
 

REDUCI�G TEST APPLICATIO� TIME 

THROUGH TEST SUB-PATTER� RE-USE 

 
Kwame Osei BOATE�G 

Faculty of Electrical and Computer Engineering, College of Engineering 

Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 

TEL.: +233(0)203154862 FAX: +233(0)322063730 

boat.soe@knust.edu.gh 
 

Kwasi Adu-Boahen OPARE 
Network Operations Centre, University Information Technology Services 

Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 

TEL.: +233(0)208176760 FAX: +233(0)322063730 

opare@knust.edu.gh 
 
Abstract: Test application time is a major factor of the 

cost associated with the scan technique. On one extreme 

test application time can be drastically reduced by using 

built-in self-test (BIST). However, the quality of random 

test pattern used by BIST is low. On the other extreme, 

automated test equipment based testing using quality 

automatic test pattern generation is very time-consuming. 

Research in the area of economics of test application is 

directed towards finding a good blend of the two extremes 

to arrive at a workable optimal hybrid. A novel method 

for achieving this hybrid is presented in this paper. The 

approach used consists of a modification of the scan 

architecture and the development of a matching 

algorithm. The modified scan architecture involves the 

addition of a multiple-input signature register (MISR) to 

the scan chain. This way test responses are not captured 

in the scan chain but, rather, are compressed in the 

MISR. The proposed algorithm then takes advantage of 

repeated patterns in test vectors, by rearranging them 

such that those with matching patterns are adjacent to 

each other. An illustrating of how the algorithm works is 

also presented.  
 
 
Key words: digital circuit testing, scan technique, test 
application time, multiple-input signature register, 
pattern matching algorithm. 
 
1. Introduction. 
 

The Scan Technique is a design for testability (DFT) 

method used to make sequential circuits easily 

testable. This is achieved by introducing flip-flops 

(latches) into the original design of the circuit. These 

flip-flops are designed and connected such that the 

circuit operates in two modes; normal and test 

modes [1, 2]. With such an arrangement, tests are 

applied to inaccessible lines in sequential circuits by 

shifting them into the flip-flops. 

 

The use of the scan technique requires that every bit 

in the test vectors is scanned-in one clock cycle. As 

a result, test application time increases in proportion 

to an increase in the number of test vectors and the 

number of bits per test vector. 

 

Several solutions exist to minimise the test 

application time in the scan technique. One of such 

solutions is the use of multiple scan chains [3; 4]. 

Ordering of scan chains to obtain an optimal 

arrangement, is another method for minimising test 

application time. Although, Narayanan et al.[5] 

shows the ordering of registers in a scan chain to be 

a computationally complex problem, Narayanan[6] 

has shown that this is possible. The BIST-Aided 

Scan Test (BAST)[7] is also another method. Aside 

reducing test application time, it also reduces test 

data size. 

 

Other techniques for minimising test application 

time include the use of reconfigurable scan chains 

[8, 9] and another one presented in Abramovici et 

al.[10]. The latter presents an approach that reduces 

the number of vectors for which bits are shifted into 

and out of scan flip-flops. It takes advantage of the 

possibility of grouping a large number of possible 

faults into sets with the following properties. 

a. Each fault in a set has one or more test 
vectors that propagate the effects of those 

faults to the primary output of the circuit-

under-test. 

b. The state input parts of those test vectors are 
compatible with those of the vectors for the 

other faults within the set. 

This paper presents a new approach to minimise test 

application time in scan based circuits. It is called 



 

  

the Pattern Match Approach. It consists of a 

modification of the scan architecture and an 

algorithm called the Pattern Match Algorithm 

(PMA). The algorithm reduces the number of bits in 

a test vector that are shifted into and out of the scan 

flip-flops. 

 

In the next section the modified architecture is 

explained together with how it can be exploited to 

reduce the test vector scan-in time. Next, the 

algorithm is presented in Section 3, followed by an 

illustration (in Section 4) of its application. The 

paper ends with a conclusion. 
 
