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Abstract- A novel hybrid approach involving Particle 
Swarm Optimization (PSO) and Bacterial Foraging 
Optimization Algorithm (BFOA) called Bacterial Swarm 
Optimization (BSO) is illustrated for designing Power 
System Stabilizers (PSSs) in a multimachine power system. 
In BSO, the search directions of tumble behaviour for each 
bacterium are oriented by the individual’s best location 
and the global best location of PSO. The proposed hybrid 
algorithm has been extensively compared with the original 
BFOA algorithm and the PSO algorithm. Simulations 
results have shown the validity of the proposed BSO in 
tuning PSSs compared with BFOA and PSO.  Moreover, 
the results are presented to demonstrate the effectiveness 
of the proposed controller to improve the power system 
stability over a wide range of loading conditions. 

Key-Words: - PSSs; Multimachine Power System; 
Particle Swarm Optimization; Bacteria Foraging. 

 
1. Introduction 

Low frequency oscillations are observed when large 
power systems are interconnected by weak tie lines. 
These oscillations may sustain and grow, causing 
system separation if no adequate damping is available. 
Moreover, low frequency oscillations present limitations 
on the power transfer capability [1]. Power system 
stabilizers (PSSs) are now routinely used in the industry 
to damp out oscillations. An appropriate selection of 
PSS parameters results in satisfactory performance 
during system disturbances [2]. 

The problem of PSS parameter tuning is a complex 
exercise. A number of conventional techniques have 
been reported in the literature pertaining to design 
problems of conventional PSSs namely: the eigenvalue 
assignment, mathematical programming, gradient 
procedure for optimization and also the modern control 
theory [3]. Unfortunately, the conventional techniques 
are time consuming as they are iterative and require 
heavy computation burden and slow convergence. In 
addition, the search process is susceptible to be trapped 
in local minima and the solution obtained may not be 
optimal [4]. The power system stability enhancement 
via PSS and a thyristor controlled series capacitor 
(TCSC) based stabilizer when applied independently 
and also through coordinated application is discussed 
and investigated in [5]. An augmented fuzzy logic PSS 
for stability enhancement of power system is presented 

in [6]. The design of robust PSS which place the system 
poles in an acceptable region in the complex plane for a 
given set of operating and system conditions is 
introduced in [7]. A novel evolutionary algorithm based 
approach to optimal design of multimachine PSSs is 
developed in [8]. This approach employs a particle 
swarm optimization (PSO) technique to search for 
optimal settings of PSS parameters. Optimal multi-
objective design of robust multimachine PSSs using 
genetic algorithm (GA) is addressed in [9]. PSSs design 
using the rule based bacteria foraging (RBBF) 
optimization techniques is investigated in [10]. A 
comprehensive assessment of the effects of PSS based 
damping controller is carried out in [11]. The design 
problem of the controller is transformed into an 
optimization problem. PSO based optimal tuning 
algorithm is used to optimally tune the parameters of the 
PSS. Optimal locations and design of robust 
multimachine PSSs using GA is presented in [12]. The 
optimal parameters of dual input conventional PSS is 
obtained in [13] using pole placement and GA 
technique.  The problem of tuning and location of the 
minimum numbers of PSSs using the cross entropy 
approach is dicussed in [14]. The possibility of using a 
linearized power system model to evaluate the stability 
and estimate the attraction area of the system in a 
particular operating condition is investigated in [15]. 
Multi-objective design of multimachine PSSs using 
PSO is introduced in [16]. A new robust control strategy 
to synthesis of robust proportional-integral-derivative 
(PID) based PSS is addressed in [17]. The design of a 
simple, yet robust controller for power system 
stabilization, using Kharitonov’s stability theory is 
employed in [18]. A novel algorithm for simultaneous 
coordinated designing of PSSs and TCSC in a 
multimachine power system is discussed in [19]. 

GA has attracted the attention in the field of 
controller parameter optimization. However, GA is very 
satisfactory in finding global or near global optimal 
result of the problem; it needs a very long run time that 
may be several minutes or even several hours depending 
on the size of the system under study. Moreover 
swarming strategies in bird flocking and fish schooling 
are used in the PSO and introduced in [20]. However, 
PSO suffers from the partial optimism, which causes the 
less exact at the regulation of its speed and the direction. 



Also, the algorithm cannot work out the problems of 
scattering and optimization [21-22]. In addition, the 
algorithm pains from slow convergence in refined 
search stage, weak local search ability and algorithm 
may lead to possible entrapment in local minimum 
solutions. A relatively newer evolutionary computation 
algorithm, called Bacteria Foraging (BF) scheme has 
been proposed by [23-26]. The BF algorithm depends 
on random search directions which may lead to delay in 
reaching the global solution.  A new algorithm BF 
oriented by PSO is proposed that combine the above 
mentioned optimization algorithms [27-28]. This 
combination aims to make use of PSO ability to 
exchange social information and BF ability in finding a 
new solution by elimination and dispersal. This new 
hybrid algorithm called Bacterial Swarm Optimization 
(BSO) is adopted in this paper to solve the above 
mentioned problems and drawbacks. 

