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Abstract - One of the most fundamental techniques in 
Digital Signal Processing is the convolution. It has many 
widely used applications. In this paper a special 
implementation of convolution which is significantly 
faster than traditional ones is presented. The language of 
implementation is LabView. 
 
Index terms – Image processing, Convolution, LabView 
 

I. INTRODUCTION 
 

Convolution is a very powerful and versatile 
technique, but it has a disadvantage: The required 
computation is very time consuming. Every bit of 
improvement of its efficiency is definitely well worth 
the effort. The larger the amount of data have to be 
worked with, the larger the problem is with speed. The 
field which has been chosen to make our examinations 
is image processing, because: 

1. Pictures usually have information content, 
large enough to motivate building up fast 
algorithms. 

2. There are typical applications in image 
processing (for example “pattern 
recognition”), where the convolution is 
applied several times, and a slight 
improvement in one step can significantly 
decrease the time needed to complete the 
entire operation. 

Discrete convolution in two dimensions can be 
defined by the next equation: 
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where  denotes the original image, ( nmf , ( )nmg ,  
the edited one, and  is the convolution kernel. It 
can be seen clearly that convolution is made of 
additions and multiplications. The number of these 
operations depends on the size of the image and the 
convolution kernel. It is known that convolving with a 
function which contains only impulses is very easy, 
but in an image, every nonzero pixel is an impulse 
which has to be processed [3]. If the number of these 
impulses can be reduced, the amount of time required 
to convolution can also be reduced. It is important that 
reducing the number of impulses will distort the image 
some way, however a good method will keep the level 
of this distortion as low as possible. The method 

presented in this paper is a special case of a more 
general approach [1], applied to the field of image 
correlation. Furthermore the efficiency of the 
implementation has been tested considering execution 
time. 
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II. THE METHOD  

 
Throughout in this paper 8-bit grayscale images 

are discussed.  
A picture can be represented as a matrix of 

impulse functions where every matrix element (pixel) 
is a scaled and shifted version of the unity impulse, 
and the goal is to eliminate as many of them from the 
picture as possible, maintaining an acceptable amount 
of distortion of the picture. The solution can be 
evaluated in two steps. In the first step the picture is 
divided into several small parts (“boxlets”), where 
pixel values are “almost constant” and each pixel 
value in the partition is substituted with the average 
brightness. (The exact definition of this partitioning 
will be discussed later.) The second step is to calculate 
the first order partial derivatives of the picture in both 
directions (horizontal and vertical). As a result of 
calculating the derivatives the image becomes a field 
of impulses and zeros. To get the final result of 
convolution, an integration has to be taken along the 
two axes. With the method described above the 
number of impulses can be significantly reduced in the 
image, thus the convolution (with any convolution 
kernel) can be performed much easier and faster. 
 
A. Partitioning the image 
 
 Consider an image as a function f(x, y) over a 
domain M, and let { }ibB =  a partitioning of the image 
where: . And let 

choose a constant brightness(C) for each partition to 
minimize the next summation.  
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The average brightness is used on each partition as C, 
thus the above equation has the form: 
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Considering a more general approach, a 
polynomial can be used instead the constant [1]. In 
this case the constant can be regarded as a zero order 
polynomial. Equation (3) defines an error function for 
each partition, and the purpose is to minimize this 
error. On the other hand the number of partitions 
should be kept minimal too. So the problem is to find 
a partitioning where both the number of partitions, and 

should be minimal.  It can be seen clearly that 

these goals can only be achieved by making a 
compromise, because the less error is allowed, the 
more partitions has to be made. The most 
straightforward solution is to choose a constant K 
what can be called threshold, and make the largest 
possible partitions, where . Thus both the error 
and the number of partitions can be minimized with 
respect to K. Selecting a proper K is not so difficult, 
and for a particular application it has to be selected 
only once. 
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Interpolating regions of the image with zero 
order polynomials will result increasing the overall 
noise level in the image. Nevertheless in most cases 
images have an inherent noise, and this increase in 
noise level does not have a great impact on the result 
of certain applications as pattern recognition. 