2. Scan architecture modification 
 

In the scan architecture, the flip-flops are arranged 

such that test vectors are scanned into them during 

the test mode. During normal mode, the scanned-in 

vectors, together with those from the primary inputs 

are applied to the circuit under test (CUT). The 

response is then captured in the flip-flops. In this 

process, the flip-flops that hold the scanned-in 

vectors are the same ones that capture the response. 

Therefore, the scanned-in vectors are cleared by the 

response from the CUT. This attribute of the scan 

architecture does not allow the re-use of patterns in a 

test vector that is already scanned in. As a result, the 

whole of the next test vector must be scanned in 

during the test mode.  

 

According to Jha and Gupta[11], for a sequential 

circuit with m state inputs, if n vectors are needed to 

test for certain faults, the number of clock cycles 

taken to scan them in is shown in Equation (1). In 

addition, it takes the number of clock cycles shown 

in Equation (2) to scan the last response out. Putting 

all together, the total number of clock cycles 

required to apply n test vectors to a circuit with m 

state inputs is shown in Equation (3). 

    (1) 

     (2) 

 (3) 

 

It can be deduced that if test vectors are scanned in 

during  instead of m clock cycles, where 

, then savings  in test application 

time can be achieved as shown in Equations (4) and 

(5). 

    (4) 

  (5) 

 

However, any reduction in the clock cycles required 

for the scan-in of a given test vector will leave part 

of the response to the previous test vector in the scan 

chain. This problem must be overcome in order to 

develop algorithms for minimising test application 

time based on the re-use of common patterns in test 

vectors. This can be dealt with by modifying the 

scan architecture, as shown in Figure 1. 

 

 
 
Figure 1: Scan Architecture used in the approach 

 

The modified scan architecture consists of the circuit 

under test (CUT) with scan circuitry connected to its 

input. Its output is also connected with a multiple-

input signature register (MISR) that has a serial 

output. The MISR is used to compress the response 

from the CUT into a signature. The signature is then 

scanned out at the end of the testing process through 

the serial output. It can be observed from the figure 

that only the MISR found in the traditional BIST 

architecture is incorporated. The pseudorandom 

binary sequence generator (PRBSG) is not used. 

Therefore, instead of pseudorandom patterns, 

deterministic vectors, pre-processed by an algorithm, 

are scanned into the CUT. 

 

The addition of the MISR in the proposed 

architecture enables the separation of the response 

vectors from the scanned-in vectors. Whilst a 

response vector is captured by the MISR, the 

scanned-in vector stays in the scan flip-flops to be 

re-used. This arrangement makes it possible for 

algorithms, that pre-process test vectors prior to 

scan-in, to be developed. The pre-processing of 

vectors enables scan-in time to be minimised, thus, 

affecting the over-all test application time. 
 
3. The pattern match algorithm. 
 
The algorithm is made up of the Initialising Pivot 

Procedure, the Pivot Cycle Procedure and the 

Compare function. All these modules are used in the 

Main Procedure that implements the algorithm. 

 

 



 

3.1. Terms and Variables used in the Algorithm 

 

Initializing vector is the test vector used to set the 

output of a logic gate to the complement of the logic 

value expected when testing a fault under a fault 

model (such as the stuck-open fault) that requires a 

test pair. It also ensures that the complement logic is 

propagated to an observable output of the circuit 

under test. It is always the first vector of a test pair, 

however, note that there can be a situation where the 

second vector of a given test pair is also the first 

vector of the next test pair. An initializing vector is 

identified with an attribute i. 

 

Dependent vector is the second vector of a test pair. 

A dependent vector is identified with an attribute d. 

If test vector tk is the second vector of a given test 

pair and also the first vector of the next test pair, 

then tp is both dependent and initializing. 

 

Independent vector is a test vector that constitutes 

a complete test for a particular fault under a given 

fault model. An independent vector does not need 

any initializing vector. 

Pivot vector is a vector that serves as the basis of 

comparison for other vectors.  

 

Starting Pivot Vector is the first test vector to be 

used as a pivot vector in a cycle of the proposed 

algorithm. 

 

Pivot Cycle: This refers to the period from the 

beginning of usage of a pivot vector till when a new 

one is selected. 

 

, is an  matrix made up of binary 

elements,  that form part of test vectors. 

