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Abstract: A modified Jiles–Atherton model
presenting the magnetic induction as an independent
variable is proposed in order to be directly used in
time-stepping finite-volume calculations applied to the
magnetic vector potential formulation. This model is
implemented in the field calculation procedure by
introducing a differential reluctivity. The parameters
set of the Jiles–Atherton hysteresis model is identified
by using a real coded genetic algorithm. The
parameters identification is performed by minimizing
the mean squared error between experimental and
simulated magnetic field curves. The calculated results
are validated by exper iences performed in an SST’s
frame.
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1. Introduction

To design and to study electromagnetic systems,
field calculation codes are more and more used. We
have at our disposal a virtual prototype in which
geometrical dimensions and material characteristics
can easily be modified. But, to achieve an efficient
design procedure, the used models have to be
accurate and fast. Satisfying the se two criteria
simultaneously is not easy; therefore a compromise
has to be made. Lots of electrical devices are made
up of ferromagnetic materials. To represent the
behaviour of such materials in field computation
codes, nonlinear univocal function are generally
used. But, in this case, the hysteresis phenomenon is
neglected. In that context, the use of a constitutive
relationship which takes into account the hysteresis
phenomenon would be more useful to improve the

accuracy. Different hysteresis models are available
for incorporation into the finite volume framework.
Although the Preisach model appears to be the
hysteresis model of choice, the J –A model is
attractive because of its simplicity and ease of
implementation. The attributes of the J –A hysteresis
model including level of accuracy for several
practical materials, ease of implementation into the
FVM (Finite Volume Method), and computational
efficiencies make it a viable choice for
implementation into a 2-D finite volume model [1],
[2]. This study will choose the model best suited
from the standpoint accuracy, processing speed and
ease of implementation. The working hypotheses are
restricted to the case of static regime and the
equation that we solve axis -symmetric in two
dimensions 2-D, is the magnetodynamic non-linear.
Thus, the finite element method has proved it self as
an effective tool in solving differential equations, it
allows another to take into account complex
geometries and non- linearity’s possible, only its
implementation is against a  fairly complicated. So we
choose in our study for the method of finite volume,
which is less difficult to achieve and simple design.

2. Finite Volume Formulations Including
Magnetic Hysteresis

2.1 Basic Field Axi-Symmertical Equations
The derivation of the finite volume equations

begins with Maxwell’s field equations
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
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Where

B : Magnetic flux density,

H : Magnetic field intensity,

J : Total current density.

Where

J is the total current density which is the sum

of the conductive current density cJ


 and the

displacement current density dJ


.

The Maxwell field equations are extended to allow
treatment of hysteresis by including the constitutive
equation for magnetic material. The general equation
for a ferromagnetic material can be expressed as
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Where M


the nonlinear magnetization is function,
and 0  is the permeability in free space [1]. The flux

density B


can be expressed as the circulation of a
potential vector, AB


 , where A


 is the magnetic

vector potential naturally satisfying Maxwell’s
equation 0 B


 since the divergence of the curl is

zero.
The most obvious way is to directly use μ 0

(or 00 1   ) and M


in the field equation by
applying the vector form of (3) Ampere’s law. The
field equation is then given by
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where  ttA 


,  ttJ 


 and  ttM 


are,
respectively, the magnetic vector potential, the
current density, and the magnetization vectors at time
 tt  , Δt is the time step.
When considering dJ


 as negligible in the azimuth

direction (axis-symmetrical Formulation), (4) is
written using the tow-dimensional (2-D) magnetic
vector potential A


 as unknown in cylindrical

coordinates as
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2.2 Jiles-Atherton Model of Hysteresis
The original J–A model presented in [3] gives the

magnetization M versus the external magnetic field

H. This model is based on the magnetic material
response without hysteresis losses. This is the
anhysteretic behavior which Man (H) curve can be
described with a modified Langevin equation
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Where He=H+αM is the effective field experienced
by the domains: H is the external applied field and α
the mean field parameter representing inter -domain
coupling. The constant a is an increasing function of
the temperature.  The magnetization M is
decomposed into its reversible component Mrev and
its irreversible component Mirr.

revirr MMM  (7)
The relationship between these two components and
the anhysteretic magnetization Man is obtained from
physical considerations of the magnetization process
and is given by

)( irranrev MMcM  (8)
With
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Where a, α, c, k and the saturation magnetization Ms

are parameters which are determined from measured
hysteresis characteristics [4], δ is a directional
parameter and takes the value +1 for dH/dt > 0 and -1
for dH/dt < 0. Using this method, the magnetization
M is commonly obtained from the magnetic field H.
With the proposed inverse Jiles–Atherton model, M
will be calculated from the magnetic induction B,
integrating a differential equation in terms of dM/dB.
To obtain such a relationship, we will start
substituting (8) in (7) and differentiating the resulting
term with respect to the effective flux density
Be=µ0He.
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One can write this term as
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Deriving (6) with respect to He
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And, with deriving (9) results in

 k

MM

dB

dM irran

e

irr

0


 (14)



