( )w w U U U e−+ = + T
i i i i ik k k k k kµ    (14) 

The updated block in sequential iterations can be 
selected by finding the blocks with the smallest 
squared-Euclidean-norm as similar equation (10), i.e., 

2

21

1

1

argmin ( 1) ( )

argmin ( )( ( ) ( )) ( )

w w

e U U e
≤ ≤

−

≤ ≤

= + −

=

j j
j P

T T
j j

j P

i k k

k k k k
                  (15)

 

where we used (13).  
We can extend the constrained optimisation problem 

in (10) to multiple blocks, whose solution leads to the 
following selective-partial-update AP algorithm: 

1( 1) ( ) ( )( ( ) ( )) ( )
B B B B B

T
I I I I Ik k k k k k−+ = + µw w U U U e  

where  
1argmin ( )( ( ) ( )) ( )

B B
B B

T T
B I I

I S I S
I k k k k−

∈ ∈

= ∑e U U e           (16) 

Here S contains all B-subsets of { }1,2,...,P . The full 
implementation of (16) can be computationally too 
expensive because of the high complexity associated 
with the subset selection. To reduce the complexity of 
(16), we need to simplify the calculation of 

( ) ( ).
B BB

T
I II S
k k

∈∑ U U Assuming that the diagonal 

components of ( ) ( )
B BB

T
I II S
k k

∈∑ U U is much larger than 

the off-diagonal components, we can focus only on the 
diagonal components of ( ) ( )

B BB

T
I II S
k k

∈∑ U U . 

Therefore the equation can be approximated as follows 
[10]: 

2
1

2

( )
( )( ( ) ( )) ( )

( )B B

B B
B

T T
I I

I S I S I

k
k k k k

k
−

∈ ∈

≈∑ ∑
e

e U U e
U

        (17) 

2.6. SCU-NLMS 
The collection of coefficients for SCU-NLMS [11] 

algorithm must be updated in sequential iteration as 
equation (18). 

2

2

2

2,

argmin ( 1) ( )

arg max ( )

B B
B

B B B

B I II S

j
I S j I j I

I k k

k

∈

∈ ∈ ∈

= + −

= ∑

w w

u
                              (18) 

where S is the collection of all B-subsets, i.e., BI S∈  
The update equation of SCU-NLMS is as (19) 

2

2

1( 1) ( ) ( ) ( )
( )

B B B

B

I I I

I

k k k e k
k

+ = +w w u
u

                  (19) 

2.7. Set-membership Affine Projection Algorithm 
(SM-APA) 

The update equation can be written for SM–APA [1], 
[14] algorithm as:  

* * 1
1 1

( 1)

( ) ( )( ( ) ( )) ( ) . ( )
( )

k

k k k k k if k
k otherwise

−

+

⎧ + >
= ⎨
⎩

u uµ γ

w

w U U U e e
w  

                                                                             (20) 
Where [ ]1 11,0,0,...,0 T

K ×=u  which is an indicator vector.  
 2.8. Selective Regressors APA (SR-APA) 

Suppose that we select Q  input regressors among 
given ‘K’ input regressors where 1 1

AP
i i− −=w w . Also let 

{ }1 2, ,...,Q Qt t tτ =  denote a Q -subset (subset with K  

members) of the set { }0,1,..., 1 ,K −  that is, kt  denotes 
the delay of the selected input regressor. Let S be the 
collection of all Q -subsets, i.e., Q Sτ ∈ . 
The update equation of the SR – APA is obtained as 
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1
, , , ,,( 1) ( ) ( )( ( ) ( )) ( )
Q Q Q Q

T
i i i i i ik k k k k kτ τ τ τ

−+ = +w w U U U e      
                                                                              (21) 
where , , , 1.Q Q Qi i i iτ τ τ −= −e d U w  
 

1

2
,

( )
( )

,

( )

Qi

Q

d i t
d i t

d i t

τ

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

d
M

      

1

2

, Q

Q

i t

i t
i

i t

τ

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u

u
U

u
M

                     (22) 

Optimal collection of input regressors can be obtained 
as: 

( ) 1* *
, , , ,argmaxe U U e

−

∈
=

Q Q Q Q
Q

opt
Q i i i iS τ τ τ ττ
τ                       (23) 

 
Therefore, the SR – APA with best input regressors 
is given by: 

( )
1

* *
1 , , , ,

w w U U U e
−

−= + opt opt opt opt
Q Q Q Q

i i i i i iτ τ τ τ
µ                   (24) 