 

 has the same size and test vectors as in matrix 

A. The starting pivot vector of  is the vector at 

column p of A. 

 

 of A, for  and a constant 

k, at any time. It serves as space holder for test 

vectors—the value of any  depends on the test 

vector held at  and the column operations that 

have been performed in the current pivot cycle. 

 

 is the identifier of the test vector held at 

column  of A. At any instant of algorithm 

progression,  may occupy columns other than 

the k-th. 

 

�B: In the algorithm, the name of the column a test 

vector currently occupies (instead of the actual 

identifier of that test vector) is used in a generic 

sense to refer to the test vector. 

 

, where  signifies the number of least 

significant bits (elements) that have been shifted out 

of . In other words, , where 

, . Thus . 

 

, where , and 

. 

 

Skip, S: This signifies the length of a matched 

pattern in two test vectors that must be adjacent to 

each other (i.e. they must occupy columns k and 

k+1) according to the proposed algorithm. It 

specifies the number of elements in the second of the 

two test vectors that should be skipped by the ATE 

(and hence the number of clocked cycles saved) 

during the scan-in. It is calculated as an integer 

attribute s, where .  

 

 is the resultant matrix, or the optimum 

arrangement for minimising test application time 

when the test vector  is used as the starting pivot 

vector. For each p,  is associated with an integer 

attribute Ssump, the sum of skips of all test vectors 

in . 

 

k is the variable used to mark the column occupied 

by the current pivot vector. 

x is the variable that marks the relative position of 

the column occupied by a test vector, with respect to 

the column occupied by the pivot vector.  

y is the variable that represents the number of 

dependent vectors directly following an initialising 

vector. 

 

3.2. The Compare Function 

 

The Compare function takes two arguments1, 

and . If no match is found between the 

arguments, the function returns false otherwise it 

returns true. A match exists if, 

 

                                                 

1 The two arguments are  and   when 

the Compare function is called in an Initialising Pivot 

Procedure 



 

  

 in , where , and 

 

 in , where , 

 

 or  is a don't-care. 

 

3.3. The Main Procedure 

 

This is the main procedure of the proposed 

algorithm. In the algorithm all rotations are counter-

clockwise. The following steps describe the flow of 

the function. 
 

Step 1: START 

1. Set . 

Step 2:  

1. Is ?  

a. If NO, 

i. select the resultant matrix, 

 with the lowest value p 

having the highest value of 

. The selected  is an 

optimum matrix for reducing 

test application time for the 

test set.  

ii. Go to step 9. 

Step 3:  

1. Is  a dependent vector? 

a. If YES, 

i. set  to null, 

ii. increment p, and 

iii. go to Step 2. 

Step 4:  

1. Select vector . 

2. Associate skip,  with the 

selected test vector, and 

3. initialise variables as follows: 

. 

Step 5:  

1. Is  an initialising vector? 

a. If YES, 

i. perform the Initialising 

Pivot Procedure. 

Step 6:  

1. If , 

a. rotate vectors from column 0 

to  times horizontally. 

b. Set . 

c. Increment x, and 

d. set . 

Step 7:  

1. Is -1? 

a. If YES, 

i. perform the Pivot Cycle 

Procedure, and 

ii. repeat Step 7. 

Step 8:  

1. Compute , 

2. associate result with the resultant 

matrix,  

3. increment p, and 
4. go to Step 2. 
Step 9: END 

 
3.4. The Initialising Pivot Procedure 

 

The Initialising Pivot Procedure is called when the 

newly found/selected pivot vector is an initialising 

vector. When the pivot vector is tested and found to 

be initialising, this procedure is executed according 

to the following steps. 

 
Step 1: START 

Step 2:  

1. Increment y, and 

2. set . 

Step 3:  

1. Is ? (Are there still some 

elements in the initialising pivot 

vector yet to be shifted out?). 

a. If NO, 

i. set , and associate S 

with  

ii. go to Step 6. 

Step 4:  

1. Perform the Compare function with 

 and   as the arguments. 

a. If the function returns 

false, 

i. increment r, and 

ii. go to Step 3. 

Step 5:  

1. Compute skip, S, and associate it 

with . 