In which δ=+1 for dB/dt > 0 and δ=-1 for dB/dt < 0.
The term Mirr in (14) is obtained applying (8) in (7)
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Finally, written (11) using (12) and (13), and
isolating dM/dB gives the main equation of the
proposed inverse Jiles-Atherton model
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The numerical solution of (5) including hysteresis
cannot be done with the same method as the one used
with univocal functions (Newton–Raphson scheme
for example). We have chosen the fixed -point
method already presented in [1]. The hysteretic
constitutive relationship is then rewritten under the
form

)()( BMBfH FPFP   (17)
The reluctivity νFP is a constant and must respect
some conditions to achieve convergence [2]. The
studied hysteretic models assume B and H collinear;
consequently the magnetization MFP has the same
direction as νFP B. Its magnitude is obtained by
calculating MPF= f (B) - νFP B. Finally, the partial
differential equation (5) becomes

FPFP McurlJAcurlcurl  (18)
The discretization with nodal shape functions for the
potential vector of (18) using the finite volume
method leads to the matrix system
      ,FPFP MJAS  (19)
Where the vector [A] represents the nodal values of
vector potential. [SFP] a square matrix called
stiffness matrix, [MFP] and [J] the vectors which
take into account the magnetization MFP and the
current density J. One can note that the matrix [SFP]
is constant because the permeability νFP is constant as
well. The non-linearity’s introduced by
ferromagnetic materials are reported in the source
term [MFP] which depends on B (i.e. A). To take into
account the coupling with the external circuit of a
coil made up of stranded conductors flowe d by a
current i, a vector [D] is introduced such that [J] =
[D] i. Then, we obtain the system
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3. Genetic Algorithms

3.1 Introduction
Genetic algorithms are developed for the purpose

of optimization. They allow the search  for a global
extremis. These algorithms are based on natural
selection mechanisms (Darwin) and the genetic
evolution. A genetic algorithm is changing a
population of genes using these mechanisms. It uses
a cost function based on a performance criterion to
calculate a (fitness). Those most "strong" will be able
to reproduce and have more offspring than others.
Originally, the coding of individuals was in
transcribing binary parameters to optimize to form a
gene. These genes are then put together to form the
chromosome. There is, however, an approach called
real coding, where the functions of change and
passing are rewritten to apply directly to the vector of
parameters without going through the binary. We
have identified a coding real, more flexible and
precise. This avoids some problems due to binary
encoding. The actual coding also provides a direct
view of settings throughout the evolution of the
population. These modified genetic operators are
used in this paper as well as the improvement tools
presented in [7].

3.2 Parameters Identification Procedure
The schematic representation of the parameters

identification procedure is shown in [8], [9], the first
step is the characterization of the individuals that will
form the population. The individuals θ are composed
by the five parameters of the JA model (in real
coding, it is not necessary to code the variables in
binary representation) [6], [10]. We consider the case
where the population is given by
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Where each line represents an individual (a point in
the optimization space), n is the generation, and np is
the population size.
The initial values assigned to the population are
random values in the allowable range, as shown in
Tables I.
Each individual of the population is  evaluated using
the fitness between calculated and experimental
results.
That minimizes the fitness function given by [11]
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Where )( is tM and ),( is tM


 represent the measured
and estimated magnetization, respectively. The
optimal parameter vector is obtained solving

))((min  ff
n

GA 


 and also on a maximum allowed
number of generations.
Figure 1 shows the variation of the function of
adaptation (fitness) according to the nu mber
generations, and table I give the final results of the
genetic algorithm.
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TABLE 1: Material Parameters

3.3 The Solution Procedure
The finite volume method is a discretization

method which is well suited for the numerical
simulation of various types (elliptic, parabolic or
hyperbolic, for instance) of conservation laws, it has
been extensively used in several engineering fields,
such as fluid mechanics, heat and mass transfer or
petroleum engineering [12].

Some of the important features of the finite volume
method are similar to those of the finite element
method, it may be used on arbitrary geometries,
using structured or unstructured meshes, and it leads
to robust schemes. An additional feature is the local
conservatively of the numerical fluxes, which is the
numerical flux, is conserved from one discretization
cell to its neighbor.
This last feature makes the finite volume method
quite attractive when modeling problems for which
the flux is of importance, such as in fluid mechani cs,
semi-conductor device simulation, heat and mass
transfer…

The finite volume method is locally conservative
because it is based on a "balance" approach: a local
balance is written on each discretization cell which is
often called "control volume", by the divergence
formula, an integral formulation of the fluxes over
the boundary of the control volume is then obtained.
The fluxes on the boundary are discretized with
respect to the discrete unknowns.
The solution of the posed problem is constructed
using finite volume method. With this purpose let us
multiply magnetodynamic equation (5) by function
of projection βi and integrate obtained equation over
domain Ω, we get
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With Β i is function of selected projection 1/r.
One can write (23) as
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The equation (24) discretized once is written as
follows

Fig. 1.  Evolution of the total error.