In Fig. 1. below can be seen the effect of 
breaking an image into partitions. Upper left is the 
original image, upper right and lower right images are 
partitioned with K=1000, the only difference is that 
the boundaries of partitions can be seen on the upper 
image, the lower left image is partitioned with K=100. 
It can be seen that if K is small enough, the resulting 
image is very similar to the original (the error is 
small). You can also notice that the partitions are 
much larger in the homogenous regions of the picture, 
and this way, large groups of pixels can be represented 
by a few impulses.  

    

    
 

Fig. 1. The effect of partitioning 

B. Calculating the derivatives 
 
 Now the partitioning is successfully realized with 
the requirements above. The next step in the process is 
calculating the partial derivatives along both the 
horizontal and vertical directions. The equation below 
defines the derivatives [4]: 
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Applying these to the partitioned image, an interesting 
thing will happen. Since the brightness value on each 
partition is constant, the derivative will be zero here, 
and only a few nonzero values will remain at the 
boundaries of the partitions. Furthermore if two (or 
more) partitions have their corners at the same place, 
these two impulses becomes one: the sum of the 
former two. 

In Fig. 2. an image and its impulse 
representation can be seen. You can see that only the 
boundaries of objects remain. Notice that the rectangle 
is completely disappeared except its four corners, and 
the same thing happened to the rectangular part of the 
arrow head. 
 

 
 

Fig. 2. An image and its impulse representation 
 

III. THE IMPLEMENTATION 
 

The method described above can be 
implemented in many ways, in various programming 
languages. The programming language of this 
implementation is LabView. This is a powerful 
graphical programming environment for building 
applications. It’s easy to use and offers several built-in 
functions, controls, and various visualization options 
to speed up the development process. Besides its 
advantages it has a disadvantage: it doesn’t support 
recursive algorithms. This is not a problem in most 
cases, and it is known that every recursive algorithm 
can also be solved by iterations, but in certain cases it 
would be very useful if the programmer had a support 
for it. Fortunately there is a solution to this problem. 
LabView is capable of using code written in other 



languages, through a mechanism called Code 
Interface. With a code interface it becomes possible 
to make the visualization and user interaction in the 
high level LabView environment, and the underlying 
recursive code in C++. 

Let’s take a closer look to the algorithms. The 
heart of the program is the recursive algorithm which 
is responsible for the partitioning. The theory behind it 
is very simple: 

1. Take the image 
2. Calculate the average brightness 
3. Calculate the error 
4. If it is too large, cut the image into 

halves and do the same process on the 
two halves. 

So this is the algorithm to break the image into 
partitions. It works, but there are a few nuances for the 
practical application. It is good to maximize the 
partition size; it speeds up the algorithm due to 
avoiding a large amount of unnecessary computation 
(step 2, and step 3 for large images). Furthermore 
cutting an image into halves can be done in two basic 
ways: horizontal and vertical. The good way is to 
change the direction for every cut, because this will 
make the partitioning more balanced. 
 After the partitioning, applying the derivatives is 
quite straightforward. The result of these operations is 
a field which the convolution is very easy to perform 
with, because it contains only a few impulses 
compared to the original number of pixels. To 
convolve another function with this field, the only 
thing to do is making copies of the function at every 
impulse and adding them together. 

To obtain the final result of convolution, an 
integration has to be realized with respect to both the 
horizontal and vertical directions. 
 

Well, now an overall idea of the implementation 
of the method is introduced. It is time to take a closer 
look. In the next few paragraphs the most important 
parts of the algorithm is described in more detail, and 
some further detail about the code interface 
mechanism. 
 
A. The code interface 
 

This is a very useful capability of the LabView 
environment, because it enables using code written in 
other programming languages. This is an especially 
useful aid when solving a problem which requires 
recursive algorithms (just as in the previous case) that 
cannot be implemented in the LabView environment, 
and it can be also used for writing the speed critical 
sections of your code in fast, low level languages. 
Using the code interface is a five step process: 

1. Defining a high level programming 
element (Code interface node (CIN)) to 

handle the underlying code, and declare 
inputs and outputs for the low level code. 