The term in equation (23) can be approximated [12] 
as: 

( )
1 2

1 2

1* *
, , , ,

2 2 2

2 2 2

( ) ( ) ( )
       ...

e U U e

u u u

−

− − −

≈

+ + +

Q Q Q Q

K

Q

i i i i

t t t

i t i t i t

e i e i e i

τ τ τ τ

                        (25) 

where  1( ) ( ) .t i t ie i d i t − −= − −u w  
Since the reduction of the computational complexity 

and the convergence rate in the SR-APA depend on 
the relative size of Q  and ,K  therefore we introduce 

the selection ratio =Qr K  For 1r = , the SR-APA 

becomes identical to the conventional APA as in (7). 
As r  decreases, the computational complexity 
decreases rapidly while the convergence performance 
slowly gets worse. Thus, only a small amount in the 
convergence rate can be compromised while the 
computational complexity is greatly reduced. 

2.9. Wavelet Packet Transform 
Wavelets are transform methods that has received 

great deal of attention over the past decades. Wavelet 
transform is a time-scale representation that 
decomposes signals into basis functions of time and 
scale, which makes it useful in applications such as 
signal denoising, detection, data compression, feature 
extraction, etc. 

There are many techniques based on wavelet theory, 
such as wavelet packets, wavelet approximation and 
decomposition, discrete and continuous wavelet 
transform, etc. The backbone of the wavelets theory is 
the following two equations 

2
, ( ) 2 ( 2 )

j
j

j k t t kϕ ϕ= −                                             (26) 

2
, ( ) 2 ( 2 )

j
j

j k t t kψ ψ= −                                             (27) 
Where ( )tφ and ( )tψ are the basic scaling function and 
mother wavelet function, respectively [15]. 

A wavelet system is a set of building blocks to 
construct or represent a signal. It is a two dimensional 
expansion set. A linear expansion would be as: 

,
0

( ) ( ) (2 )j
k j k

k j

f t c t k d t kϕ ψ
+∞ +∞ +∞

−∞ =−∞ =

= − + −∑ ∑∑               (28) 

Most of the results of wavelet theory are developed 
using filter banks. In applications one never has to deal 
directly with the scaling functions or wavelets, only 
the coefficients of the filters in the filter banks are 
needed. The full wavelet packet decomposition in two 
scales is shown in figure (2). 

 
Fig 2. Wavelet packet decomposition 

  
3. Proposed method. 

In this paper, all the mentioned methods will be used 
to derive the block diagram of the proposed algorithm. 
In this stage, independent adaptive filters are applied 
to each pair of input signal and corresponding desired 
packets. Then, the selective coefficients update, 
selective regressors for APA and data selective 
updating methods are applied to each corresponding 
packets, independently. 

Figure (3) indicates the proposed structure to 
implementation of adaptive algorithms with reducing 
the complexity. Since the reduction of the 
computational complexity and the convergence rate in 
the SCU-APA depends on the relative size of ‘B’ and 
‘P’, therefore we introduce the selection ratio 

/r B P= .  
 For 1r = , the SCU-APA becomes identical to the 

conventional APA as in equation (7). As ‘r’ decreases, 
the computational complexity decreases rapidly while 
the convergence performance slowly gets worse. Thus, 
only a small amount in the convergence rate can be 
compromised while the computational complexity is 

X
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greatly reduced. 
Also for SR-APA computational complexity and the 
convergence rate depends on the relative size of ‘Q’ 
and ‘K’, therefore we introduce the selection ratio 

=
Qr
K

. As ‘r’ decreases, the computational 

complexity of SR is decreased too. 
For WPTD-SCU-APA with ‘j’ level decomposition, 
we want to update ‘B’ blocks out of ‘P’ blocks. 
here { }1 2, ,...,B BI j j j= determines the indices of the ‘B’ 
blocks out of ‘P’ blocks. Let us consider the 
optimization problem subject to the set of 
2 j constraints imposed on the decimated filter output 
as: 

, ,( ) ( ) ( 1)d U w= +
B B

T
l D l I Iq q q         0,1,...,2 1jl = −    (29) 

Again by applying the method of Lagrange multipliers 
[5] on the proposed criterion, we obtain the recursive 
relation for updating the tap weight vector of WPTD-
SCU-APA in each corresponding packets as follows: 