Parameter Design Variable
Range

Optimized
Values

Ms 0.5×106 – 2.5×106 1.2865×106

k 75 - 450 195.68

c 0.15 – 0.65 495×10-3

a 170 - 750 195.2

α 1×10-4 – 3×10-4 1.75×10-4
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The indices P, W, N, E and S refer to the values
of the nodes and indices p, w, n,  e and  s refer to
the values of the faces of volumes of control  (look
Figure (2)).

The coefficients aW, aN, aE, aS and d0 is given by
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Fig. 2.  Control volume in Axi-Symmertical
cylindrical coordinates.

Once that the various formulations in finite volumes
integrating the model of hysteresis are established, a
method of resolution of the nonlinear problem must
be selected.

4. RESULTS

4.1 Measured Curves
The determination of the magnetic quality of

materials rests primarily on the natu re of the systems
of measurement used. The evolution of the standard
in the field of the characterization of material is a
significant factor for the taking into account of the
physical nature of magnetic materials and the
conditions of their uses. The rep roducibility of
measurement and the facility of handling are also
factors which make it possible to choose the type of
magnetic circuit to implement. Accordingly our
choice is related to the realization of framework SST
(Single Sheet Tester) 500*500 mm 2. The device
planned for characterization of sheets with not
oriented grains must make it possible to take
measurements by a simple introduction of the
sample, iron silicon 3% not oriented inside a sleeve,
with a perfect positioning and without deterioration
of the polar faces of the magnetic circuit of closing of
flux. The characterization of materials studied done
by determining the following quantities expressed in
terms of characterization of the frame and measuring
output voltages measured by an oscillosc ope: V2, VH1,
and VH2 (look figure. 3).
The excitation peak field, which is submitted the
sample is obtained by interpolation from tensions
measured at the terminals of two coils tangential H1

and H2 located at distances different from the sample
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The magnetic induction is obtained by time
integration of the V2 (t) voltage in secondary coil
measuring B by
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Where
d1, d2: Distance to sample the coil Field 1, 2 (m).
N2: Number of turns of the coil measuring B.



n1, n2: Number of turns of the coil Field No 1, No 2.
S: Section of the sample (m 2).
S1, S2: Surface of the coil H1, H2 (m

2).
VH1, VH2: power output of the coil H1, H2 (V).

Fig. 3. Single Sheet Tester (SST)  500*500 mm2.

It is important to remark that the use of the inverse
JA model for the parameters identification has an
additional advantage compared with the original
model: the input of the inverse model is the magnetic
induction waveform. Since the magnetic induction is
obtained from integration, it is naturally filtered, with
fewer oscillations than those of the magnetic field
waveform. The noise present in the field waveform
brings additional difficulties to the parameters
identification procedure.
The obtained set of parameters is valid for models ,
original and inverse, allowing good agreement
between measured and calculated data [6].

4.2 Comparison with Simulation
The test consists of a cylinder ferromagnetic with a

length of 40 cm and 10 cm diameter characterized by
a cycle of hysteresis (Ms=1.2865×106, k=195.68,
c=495×10-3, a=95.2, α=1.75×10-4), the cylinder is
surrounded by a coil of the same length traversed by
a stream of density J = 105 A/m2. The drivers which
constitute the inductor have a diameter D = 1 cm and
50 cm length. The gap is E = 2 cm. The geometry of
the system studied, it presents two symmetries, the
first axially (oz) and the second according to the plan
(or). We can then consider magnetic problem in a
cylindrical coordinate system, a quarter of domain.
For a numerical modeling the theoretical limits (with
infinite, A = 0) are brought back to a finite distance

which can vary according to the desired precision. In
this study, these limits were fixed at a distance L = 50
cm of the studied device.
The boundary conditions associated with the
magnetic equation are the conditions of Neumann

0 nA  and the conditions of the Dirichlet A=0.
For the validation of the parameters obtained, one
superimposed on the figure 4, the cycle experimental
and the cycle of simulation obtained starting from the
identified parameters. This superposition shows the
degree of accuracy of the cycle identified by genetic
algorithm.
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Fig. 4.  Measured and calculated B (H) loops at 50 Hz.

Figure 5 shows, for an operation frequency of 50 Hz,
the experimental and simulated field cu rves of this
material when submitted to a 1.52 T peak value
sinusoidal induction.
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Additional resultants are given in figure 6, where the
axial variations of potential vector magnetic A. One
notices well that the value of A is maximal on the
level of the center of the inductor (z=10cm) then
decreases gradually until being cancelled in extreme
cases of the field of study.
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Fig. 6. Axial variation of the magnetic potential
vector A.

5. CONCLUSION

In this work, a finite volume-based transient
simulation method for investigating hysteresis effects
using the J–A scalar hysteresis model has been
extended to 2-D problems. The identification of the
parameters Jiles-Atherton model is a difficult process
with to realize, but the use of the techniques of
optimization by genetic algorithm makes it possible
to free this difficulty. Results obtained by applying
our model to the axisymmetrical magnetodynamic
device based on an inverse Jiles–Atherton model and
a differential reluctivity has good performances with
regard to numerical convergence and gives very
satisfactory results on an SST’s frame.  In the near
future, the use of a dynamic model of magnetic
hysteresis to study the behavior of material in the
systems at high frequencies and the application to
other devices will be undertaken.
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