Step 6:  

1. Is  an initialising vector? 

a. If YES, 

i. go to Step 2. 

Step 7: END 

 

3.5. The Pivot Cycle Procedure 

 

The Pivot Cycle Procedure is called when the stage 

has been set for a fresh sequence of comparisons to 

be carried out after selecting a new starting pivot 

vector. The following steps are performed in the 

procedure.  

 
Step 1: START 

1. Set . 

Step 2:  

1. Is ? 

a. If NO, 

i. set  



 

ii. set , and 

iii. go to Step 8. 

Step 3:  

1. Is ? (In other words, has 

the last vector been compared 

with the pivot vector?) 

a. If YES, 

i. set , 

ii. increment r, and 

iii. go to Step 2. 

Step 4:  

1. Is  (the vector being 

compared with the pivot vector) 

a dependent vector? 

a. If YES, 

i. go to Step 7. 

Step 5:  
1. Perform the Compare function 

with  and   as the 

arguments. 

Step 6:  
1. Did the execution of the Compare 

function in step 5 return true? 

a. If YES, 

i. go to Step 8. 

Step 7: . 
1. increment x, and 
2. go to Step 3. 

Step 8:  
1. Compute skip, S=m-r, and 

2. associate it with . 

Step 9:  

1. Is  an initialising vector? 

a. If NO, 

i. go to Step 11. 

Step 10:  

1. and 
2. perform Initialising Pivot 

Procedure. 

Step 11:  

1. If , 

a. Rotate vectors from  

through ,  times 

horizontally. 

Step 12:  

1. , 

2. , and 

3. . 

Step 13: END 

 

3.6. The Test Application Process 

 

When a test vector is about to be scanned in, the 

Automated Test Equipment (ATE) (under test 

program control) reads the skip value of the vector 

to determine the number of rows that must be 

skipped (i.e. the number by which to reduce the 

number of clock cycles per vector). A skip value of 

s, tells the ATE to skip the first s bits of the vector 

and scan in the rest (thereby resulting in  shift-

ins). Simultaneously the binary data within the scan 

register is shifted up just enough to accommodate 

the incoming  bits of binary data. The new test 

vector within the scan register is then applied to the 

CUT and the response captured by the MISR. In the 

case of test pairs, the MISR captures the responses 

produced by the second half-pairs. After all test 

vectors have been applied, the compressed response 

(signature) is scanned out of the MISR and 

compared with the signature of a fault-free circuit. 
 
4. An illustration of application of the algorithm 
 
In this illustration, the twelve test vectors in Table 1 

are used. All bits of each vector are assumed to be 

applied to state inputs of the circuit under test. 

Labels row shows the attributes of vectors that are 

either initializing or dependent. The number of rows 

in the Vectors section of the table represents the 

number of elements, m, in a test vector. In this test 

set m=6. The number of columns represents the 

number, n, of test vectors. (n=12). The test set 

comprises of test vectors for faults in two fault 

models (one model requires test pairs and the other 

requires single test vectors). This mix was chosen to 

fully demonstrate the complete effect of the 

proposed algorithm. 

 

4.1. Executing the Algorithm 

 

The Main Procedure starts with the first vector (Tp=0) 

in the given matrix, A (Table 2) as a valid starting 

pivot vector, since T0 is not dependent. The variable 

 and so . The variables x, y and r 

are each set to zero. Thus, . A skip, 

 is assigned to T0, as shown in Table . The 

vector  is not an initialising vector so the 

Initialising Pivot procedure is not executed. Since 

, no rotation is done. The variable k remains 

unchanged since . Variable x is incremented 

(x=x+1). At this stage, , so the Pivot 

Cycle procedure is called. 

