
Implementation of a Fast Convolution Technique to LabView
(comparative speed test)

Zoltan Sári

Department of Information Technology, Faculty of Engineering, University of Pécs
Hungary, Tel.: +36 72 503-650 (3727), Fax.: +36 72 501-534, e-mail: ski@morpheus.pte.hu

)

)

Abstract - One of the most fundamental techniques in
Digital Signal Processing is the convolution. It has many
widely used applications. In this paper a special
implementation of convolution which is significantly
faster than traditional ones is presented. The language of
implementation is LabView.

Index terms – Image processing, Convolution, LabView

I. INTRODUCTION

Convolution is a very powerful and versatile
technique, but it has a disadvantage: The required
computation is very time consuming. Every bit of
improvement of its efficiency is definitely well worth
the effort. The larger the amount of data have to be
worked with, the larger the problem is with speed. The
field which has been chosen to make our examinations
is image processing, because:

1. Pictures usually have information content,
large enough to motivate building up fast
algorithms.

2. There are typical applications in image
processing (for example “pattern
recognition”), where the convolution is
applied several times, and a slight
improvement in one step can significantly
decrease the time needed to complete the
entire operation.

Discrete convolution in two dimensions can be
defined by the next equation:

() () (∑∑
−

=

−

=

−−⋅=
1

0

1

0
,,,

M

i

N

j
njmifjihnmg (1)

where denotes the original image, (nmf , ()nmg ,
the edited one, and is the convolution kernel. It
can be seen clearly that convolution is made of
additions and multiplications. The number of these
operations depends on the size of the image and the
convolution kernel. It is known that convolving with a
function which contains only impulses is very easy,
but in an image, every nonzero pixel is an impulse
which has to be processed [3]. If the number of these
impulses can be reduced, the amount of time required
to convolution can also be reduced. It is important that
reducing the number of impulses will distort the image
some way, however a good method will keep the level
of this distortion as low as possible. The method

presented in this paper is a special case of a more
general approach [1], applied to the field of image
correlation. Furthermore the efficiency of the
implementation has been tested considering execution
time.

(),h

II. THE METHOD

Throughout in this paper 8-bit grayscale images

are discussed.
A picture can be represented as a matrix of

impulse functions where every matrix element (pixel)
is a scaled and shifted version of the unity impulse,
and the goal is to eliminate as many of them from the
picture as possible, maintaining an acceptable amount
of distortion of the picture. The solution can be
evaluated in two steps. In the first step the picture is
divided into several small parts (“boxlets”), where
pixel values are “almost constant” and each pixel
value in the partition is substituted with the average
brightness. (The exact definition of this partitioning
will be discussed later.) The second step is to calculate
the first order partial derivatives of the picture in both
directions (horizontal and vertical). As a result of
calculating the derivatives the image becomes a field
of impulses and zeros. To get the final result of
convolution, an integration has to be taken along the
two axes. With the method described above the
number of impulses can be significantly reduced in the
image, thus the convolution (with any convolution
kernel) can be performed much easier and faster.

A. Partitioning the image

 Consider an image as a function f(x, y) over a
domain M, and let { }ibB = a partitioning of the image
where: . And let

choose a constant brightness(C) for each partition to
minimize the next summation.

Mbandbb i
i

ji == UI ji ≠|0

()()
()
∑

∈

−=
ibyx

i Cyxfs
,

2, (2)

The average brightness is used on each partition as C,
thus the above equation has the form:

()()
()
∑

∈

−=
i

i
byx

bi fyxfs
,

2, (3)

mailto:ski@morpheus.pte.hu

Considering a more general approach, a
polynomial can be used instead the constant [1]. In
this case the constant can be regarded as a zero order
polynomial. Equation (3) defines an error function for
each partition, and the purpose is to minimize this
error. On the other hand the number of partitions
should be kept minimal too. So the problem is to find
a partitioning where both the number of partitions, and

should be minimal. It can be seen clearly that

these goals can only be achieved by making a
compromise, because the less error is allowed, the
more partitions has to be made. The most
straightforward solution is to choose a constant K
what can be called threshold, and make the largest
possible partitions, where . Thus both the error
and the number of partitions can be minimized with
respect to K. Selecting a proper K is not so difficult,
and for a particular application it has to be selected
only once.