This paper proposes a new optimization algorithm 
known as BSO for optimal designing of the PSSs 
controller in a multimachine power system. The 
performance of BSO has been compared with these of 
PSO and BFOA in tuning the PSSs controller 
parameters. The design problem of the proposed 
controller is formulated as an optimization problem and 
BSO is employed to search for optimal controller 
parameters. An eigenvalue based objective function 
reflecting the combination of damping factor and 
damping ratio is optimized for different operating 
conditions. Simulations results assure the effectiveness 
of the proposed controller in providing good damping 
characteristic to system oscillations over a wide range of 
loading conditions. Also, these results validate the 
superiority of the proposed method in tuning controller 
compared with BFOA and PSO. 
 
2. Problem Statement 
2.1 Power System Model  

A power system can be modelled by a set of 
nonlinear differential equations are:  

),( UXfX                                                             (1) 
Where X   is the vector of the state variables and U  

is the vector of input variables. In this study 
T fV fdE qE  X ],,,,[   and U  is the PSS output 

signal. Here,   and   are the rotor angle and speed, 
respectively. Also,

 qE  , fdE  and fV 
 
are the internal, 

the field, and excitation voltages respectively.   
In the design of PSS, the linearized incremental 

models around an equilibrium point are usually 
employed. Therefore, the state equation of a power 
system with n  machines and m PSSs can be written as: 

BuAXX                                                            (2)  

Where A  is a
 

nn 55   matrix and equals Xf  /  

while B  is a mn5  matrix and equals Uf  / . Both A  
and B  are evaluated at a certain operating point.

 
X  is a

 15 n  state vector and
 
U  is a 1m  input vector. 

 
2.2 Structure of PSS 

The operating function of a PSS is to produce a 
proper torque on the rotor of the machine involved in 
such a way that the phase lag between the exciter input 
and the machine electrical torque is compensated. The 
supplementary stabilizing signal considered is one 
proportional to speed. A widely speed based used 
conventional PSS is considered throughout the study 
[2]. The transfer function of the  thi PSS is given by:   
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(3)  

Where i   is the deviation in speed from the 
synchronous speed. This type of stabilizer consists of a 
washout filter, a dynamic compensator. The output 
signal is fed as a supplementary input signal, iU  to the 
regulator of the excitation system. The washout filter, 
which essentially is a high pass filter, is used to reset the 
steady state offset in the output of the PSS. The value of 
the time constant  WT is usually not critical and it can 
range from 0.5 to 20 second. The dynamic compensator 
is made up to two lead lag circuits, limiters and an 
additional gain. The adjustable PSS parameters are the 
gain of the PSS, iK  and the time constants, iT1 – iT4 . 
The lead lag block present in the system provides phase 
lead compensation for the phase lag that is introduced in 
the circuit between the exciter input and the electrical 
torque. 

 
2.3 System under Study 

Fig. 1 shows the single line diagram of the test 
system used. Details of system data are given in [29]. 
The participation matrix can be used in mode 
identification. Table (1) shows the eigenvalues, and 
frequencies associated with the rotor oscillation modes 
of the system. Examining Table (1) indicates that the 
0.2371 Hz mode is the interarea mode with G1 swinging 
against G2 and G3. The 1.2955 Hz mode is the 
intermachine oscillation local to G2. Also, the 1.8493 
Hz mode is the intermachine mode local to G3. The 
positive real part of eigenvalue of G1 indicates system 
instability. The system and generator loading levels are 
given in Table (2).  

 
 



 
 
 
 
 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

3. Objective Function 
 To maintain stability and provide greater damping, the 
parameters of the PSSs may be selected to minimize the 
following objective function: 
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This will place the system closed loop eigenvalues in 
the D-shape sector characterized by 0 ij    and 

0 ij    as shown in Fig. 2. 

 Where, np is the number of operating points 
considered in the design process,   and  are the real 
part and the damping ratio of the eigenvalue of the 
operating point. In this study, 0 and 0   are chosen to 
be -0.5 and 0.1 respectively [9]. To reduce the 
computational burden in this study, the value of the 
wash out time constant  WT is fixed to 10 second, the 

values of iT2  and iT4  are kept constant at a reasonable 

value of 0.05 second and tuning of iT1  and iT3  are 
undertaken to achieve the net phase lead required by the 
system. Typical ranges of the optimized parameters are 
[1- 100] for K and [0.06-1.0] for iT1  and iT3 . Based on 

the objective function tJ optimization problem can be 

stated as: Minimize tJ  subjected to: 

max
i K i K min

iK 
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3i T 3i T min

3iT                                                (5) 
 
 

 
 
 
 
 
 
 

 
 
 
4. The Bacterial Swarm Optimization 
Algorithm 

PSO is a stochastic optimization technique that 
draws inspiration from the behaviour of a flock of birds 
or the collective intelligence of a group of social insects 
with limited individual capabilities. In PSO a population 

of particles is initialized with random positions 


iX  and 

velocities


iV , and a fitness function using the particle’s 
positional coordinates as input values. Positions and 
velocities are adjusted, and the function is evaluated 
with the new coordinates at each time step. The velocity 
and position update equations for the d-th dimension of 
the i-th particle in the swarm may be given as follows: 