2. Generating a low level code frame 
according to the structure of the defined 
inputs and outputs. 

3. Filling this code frame with your low 
level code. 

4. Compiling the code, and making a 
special link using a utility provided by 
the LabView environment. The result of 
this step will be a resource file which can 
be used in the high level program. 

5. Loading the resource file into the CIN, 
and this high level element can be used 
just as usual. 

 
The first two steps and the last one can be 

performed in the LabView environment, the remaining 
two steps has to be done in some other development 
environment e.g. Microsoft Visual Studio. To 
complete the 3rd and 4th steps a DLL Project has to be 
made in Visual C++, adding some further files to your 
project (these files can be found in the CIN directory 
of LabView), furthermore some special linker options 
also has to be defined. The next figure (Fig. 3.) shows 
a LabView generated code frame. The instructions and 
operations that can be used on LabView objects are 
defined in LabView External Code manual [2].  

 
/* CIN source file */ 
 
#include "extcode.h" 
 
/* Typedefs */ 
 
typedef struct { 
 int32 dimSizes[2]; 
 uInt8 Numeric[1]; 
 } TD1; 
typedef TD1 **TD1Hdl; 
 
typedef struct { 
 int32 dimSizes[2]; 
 uInt16 Numeric[1]; 
 } TD2; 
typedef TD2 **TD2Hdl; 
 
MgErr CINRun(TD1Hdl *In, int32
*Threshold, int32 *MaxBoxSize,
TD2Hdl *Out); 
 
MgErr CINRun(TD1Hdl *In, int32
*Threshold, int32 *MaxBoxSize,
TD2Hdl *Out) 
 { 
 
 /* Insert code here */ 
 
 return noErr; 
 } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A LabView 
generated code 

frame 
 

It can be seen from the function declaration that 
using handlers (pointers to pointers) is the common 
way to handle composite objects, just like an array 



which can dynamically grow and shrink. And the 
value returned is also a handler. This way of object 
handling means that the memory management is not 
automatic, and the problem of allocation and freeing 
memory for the dynamic objects has to be solved by 
the programmer. It is important to do this task right, 
particularly in the case of an algorithm which executes 
a thousand times or more. 
 
B..The program 
 

As it was mentioned above the method was 
implemented in LabView, so the program looks like a 
flowchart of functions and operations. In this 
particular case the program contains a few blocks 
which perform the operations. The structure of the 
LabView program can be seen below in Fig. 4. The 
diagram can be separated to three main parts: the 
quantization algorithm (quant), the conversion from 
the inner representation of partitions to image (b>pix), 
and the calculation of the derivatives (the two for 
loops). 
 

 
Fig. 4. The program to create the impulse representation 

 
IV. THE TEST 

 
A. Accuracy and noise 
 

Now the implementation of the fast convolution 
method is done. The next task is to test its efficiency, 
and the application for this purpose is pattern 
recognition, which is a technique to find i.e. a small 
part of image in the whole. The most basic way of 
finding a pattern in an image is to correlate the image 
with the pattern. The correlation in two dimensions is 
described as follows: 
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Taking a closer look at this equation, and comparing it 
to (1), there can be seen that they are very similar, 
except the signs in function f( , ). So convolution 
could be used to perform correlation if the pattern had 
been prepared properly. This preparation in this case 
means that the pattern has to be mirrored to both axes. 

The result of the correlation is a function which 
shows the location of the pattern on the image. In 
ideal cases, the resulting function will contain a small 
amount of noise and one well defined maximum 
indicating the location of the pattern. If the result 
looks like noise it means that the pattern has not been 
found. The next three figures show the result of 
correlating a pattern with an image. Each of them was 
created by correlating a 256x256x8 image by a 
30x30x8 pattern. The first one (Fig. 5.) shows the 
result of traditional correlation, here a well defined 
spike and an acceptable amount of noise can be seen. 
The second one (Fig. 6.) shows the correlation 
performed by the fast convolution method 
implemented. It can be noticed that there is a 
measurably larger amount of noise in this function, 
but the maximum is defined well enough yet. On the 
last figure (Fig. 7.) it can be seen what happens when 
threshold is too high. On each figures dark color 
indicates the high, and light indicates the low values 
of the function.  