 

 

 

 

 

 

 

Table 1: Test Vectors for all Targeted Faults (Matrix A) 

Test ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Label  i d/i d    i d  i d 

  
  

V
e

ct

0 1 1 0 1 1 0 1 1 0 0 0 

1 0 0 0 1 0 1 1 0 0 1 0 



 

  

1 1 0 0 0 0 0 0 0 0 1 0 

0 0 0 1 1 1 0 1 0 1 0 1 

0 0 1 0 1 1 0 1 1 0 1 0 

1 0 0 0 1 0 0 1 0 1 0 0 

 

Table 2: Matrix A(0) 

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Test ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Label  i d/i d    i d  i d 

Skip 0            

  
  
V
ec
to
rs
 

0 1 1 0 1 1 0 1 1 0 0 0 

1 0 0 0 1 0 1 1 0 0 1 0 

1 1 0 0 0 0 0 0 0 0 1 0 

0 0 0 1 1 1 0 1 0 1 0 1 

0 0 1 0 1 1 0 1 1 0 1 0 

1 0 0 0 1 0 0 1 0 1 0 0 

 

Table 3: Starting Pivot shifted up by 1 bit 

 

4.2. Executing the Pivot Cycle Procedure with  

as the Pivot Vector 

 

 In the Pivot Cycle procedure, each of the variables r 

and y is set to zero. Thus the condition 

 is true.  and  ( ) 

is not a dependent vector and so the Compare 

function is executed with  and  as 

arguments. For , there is no match; thus x is 

incremented to 2. The execution of the Compare 

function, with  and  as arguments also returns 

false. The process of incrementing x and executing 

the Compare function continues—ignoring all 

dependent vectors, i.e. vectors , ,  and  are 

not used when encountered. At this stage  is 

shifted up by one bit, thereby incrementing r to 1, as 

shown in Table 3 . The variable x is re-set to 1, and 

the Compare function is executed with the 

arguments  and , where the latter argument 

takes values from  to . This also does not lead 

to a match so r is incremented to 2 and x is reset to 1. 

With  and ,  is the second argument 

and the Compare function returns true (see Table 4). 

A skip,  is assigned to  and since  

is not an initialising vector, vectors up to  are 

rotated once horizontally. This brings the vector  

to column 1, as shown in Table 5. Variable k is 
updated to 1, and variables x and y are also reset to 1 

and 0, respectively. The Pivot Cycle procedure ends. 

Table 4: A Match Found at T5 after a 2-bit shifting 

 

Table 5: The Second Pivot Vector 

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Test ID t1 t6 t2 t3 t4 t5 t7 t8 t9 t10 t11 t12 

Label   i d/i d   i d  i d 

Skip 0 4           

V
ec
to
rs
 

0 1 1 1 0 1 0 1 1 0 0 0 

1 0 0 0 0 1 1 1 0 0 1 0 

1 0 1 0 0 0 0 0 0 0 1 0 

0 1 0 0 1 1 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 1 0 1 0 

1 0 0 0 0 1 0 1 0 1 0 0 

 

4.3. Executing the Pivot Cycle Procedure with 

as the Pivot Vector 

 

Since k<(n-1), the Pivot Cycle procedure is executed 

again with  as the pivot vector. With  and 

 as arguments for the Compare function, no 

match is found for , 1.  matches  when 

 and  (see Table 6). A skip,  is 

assigned to , and since  is an initialising 

vector, Initialising Pivot procedure is invoked. 

 

 

 

 

Table 6: A Match Found at T10 after shifting T1 2 bits up 

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Test ID t1 t6 t2 t3 t4 t5 t7 t8 t9 t10 t11 t12 

Label   i d/i d   i d  i d 

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Test ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Label  I d/i d    i d  i d 

Skip             

V
ec
to
rs
 

1 1 1 0 1 1 0 1 1 0 0 0 

1 0 0 0 1 0 1 1 0 0 1 0 

0 1 0 0 0 0 0 0 0 0 1 0 

0 0 0 1 1 1 0 1 0 1 0 1 

1 0 1 0 1 1 0 1 1 0 1 0 

 0 0 0 1 0 0 1 0 1 0 0 

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Test 

ID 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Label  i d/i d    i d  i d 

Skip 0     4       

V
ec
to
rs
 

1 1 1 0 1 1 0 1 1 0 0 0 

0 0 0 0 1 0 1 1 0 0 1 0 

0 1 0 0 0 0 0 0 0 0 1 0 

1 0 0 1 1 1 0 1 0 1 0 1 

 0 1 0 1 1 0 1 1 0 1 0 

 0 0 0 1 0 0 1 0 1 0 0 



 