∑
i

is

isK ≥

Interpolating regions of the image with zero
order polynomials will result increasing the overall
noise level in the image. Nevertheless in most cases
images have an inherent noise, and this increase in
noise level does not have a great impact on the result
of certain applications as pattern recognition.

In Fig. 1. below can be seen the effect of
breaking an image into partitions. Upper left is the
original image, upper right and lower right images are
partitioned with K=1000, the only difference is that
the boundaries of partitions can be seen on the upper
image, the lower left image is partitioned with K=100.
It can be seen that if K is small enough, the resulting
image is very similar to the original (the error is
small). You can also notice that the partitions are
much larger in the homogenous regions of the picture,
and this way, large groups of pixels can be represented
by a few impulses.

Fig. 1. The effect of partitioning

B. Calculating the derivatives

 Now the partitioning is successfully realized with
the requirements above. The next step in the process is
calculating the partial derivatives along both the
horizontal and vertical directions. The equation below
defines the derivatives [4]:

() ()

() ().1,,

,,1,

−−=
∂
∂

−−=
∂
∂

yxfyxf
y
f

yxfyxf
x
f

 (4)

Applying these to the partitioned image, an interesting
thing will happen. Since the brightness value on each
partition is constant, the derivative will be zero here,
and only a few nonzero values will remain at the
boundaries of the partitions. Furthermore if two (or
more) partitions have their corners at the same place,
these two impulses becomes one: the sum of the
former two.

In Fig. 2. an image and its impulse
representation can be seen. You can see that only the
boundaries of objects remain. Notice that the rectangle
is completely disappeared except its four corners, and
the same thing happened to the rectangular part of the
arrow head.

Fig. 2. An image and its impulse representation

III. THE IMPLEMENTATION

The method described above can be
implemented in many ways, in various programming
languages. The programming language of this
implementation is LabView. This is a powerful
graphical programming environment for building
applications. It’s easy to use and offers several built-in
functions, controls, and various visualization options
to speed up the development process. Besides its
advantages it has a disadvantage: it doesn’t support
recursive algorithms. This is not a problem in most
cases, and it is known that every recursive algorithm
can also be solved by iterations, but in certain cases it
would be very useful if the programmer had a support
for it. Fortunately there is a solution to this problem.
LabView is capable of using code written in other

languages, through a mechanism called Code
Interface. With a code interface it becomes possible
to make the visualization and user interaction in the
high level LabView environment, and the underlying
recursive code in C++.

Let’s take a closer look to the algorithms. The
heart of the program is the recursive algorithm which
is responsible for the partitioning. The theory behind it
is very simple:

1. Take the image
2. Calculate the average brightness
3. Calculate the error
4. If it is too large, cut the image into

halves and do the same process on the
two halves.

So this is the algorithm to break the image into
partitions. It works, but there are a few nuances for the
practical application. It is good to maximize the
partition size; it speeds up the algorithm due to
avoiding a large amount of unnecessary computation
(step 2, and step 3 for large images). Furthermore
cutting an image into halves can be done in two basic
ways: horizontal and vertical. The good way is to
change the direction for every cut, because this will
make the partitioning more balanced.
 After the partitioning, applying the derivatives is
quite straightforward. The result of these operations is
a field which the convolution is very easy to perform
with, because it contains only a few impulses
compared to the original number of pixels. To
convolve another function with this field, the only
thing to do is making copies of the function at every
impulse and adding them together.

To obtain the final result of convolution, an
integration has to be realized with respect to both the
horizontal and vertical directions.

Well, now an overall idea of the implementation
of the method is introduced. It is time to take a closer
look. In the next few paragraphs the most important
parts of the algorithm is described in more detail, and
some further detail about the code interface
mechanism.

A. The code interface

This is a very useful capability of the LabView
environment, because it enables using code written in
other programming languages. This is an especially
useful aid when solving a problem which requires
recursive algorithms (just as in the previous case) that
cannot be implemented in the LabView environment,
and it can be also used for writing the speed critical
sections of your code in fast, low level languages.
Using the code interface is a five step process:

1. Defining a high level programming
element (Code interface node (CIN)) to

handle the underlying code, and declare
inputs and outputs for the low level code.

2. Generating a low level code frame
according to the structure of the defined
inputs and outputs.

3. Filling this code frame with your low
level code.

4. Compiling the code, and making a
special link using a utility provided by
the LabView environment. The result of
this step will be a resource file which can
be used in the high level program.