,

1
, , , , , ,

( 1)

( ) ( )( ( ) ( )) ( )
B

B B B B B

l I

T
l I l I l I l I l D I

q

q q q q q−

+

= + µ

w

w U U U e
  (30) 

Where 0,1,...,2 1jl = −  and 

, , , ,( ) ( ) ( ) ( )de U w= −
B B

T
l D l D l I l Iq q q q   

and , ,1 ,2 ,( ) ( ) ( ) ... ( )
B

TT T T
l I l l l Bq q q q⎡ ⎤= ⎣ ⎦U U U U     (31) 

Now, we consider the optimization problem for a ‘B’ 
multiple blocks and then derive a criterion for block 
selections. Then the selected blocks should be updated 
in each pair of packets at every iterations. 
We now determine the blocks which should be 
updated in each subbands at every iterations: 

2

, , 2
, argmin ( 1) ( )

B B
B

B l I l I
I

l I q q= + −w w   

for 0,1,...,2 1jl = −                                                (32) 
From (30) and (31) we can obtain the equation as: 

1
, , , , , ,

,

, arg min ( ( ) ( )) ( )

0,1,..., 2 1                               

B B B B
B B

T T
B l D I l I l I l D I

I l I S

j

l I q q q

l

−

∈

=

= −

∑e U U e

(33)  

The term to be minimized in (33) can be approximated 
as equation (34). 

1
, , , , , ,

,

2

, ,
2

, ,

, ( ( ) ( )) ( )

( )
0,1,...,2 1

B B B B

B

B

B
B

T T
B l D I l I l I l D I

l I S

l D I j

l I S l I

l I q q q

q
for l

−

∈

∈

=

≈ = −

∑

∑

e U U e

e

U

       (34) 

With applying the set–membership filtering in each 
subband we can obtain the following equations for 
WPTD-SM-SCU-APA. 

, ,

1
, , , , , , 1

( 1) ( )

( )( ( ) ( )) ( ).
B B

B B B B

l I l I

T
l q l I l I l I l D I

q q

q q q q−

+ =

+ uα

w w

U U U e           (35)
 

where  

, , 1
, , 1,

1 ( ).
( ).

0

e u
e u

⎧ − >⎪
= ⎨
⎪
⎩

B

B

l D I
l D Il q

if q
q

otherwise

γ
γ

α           (36)  

for 0,1,...,2 1jl = − . 
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Fig 3. Proposed method in wavelet packet domain 

 
Also, we obtain the equations of WPTD-SM-SR-APA 
algorithm similar to SR-APA as follows: 

* 1
, 11, , 1, , 1, , , ,

( 1) ( )

( ) ( ).opt opt opt opt
Q Q Q Q

l l

l q q l q l q l q l

q q
q

τ τ τ τ
α −

+ + +

+ =

+ u
w w

U U U e
           (37) 

where  

1, ,

1, ,

1 ( ).
( ).

0

e u
e u

⎧ − >⎪⎪
= ⎨
⎪
⎪⎩

opt
Q

opt
Q

l D

q l l

if q
q

otherwise

τ

τ

γ
γ

α

 

( )
1

* *
, , , , , , , ,argmax .

Q Q Q Q
Q

opt
Q l i l i l i l iS τ τ τ ττ
τ

−

∈
= e U U e                  (38)

 for 0,1,...,2 1jl = − . 
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Where opt
Qτ is optimum selected regressors which can 

be used in equation (37). 

Briefly speaking, we use set–membership filtering 
concepts in each pair of corresponding packets, in 
wavelet domain independently. Then we will determine 
whose coefficients should be selected to update in each 
independent applied adaptive filter at sequential 
iteration. But in WPTD-SM-SR-APA all of the 
coefficients are updated by selected regressors along 
with set-membership filtering framework. 

 
4. Computational complexity 

Computational complexity is an important issue in 
adaptive algorithms therefore in this section we 
consider it in all of the mentioned algorithms. The 
number of calculations in SCU-APA method is 
calculated based on dimensions of block matrixes. 
Using the mentioned statements for NSAF-NLMS in 
[6], we note that, the NSAF-APA algorithm requires 
additional 2NÍkÍK multiplications in the analysis 
filter banks related to input and desired signal and 
NÍk multiplications for synthesis filter banks in the 
first row of error vector. Hence, compared to the full-
band APA algorithm, the NSAF algorithm requires a 
slight number of extra multiplications (i.e., an 
additional NÍkÍ(2ÍK+1) multiplications) for the 
filter banks implementation. 