Skip 0 4         4  

V
ec
to
rs
 

0 0 1 1 0 1 0 1 1 0 0 0 

1 1 0 0 0 1 1 1 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 0 

0 0 0 0 1 1 0 1 0 1 0 1 

0  0 1 0 1 0 1 1 0 1 0 

1  0 0 0 1 0 1 0 1 0 0 

4.3.1. Executing the Initializing Pivot 

Procedure for  
 

The Initialising Pivot procedure starts by 

incrementing y to 1 and setting r to 0. Since , 

the Compare function is executed with  

and   (i.e.  and  where  is the 

dependent vector of ) as arguments. No match is 

found. Variable r is also incremented to 1, by 

shifting up the pivot vector by 1. The Compare 

function is executed again. This also does not 

produce a match. A match is, however, found when 

 (in Table ) and the dependent vector, 

, is assigned a skip, . Since 

 is not an initialising vector, the Initialising 

Pivot procedure ends. 

 

Still in Pivot Cycle Procedure, vectors  to  are 

rotated  times horizontally to bring  to 

column 2, followed by  in column 3, as shown in 

Table 8. Variable k is updated to 3 whilst x and y are 
reset to , respectively. The Pivot Cycle 

procedure ends. 

Table 7: Comparing Initialising and Dependent Vectors 

(T10 and T11) 

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Test ID t1 t6 t2 t3 t4 t5 t7 t8 t9 t10 t11 t12 

Label   i d/i d   i d  i d 

Skip 0 4         4 1 

V
ec
to
rs
 

0 0 1 1 0 1 0 1 1 0 0 0 

1 1 0 0 0 1 1 1 0 0  0 

1 1 1 0 0 0 0 0 0 0  0 

0 0 0 0 1 1 0 1 0 1  1 

0  0 1 0 1 0 1 1 0  0 

1  0 0 0 1 0 1 0 1  0 

 

 

 

 

 

Table 8: T3 as Pivot Vector 

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Test ID t1 t6 t11 t12 t2 t3 t4 t5 t7 t8 t9 t10 

Label   i d i d/i d   i d  

Skip 0 4 4 1         

V
ec
to
rs
 

0 1 0 0 1 1 0 1 0 1 1 0 

1 0 1 0 0 0 0 1 1 1 0 0 

1 0 1 0 1 0 0 0 0 0 0 0 

0 1 0 1 0 0 1 1 0 1 0 1 

0 1 1 0 0 1 0 1 0 1 1 0 

1 0 0 0 0 0 0 1 0 1 0 1 

 

4.4. Executing the Pivot Cycle Procedure with  

as the Pivot Vector 

 

Since , the Pivot Cycle procedure is 

executed again with  as the pivot vector. Ignoring 

all dependent vectors, for example , the Compare 

function with  and  as arguments returns 

true at  when  and  (see Table 9). A 
skip,  is assigned to  and vectors  up 

to  are rotated once horizontally, bringing  to 

column 4, as shown in Table 10. Variable k is 

updated as  whilst x and y are reset to , 

respectively. The Pivot Cycle procedure ends. 

 

4.5. Summary of the rest of Algorithm Execution 

 

Still  and so the Pivot Cycle procedure 

is executed again with  as the pivot vector.  

matches .  was assigned a skip 

. After rotating vectors  

through  once,  came to occupy column 5 as 

the pivot. 

 

Table 9: Comparison with T3 

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Test ID t1 t6 t11 t12 t2 t3 t4 t5 t7 t8 t9 t10 

Label   i d i d/i d   i d  

Skip 0 4 4 1     4    

V
ec
to
rs
 

0 1 0 0 1 1 0 1 0 1 1 0 

1 0 1 1 0 0 0 1 1 1 0 0 

1 0 1 0 1 0 0 0 0 0 0 0 

0 1 0 0 0 0 1 1 0 1 0 1 

0 1 1  0 1 0 1 0 1 1 0 

1 0 0  0 0 0 1 0 1 0 1 

 

 

 

 

 