5. Loading the resource file into the CIN,
and this high level element can be used
just as usual.

The first two steps and the last one can be

performed in the LabView environment, the remaining
two steps has to be done in some other development
environment e.g. Microsoft Visual Studio. To
complete the 3rd and 4th steps a DLL Project has to be
made in Visual C++, adding some further files to your
project (these files can be found in the CIN directory
of LabView), furthermore some special linker options
also has to be defined. The next figure (Fig. 3.) shows
a LabView generated code frame. The instructions and
operations that can be used on LabView objects are
defined in LabView External Code manual [2].

/* CIN source file */

#include "extcode.h"

/* Typedefs */

typedef struct {
 int32 dimSizes[2];
 uInt8 Numeric[1];
 } TD1;
typedef TD1 **TD1Hdl;

typedef struct {
 int32 dimSizes[2];
 uInt16 Numeric[1];
 } TD2;
typedef TD2 **TD2Hdl;

MgErr CINRun(TD1Hdl *In, int32
*Threshold, int32 *MaxBoxSize,
TD2Hdl *Out);

MgErr CINRun(TD1Hdl *In, int32
*Threshold, int32 *MaxBoxSize,
TD2Hdl *Out)
 {

 /* Insert code here */

 return noErr;
 }

Fig. 3. A LabView
generated code

frame

It can be seen from the function declaration that
using handlers (pointers to pointers) is the common
way to handle composite objects, just like an array

which can dynamically grow and shrink. And the
value returned is also a handler. This way of object
handling means that the memory management is not
automatic, and the problem of allocation and freeing
memory for the dynamic objects has to be solved by
the programmer. It is important to do this task right,
particularly in the case of an algorithm which executes
a thousand times or more.

B..The program

As it was mentioned above the method was
implemented in LabView, so the program looks like a
flowchart of functions and operations. In this
particular case the program contains a few blocks
which perform the operations. The structure of the
LabView program can be seen below in Fig. 4. The
diagram can be separated to three main parts: the
quantization algorithm (quant), the conversion from
the inner representation of partitions to image (b>pix),
and the calculation of the derivatives (the two for
loops).

Fig. 4. The program to create the impulse representation

IV. THE TEST

A. Accuracy and noise

Now the implementation of the fast convolution
method is done. The next task is to test its efficiency,
and the application for this purpose is pattern
recognition, which is a technique to find i.e. a small
part of image in the whole. The most basic way of
finding a pattern in an image is to correlate the image
with the pattern. The correlation in two dimensions is
described as follows:

() () (∑∑
−

=

−

=

++⋅=
1

0

1

0
,,,

M

i

N

j
njmifjihnmg) (5)

Taking a closer look at this equation, and comparing it
to (1), there can be seen that they are very similar,
except the signs in function f(,). So convolution
could be used to perform correlation if the pattern had
been prepared properly. This preparation in this case
means that the pattern has to be mirrored to both axes.

The result of the correlation is a function which
shows the location of the pattern on the image. In
ideal cases, the resulting function will contain a small
amount of noise and one well defined maximum
indicating the location of the pattern. If the result
looks like noise it means that the pattern has not been
found. The next three figures show the result of
correlating a pattern with an image. Each of them was
created by correlating a 256x256x8 image by a
30x30x8 pattern. The first one (Fig. 5.) shows the
result of traditional correlation, here a well defined
spike and an acceptable amount of noise can be seen.
The second one (Fig. 6.) shows the correlation
performed by the fast convolution method
implemented. It can be noticed that there is a
measurably larger amount of noise in this function,
but the maximum is defined well enough yet. On the
last figure (Fig. 7.) it can be seen what happens when
threshold is too high. On each figures dark color
indicates the high, and light indicates the low values
of the function.

Fig. 5. Correlation by traditional convolution

Fig. 6. Correlation by fast convolution K=1000

Fig. 7. Correlation by fast convolution K=8000

It can be seen that the threshold constant has a
great impact on the result, because too large threshold
can increase the amount of noise (error) to a level,
where the pattern could not be recognized. The value
of acceptable threshold depends on the size of the
pattern, and the content of the pattern and the image.

B. Execution time

It has been shown that the method works, and
with a proper selection of the threshold the results of
the fast method are exactly the same as the traditional
one. But there is one more question to answer: How
fast is it? How much faster is it than the original
method?