 
 

Fig. 5. Correlation by traditional convolution 
 

 
 

Fig. 6. Correlation by fast convolution K=1000 



 

Fig. 7. Correlation by fast convolution K=8000 
 

It can be seen that the threshold constant has a 
great impact on the result, because too large threshold 
can increase the amount of noise (error) to a level, 
where the pattern could not be recognized. The value 
of acceptable threshold depends on the size of the 
pattern, and the content of the pattern and the image. 
 
B. Execution time 
 

It has been shown that the method works, and 
with a proper selection of the threshold the results of 
the fast method are exactly the same as the traditional 
one. But there is one more question to answer: How 
fast is it? How much faster is it than the original 
method? 

The answers to these questions can be obtained 
through a few speed tests. The tests have been made in 
the following hardware and software environment. 
Hardware configuration: 

- CPU: AMD Barthon 2500+ 
- Memory: 512MB, 266MHz 
- Motherboard: ASUS A7N8X 

Software configuration: 
- National Instruments LabView 7 
- Microsoft Visual Studio 6.0 

Execution times of the algorithms were provided by 
the profiler of the LabView environment. 
 

The following figures are “Execution time vs. 
pattern size” diagrams, which were created by 
correlating a 256x256x8 image by different sized 
patterns. It can be seen the newly implemented 
algorithm is much faster than the original one. On 
each diagram the solid colored columns shows the 
time statistics of the fast method and the diagonally 
striped ones correspond to the traditional one. In the 
first case (Fig. 8.) the threshold constant was set to 
K=1000, on next figure (Fig. 9.) it was adjusted to a 
high, but acceptable level for the various size of 
patterns.  
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Fig. 8. Execution time vs. pattern size,  K=1000 
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Fig. 9. Execution time vs. pattern size, threshold adjusted 
 

Noticing the difference between Fig.8. and 
Fig.9. leaves no doubt about the importance of 
adjusting the threshold constant for any particular 
applications. It can be seen that the fast algorithm is 
fast enough without adjusting the threshold level, but 
in most cases (it depends on the pattern and the image) 
a higher level of threshold can be found, which can 
make the overall process approximately two times 
faster. Finding the highest possible threshold value to 
work with is an important part of using this method 
effectively. At first glance it seems that the threshold 
value can be determined only by experiments, because 
the level of the highest acceptable threshold highly 
depends on the pattern and the image itself. It can be a 
challenge to get the highest possible value of threshold 
automatically, but as it can be seen from the following 
comparison the threshold value adjustment is not so 
important in the case of small patterns. 
 

The next figure shows a speed comparison 
between the fast and the traditional algorithm. The 
graph indicates a “Speed ratio vs. pattern size”. The 
upper line signed with boxes corresponds to the 
condition when the threshold was adjusted; the lower 
line corresponds to the constant threshold (K=1000). 
The threshold values of the second case (when 
threshold was adjusted according to the size of the 
pattern) can be found in Table 1. 
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Fig. 10. Speed ratio vs. pattern size 
 
 

TABLE.I: 
THRESHOLD VALUES TO PATTERN SIZES 

 
Pattern size 15x15 20x20 25x25 30x30 
Threshold 1000 4500 6000 6500 
Pattern size 35x35 40x40 50x50 - 
Threshold 6500 5500 7000 - 

 
V. CONCLUSION 

 
It has been shown that the fast “Boxlet” method 

is significantly faster than traditional convolution in 
pattern recognition applications. The overall 

performance of the fast method is approximately 3 
times better, but by adjusting the threshold properly 
we can achieve nearly 8 times faster execution. In 
Fig.10. it can be seen that the advantage from 
adjusting the threshold level diminishes at small 
pattern sizes. The main reason behind this 
phenomenon is that partitioning the image will distort 
the features of it, and the smaller the pattern size, the 
greater the impact this distortion has on the result. 
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