Table 10: T4 as Pivot Vector 

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Test ID t1 t6 t11 t12 t7 t2 t3 t4 t5 t8 t9 t10 

Label   i d  i d/i d  i d  



 

  

Skip 0 4 4 1 4        

V
ec
to
rs
 

0 1 0 0 0 1 1 0 1 1 1 0 

1 0 1 0 1 0 0 0 1 1 0 0 

1 0 1 0 0 1 0 0 0 0 0 0 

0 1 0 1 0 0 0 1 1 1 0 1 

0 1 1 0 0 0 1 0 1 1 1 0 

1 0 0 0 0 0 0 0 1 1 0 1 

 

Next,  matched , a skip,  is assigned 

to  , and, since  is an initialising vector, the 

Initialising Pivot procedure is executed.  matches 

its dependent vector  at  .  is 

therefore assigned a skip, .  is also an 

initialising vector so y is incremented to 2 and r reset 

to 0.  matched its dependent vector  . The 

dependent vector, , is assigned a skip, . 

Thus,  becomes the next pivot without rotation 

because . 

 

For increments of r from 1 through 6 did not result 

in any matches and so  becomes the next pivot 

vector with s=m-r=6-6=0. 

 

Now  and the condition,  is false. 

The sum of all the skip values, , is therefore 

computed and assigned to the resultant matrix, 

, as shown at the foot of Table 11. 

Table 11: The Resultant Matrix  

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Test ID t1 t6 t11 t12 t7 t10 t2 t3 t4 t5 t8 t9 

Label   i d   i d/i d  i d 

Skip 0 4 4 1 4 3 3 4 5 0 6 1 

V
ec
to
rs
 

0 1 0 0 0 0 1 1 0 1 1 1 

1 0 1 0 1 0 0 0 0 1 1 0 

1 0 1 0 0 0 1 0 0 0 0 0 

0 1 0 1 0 1 0 0 1 1 1 0 

0 1 1 0 0 0 0 1 0 1 1 1 

1 0 0 0 0 1 0 0 0 1 1 0 

The sum of skips  for matrix  . 

 

 matches  without shifting (i.e. ).  

is therefore assigned a skip, 

.  is an initialising vector 

and so the Initialising Pivot procedure is executed 

matching  and  and assigning 

 to the dependent vector,  

. 

 

The Main Procedure continues by incrementing p to 

1. In other words, , of matrix  is selected as 

the next starting pivot vector. Since  is not a 

dependent vector a skip, , is associated with it 

as shown in Table 13. At this stage (Step 6 of Main 

procedure)  and , so  

swaps positions with  in a horizontal rotation 

of the two vectors. The execution of the Main 

procedure then continues till  is computed 

and assigned to . This process is repeated for 

p=2, 3, …, 11. Note that vectors , ,  and  

are dependent vectors and so 

. 

Table 13: Selecting  as the next Starting Pivot 

Vector for Matrix A 

Tk T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 
Test ID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

Label  i d/i D    i d  i d 

Skip  0           

V
ec
to
rs
 

0 1 1 0 1 1 0 1 1 0 0 0 

1 0 0 0 1 0 1 1 0 0 1 0 

1 1 0 0 0 0 0 0 0 0 1 0 

0 0 0 1 1 1 0 1 0 1 0 1 

0 0 1 0 1 1 0 1 1 0 1 0 

1 0 0 0 1 0 0 1 0 1 0 0 

 
 
Results obtained from the application of the 

proposed algorithm (Pattern Match Algorithm) to 

the example test set, (organized as matrix A), is as 

summarized in  

 

 

From the table, the resultant matrices,  and , 

have the highest  = 35. Since of the two  

has the lesser value of p, it is chosen as the best 

arrangement of the test set for minimising test scan-

Table 12:  Values of Resultant Matrices,  

             

 35 34 null null 35 27 29 29 null 30 32 null 

             

 35 34 null null 35 27 29 29 null 30 32 null 



 

in time using the proposed method. From Equations 

1 and 2, the original test set using standard scan 

technique (without the Vector Match method) takes 

 clock cycles to scan-in all the vectors and a total 

of 89 clock cycles for the complete test application 

process. 