For the case of WPTD with ‘j’ level decomposition, 
N=2j and using Shannon wavelet filter coefficients the 
‘k’ (filters length) will be set to 2.  
Table (1) shows the computational complexity of APA 
and SCU-APA and also Table (2) shows the 
computational complexity of proposed WPTD-SM-
SCU-APA with ‘j’ level decomposition. 

Table 1. Computational complexity of APA and SCU-APA 

 Conventional 
APA 

SCU-APA 
Computations 
about weight 

updating 

Additional 
computations 

Multiplications (K2+2K)M+K3+K2 
(K2+K)BL+ 

KM+K3+K2

 

(1-r)K2L 

Divisions - - P 

Comparisons - - Plog2B+O(P) 

 
 

Table 2. Computational complexity of WPTD-SM-SCU-APA 
for the case that updates run for each sub-band, simultaneously 

 WPTD-SM-SCU-APA, (j is level decomposition) 
Computations 

about weight updating 
Additional 

computations 

Multiplications (K2+K)BL+KM+K3+K2

 
(1-r)K2L+2(j+1)kK+2jk

 
Divisions - P+2j 

Comparisons - Plog2B+O(P)+2j

 

 
Based on above statements and table (3) [12], the 

computational complexity of WPTD-SM-SR-APA 
with ‘j’ level decomposition is shown in table (4). 

Table 3. Computational complexity of APA and SR-APA [12] 

 Conventional 
APA 

SR-APA 
Computations 
about weight 

updating 

Additional 
computations 

Multiplications (K2+2K)M+K3+K2 
r(rK2+2K)M+ 

r2(rK3+K2) 

(1-r)KM 

+K+1 

Divisions - - K 

Comparisons - - Klog2rK+O(K) 

 

Table 4. Computational complexity of WPTD-SM-SR-APA for 
the case that updates run for each sub-band, simultaneously 

 WPTD-SM-SR-APA (j level decomposition) 
Computations 

about weight updating 
Additional 

computations 

Multiplications r(rK2+2K)M+ r2(rK3+K2)
 

(1-r)KM+K+1+ 

2(j+1)kK+2jk

 
Divisions - K+2j 

Comparisons - Klog2rK+O(K)+2j

 

 
5. Simulation results  

In this section, all of the mentioned adaptive 
algorithms in previous sections as: WPTD-LMS, 
WPTD-NLMS, SCU-NLMS, SCU-APA, SR-APA, 
WPTD-SM-SCU-APA and WPTD-SM-SR-APA 
algorithms will be applied to a system identification 
problem. The system is an unknown system which can 
be generated, randomly. The adaptive filter and the 
unknown system are assumed to have the same 
number of taps with M=32. We note that in WPTD 
structure, coefficients will be decimated by 2j, so ‘K’ 

must be smaller than 
2 j
M in WPTD structure. The input 

signal u(k) is obtained by filtering a white, zero-mean, 
Gaussian random sequence through a first order 
autoregressive (AR) system with forget factor λ=0.8 
as:  

u(k)=0.8u(k-1)+v(k) 
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To make the comparison fair, the step-sizes were 
chosen to get approximately the same steady-state 
MSE. In all the experimental results, the bound on the 
output error in each sub-band were set to 25 .vγ σ=  

In all the experimental results, the simulated learning 
curves were obtained by ensemble averaging over 500 
independents trials and also the additive noise variance 
is set to 2 0.001.vσ =  
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 c) WPTD-LMS, M=32, Decomposition level=1

 b) WPTD-LMS, M=32,decomposition level=2

 a) LMS, M=32

 
Fig 4.  Learning curves, LMS and proposed method 
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 a) NLMS, M=32

 b) WPTD-NLMS, M=32, decomposition level=1

 c) WPTD-NLMS, M=32, decomposition level=2

 
Fig 5.  Learning curves, NLMS and WPTD-NLMS algorithms 
Figure (4) shows a plot of MSE learning curves 

versus the number of iterations for the proposed 
method and LMS algorithm, respectively. Also in 
figure (5) a plot of MSE learning curves versus the 
number of iterations in the proposed WPTD-NLMS 
and NLMS is shown. 