The answers to these questions can be obtained
through a few speed tests. The tests have been made in
the following hardware and software environment.
Hardware configuration:

- CPU: AMD Barthon 2500+
- Memory: 512MB, 266MHz
- Motherboard: ASUS A7N8X

Software configuration:
- National Instruments LabView 7
- Microsoft Visual Studio 6.0

Execution times of the algorithms were provided by
the profiler of the LabView environment.

The following figures are “Execution time vs.
pattern size” diagrams, which were created by
correlating a 256x256x8 image by different sized
patterns. It can be seen the newly implemented
algorithm is much faster than the original one. On
each diagram the solid colored columns shows the
time statistics of the fast method and the diagonally
striped ones correspond to the traditional one. In the
first case (Fig. 8.) the threshold constant was set to
K=1000, on next figure (Fig. 9.) it was adjusted to a
high, but acceptable level for the various size of
patterns.

Ex
ec

ut
io

n
tim

e
[m

s]

15x15 20x20 25x25 30x30 35x35 40x40 50x50

Pattern size [pixel]

0

500

1000

1500

2000

2500

3000

3500

0

500

1000

1500

2000

2500

3000

3500

Fig. 8. Execution time vs. pattern size, K=1000

Ex
ec

ut
io

n
tim

e
[m

s]

15x15 20x20 25x25 30x30 35x35 40x40 50x50

Pattern size [pixel]

Fig. 9. Execution time vs. pattern size, threshold adjusted

Noticing the difference between Fig.8. and
Fig.9. leaves no doubt about the importance of
adjusting the threshold constant for any particular
applications. It can be seen that the fast algorithm is
fast enough without adjusting the threshold level, but
in most cases (it depends on the pattern and the image)
a higher level of threshold can be found, which can
make the overall process approximately two times
faster. Finding the highest possible threshold value to
work with is an important part of using this method
effectively. At first glance it seems that the threshold
value can be determined only by experiments, because
the level of the highest acceptable threshold highly
depends on the pattern and the image itself. It can be a
challenge to get the highest possible value of threshold
automatically, but as it can be seen from the following
comparison the threshold value adjustment is not so
important in the case of small patterns.

The next figure shows a speed comparison
between the fast and the traditional algorithm. The
graph indicates a “Speed ratio vs. pattern size”. The
upper line signed with boxes corresponds to the
condition when the threshold was adjusted; the lower
line corresponds to the constant threshold (K=1000).
The threshold values of the second case (when
threshold was adjusted according to the size of the
pattern) can be found in Table 1.

0
1
2
3
4
5
6
7
8
9

15x15 20x20 25x25 30x30 35x35 40x40 50x50

Pattern size [pixel]

Sp
ee

d
ra

tio

Fig. 10. Speed ratio vs. pattern size

TABLE.I:
THRESHOLD VALUES TO PATTERN SIZES

Pattern size 15x15 20x20 25x25 30x30
Threshold 1000 4500 6000 6500
Pattern size 35x35 40x40 50x50 -
Threshold 6500 5500 7000 -

V. CONCLUSION

It has been shown that the fast “Boxlet” method

is significantly faster than traditional convolution in
pattern recognition applications. The overall

performance of the fast method is approximately 3
times better, but by adjusting the threshold properly
we can achieve nearly 8 times faster execution. In
Fig.10. it can be seen that the advantage from
adjusting the threshold level diminishes at small
pattern sizes. The main reason behind this
phenomenon is that partitioning the image will distort
the features of it, and the smaller the pattern size, the
greater the impact this distortion has on the result.

ACKNOWLEDGMENT

The author would like to thank Amalia Ivanyi
for her useful hints and the Department of Information
Technology for the support and resources.

REFERENCES

[1] Patrice Y. Simard, Léon Bottou, Patrick Haffner, Yann

LeCun, „Boxlets: a Fast Convolution Algorithm for Signal
Processing and Neural Networks”, [Online],
http://research.microsoft.com/~patrice/PDF/boxlet.pdf

[2] National Instruments, Using External Code in LabView, 2003
[3] Stephen W. Smith, The Scientist and Engineers

Guide to Digital Signal Processing, California Technical
Publishing, 1997

[4] Rafael C. Gonzalez, Richard E. Woods, Digital Image
Processing, Prentice Hall, 2002