 

From Equation (4), . Therefore it 

takes  clock cycles to scan-in the test 

vectors when the Pattern Match Algorithm is used. 

Adding the additional 5 clock cycles to scan-out the 

test signature brings the total test application time to 

54 clock cycles. Evidently, the proposed approach 

gives better results. 
 
 
5. Conclusion 
 

After reviewing the scan architecture, it was 
realised that it does not allow the re-use of 
patterns in already scanned-in test vectors. This 
is because the same flip-flops that hold the 
scanned-in vectors are the ones that capture 
the response during the test application 
process. As a result, an already scanned-in 
vector is cleared by the response. 
Consequently, every bit in all the test vectors 
must be scanned in. This makes test 
application time very long. To solve this 
problem, a new architecture was proposed.  
 
The new architecture involves the addition of a 
MISR to the scan chain of the circuit under test 
(CUT). In test mode, the state outputs are 
disconnected from the scan chain inputs and 
connected to the MISR. Thus the MISR is used 
to capture and compress the test responses. 
This allows previously scanned-in vector to be 
held in the flip-flops—paving a way for a 
possible reuse of the entire vector or part 
thereof. Next an algorithm, called the Pattern 
Match Algorithm (PMA), was developed to take 
advantage of repetitive patterns in test vectors 
by re-using them. By so doing, it avoids a 
complete scan-in of whole vectors. Time saving 
is achieved as a result.  
 
The Pattern Match Algorithm works by 
rearranging test vectors to achieve the optimum 
arrangement for reducing test application time. 
In a cycle of the rearrangement process, 
patterns in test vectors are compared with that 
of a vector , called the pivot vector. Among 

the rest of the vectors (yet to become pivots) 
one with the longest matching pattern is made 
to follow  directly. The vector so identified 

becomes the new pivot vector and the process 
continues to the last vector. A new cycle is then 
run with a new starting pivot. At the end the 
cycle with maximum savings in clock cycles 

determines the final arrangement of test 
vectors. 
 

 

 

References 
 

1. Williams, M., Angell, J.: Enhancing 

Testability of Large-scale Integrated Circuits 

via Test Points and Additional Logic. In: 

IEEE Transactions on Computers, 1973. 

2. Eichelberger, E. B., Williams, T. W.: A Logic 

Design Structure for Design for Testability. 

In: Proceedings of Design Automation 

Conference, 1977. 

3. Narayanan, S., Breuer, M. A.: Asynchronous 

multiple scan chains. In: Proceedings of 

VLSI Test Symposium,  270–276, 1995. 

4. Narayanan, S., Gupta, R., Breuer, M. A.: 

Optimal configuring of multiple scan 

chains.In:  IEEE Trans. on Computers,  

1121–1131, 1993. 

5. Narayanan, S., Njinda, C., Breuer, M. A.:  

Optimal sequencing of scan registers. In: 

Proceedings of Int. Test Conference,. 293–

302, 1992. 

6. Narayanan, S.: Scan Chaining and Test 

Scheduling in an Integrated Scan Design 

System. PhD thesis, University of Southern 

California, Los Angeles, CA., 1994. 

7. Hiraide, T., Boateng, K. O., Konishi, H., 

Itaya, K., Emori, M., Yamanaka, H., 

Mochiyama, T.: BIST-Aided Scan Test - A 

New Method for Test Cost Reduction. In: 

Proceedings of 21st IEEE VLSI Test 

Symposium, 359, 2003. 

8. Morley, S. P., Marlett, R. A.: Selectable 

length partial scan: a method to reduce 



 

  

vector length. In: Proceedings of Int. Test 

Conference, 385–392, 1991. 

9. Narayanan, S., Breuer, M. A.: 

Reconfiguration techniques for a single scan 

chain. In: IEEE Trans. on Computer-Aided 

Design, 750–765, 1995. 

10. Abramovici, M., Rajan, K. B., Miller, D. T.: 

Freeze: a new approach for testing 

sequential circuits. In: Proc. Design 

Automation Conference, 22–25, 1992. 

11. Jha, N., Gupta, S.: Testing of Digital 

Systems. Cambridge University Press, 

2003. 

  

 