The obtained results in our simulations indicate that 
the rate of convergence in proposed method is better 

than the common earlier algorithms. 
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a) SCU-NLMS, P1=P2=8, B1=B2=4

b) WPTD-SCU-NLMS, P1=P2=8, B1=B2=4

c) WPTD-SCU-NLMS, P1=P2=8, B1=B2=8

 
Fig 6.  Learning curves, SCU-NLMS and proposed method 

Figure (6) shows a plot of MSE learning curve 
versus the number of iterations for the proposed 
method ‘WPTD-SCU-NLMS’ and NLMS, 
respectively. We update all of the coefficients for case 
(a) and 50 percent of coefficient for case (b) and (c). 
Again it is shown that in proposed method the rate of 
convergence is better than the other methods therefore 
it can be obtain good results to system identification. 

Again, figure (7) shows a plot of MSE learning curve 
versus the number of iterations using the proposed 
algorithm ‘WPTD-SM-APA’ and APA, respectively. 
In this simulation the order of APA is set to K=4. 

0 1000 2000 3000 4000 5000
-40

-30

-20

-10

0

10

20

M
SE

(d
B)

Iteration

    b) WPTD-SM-APA,  K=4, decomposition level=1

   c) WPTD-SM-APA,  K=4, decompsition level=2

a) APA,  K=4

 
Fig 7.  Learning curves, APA and proposed method 

In this figure, the average number of updates for first 
and second adaptive filters in proposed method with 
first level decomposition is 736 and 723, respectively. 
In the second case, we apply the proposed algorithm in 
the second level of decomposition. Therefore we have 
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4 adaptive filters and the average numbers of updates 
in all used filters are 423, 367, 394 and 281, 
respectively. 
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Fig 8.  Learning curves, proposed method with various order of 
APA with 2 level decomposition and P=8, B1=8, B2=B3=B4=2 
 

In the next simulation, we evaluate the proposed 
algorithm ‘WPTD-SM-SCU-APA’ in second 
decomposition level with 4 adaptive filters. In the first 
obtained sub-band all of the coefficients will be 
updated where high energy of the signal is focused and 
also other sub-bands have a few signal energies. 
Therefore in these sub-bands we update a few percent 
of coefficients i.e. 25 percent. In addition to selective 
coefficient method, data selective method is used too 
in this simulation. The results of the simulation are 
shown in the figure (8). The average number of 
updates in the proposed algorithm ‘WPTD-SM-SCU-
APA’ with considering K=1 to 4 and j=2, are (250, 
541, 422, 654), (370, 461, 582, 630), (153, 340, 464, 
596) and (215, 295, 251, 257). In all of these sets the 
first number indicates the number of updates in the 
first adaptive filter and the second, third and fourth 
numbers show second, third and fourth adaptive filters 
updates, respectively. 

In figure (9) the selection ratio is set to r=0.25 for a), 
b) and c) cases and r=0.5 for d) simulated result. As 
shown in the figure again, there is obtained good 
results in the rate of convergence. 

 

0 1000 2000 3000 4000 5000
-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

Iteration

M
SE

(d
B)

  a) SCU-APA, K=2, P=8, B=2
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Fig 9.  Learning curves, SCU-APA and WPTD-SM-SCU-APA 

(proposed algorithm) with j=1,2 and percent of selected 
coefficients for updates 
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Fig 10. Learning curves, SR-APA and proposed algorithm 

‘WPTD-SM-SR-APA’ with a percent of selected 
regressors 

 
Figure (10) shows a plot of MSE learning curve 

respected to the number of iterations in proposed 
algorithm as: WPTD-SM-SR-APA and SR-APA 
method. The order of APA is set to K=4. 

The averaged number of updates in our algorithm as 
WPTD-SM-SR-APA with r=1, r=0.5 and r=0.25 and 
j=1, are respectively (611, 567), (721, 703) and (814, 
834). As shown in the figure when the ‘r’ parameter is 
increased the rate of convergence also is increased and 
therefore better results are obtained.  

 
6. Conclusions 

In this paper, we have developed a novel data 
selective, selective regressors and selective coefficient 
updates using wavelet packet decomposition for affine 
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projection algorithm based on the concept of set-
membership filtering. Also the SM-SCU-NLMS 
scheme that combines the data selective updating from 
set-membership filtering with the reduced 
computational complexity from partial updating is 
applied in proposed structure. It is verified not only the 
proposed algorithms can further reduce the averaged 
computational complexity as compared with the SCU-
NLMS, SCU-APA and SR-APA, but it also retains 
fast convergence. 
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