))(.(2.2))(.(1.1)(.)1( tidXgdPCtidXlidVCtidVtidV  
  (6)

 )1()()1(  tidVtidXtidX                                  (7) 

On the other hand, the BF is based upon search and 
optimal foraging decision making capabilities of the 
Escherichia coli bacteria [27]. The coordinates of a 
bacterium here represent an individual solution of the 
optimization problem. Such a set of trial solutions 
converges towards the optimal solution following the 
foraging group dynamics of the bacteria population. 
Chemotactic movement is continued until a bacterium 
goes in the direction of positive nutrient gradient. After 

Table (2) Loading of the system (in p.u) 
 Light  Normal case Heavy  

Generator 
 G1 
G2 
G3 

P                Q 
0.965      0.22 
1.0      -0.193 
0.45    -0.267 

P                 Q 
1.716   0.6205 
1.63     0.0665 
0.85      -.1086 

P               Q 
3.57      1.81 
2.2      0.713 
1.35     0.43 

Load 
A 
B 
C 

P                Q 
0.7          0.35 
0.5            0.3 
0.6            0.2 

P                  Q 
1.25           0.5 
0.9             0.3 
1.00         0.35 

P               Q 
2.0         0.9 
1.8         0.6 
1.6        0.65 

at G1 0.6            0.2 1.00         0.35 1.6        0.65 
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Fig.  1. System under study. 

Fig. 2. A D-shape sector in the s-plane.  
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Generator Eigenvalues Frequencies Damping ratio 

G1 
G2 
G3 

+0.15  1.49j 
-0.35  8.14j 
-0.67  11.62j 

0.2371 
1.2295 
1.8493 

-0.1002 
0.0430 
0.0576 

 

Table (1) The eigenvalues, and frequencies of 
 the rotor  oscillation modes of the system. 



a certain number of complete swims the best half of the 
population undergoes reproduction, eliminating the rest 
of the population. In order to escape local optima, an 
elimination dispersion event is carried out where, some 
bacteria are liquidated at random with a very small 
probability and the new replacements are initialized at 
random locations of the search space. A detailed 
description of the complete algorithm can be traced in 
[27-28]. 
[Step 1] Initialize parameters 

,n S ,CN ,reN ,edN ,edP .),,,.........2,1)(( iNiiC   
Where, 
 :n  Dimension of the search space, 

:S  The number of bacteria in population, 
:CN  The number of chemotactic steps, 

:reN  The number of reproduction steps, 

:edN  The number of elimination-dispersal events 
to be imposed over the bacteria, 

:edP  The probability with which the elimination 
and dispersal will continue, 

:)(iC  The size of the step taken in the random 
direction specified by the tumble, 

:  The inertia weight, 
:1C  The swarm confidence, 

:),,( kji

  Position vector of the i-th bacterium, in 

j-th chemotactic step and k-th reproduction, 

:


iV  Velocity vector of the i-th bacterium.   
[Step 2] Update the following  

:),,( kjiJ  Cost or fitness value of the i-th 
bacterium in the jth chemotaxis, and the k-th 
reproduction loop. 

:_ bestg

 Position vector of the best position 

found by all bacteria. 
:),,( kjibestJ  Fitness value of the best position 

found so far. 
[Step 3] Reproduction loop: 1 kk   
[Step 4] Chemotaxis loop: 1 jj  

[Sub step a]  For i=1, 2,…, S, take a chemotaxis 
step for bacterium i as follows.  
[Sub step b]  Compute fitness function, ),,( kjiJ . 
[Sub step c]  Let ),,( kjiJlastJ   to save this 
value since one may find a better cost via a run.  
[Sub step d]  Tumble: generate a random vector 

nRi  )( with each element 
p,.,1,2,......m im  ),( a random number on 1] 1,[ .  

[Sub step e]  Move: 

Let
)()(

)()(),,(),1,(
iiT

iiCkjikji



  . 

[Sub step f] Compute ),1,( kjiJ  .  
[Sub step g] Swim: one considers only the i-th 
bacterium is swimming while the others are not 
moving then  
i) Let 0m (counter for swim length). 
ii) While SNm   (have not climbed down too 

long) 
 Let 1 mm  
 If lastJkjiJ  ),1,( (if doing 

better), 
 Let ),1,( kjiJlastJ  and let  

)()(

)(
)(),,(),1,(

iiT
i

iCkjikji



   and 

use this ),1,( kji  to compute the new 
),1,( kjiJ   as shown in new [sub step f] 

 Else, let SNm  . This is the end of 
the while statement. 

[Step 5] Mutation with PSO operator 
For i=1, 2,……,S 

 Update the bestg _

   and ),,( kjibestJ   

 Update the position and velocity of the d-th 
coordinate of the i-th bacterium according to 
the following rule: 









 ),1,(_.1.1 kjiold

ddbestgCnew
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new
idVkjiold

dkjinew
d  ),1,(),1,(   

[Step 6] Let 2/_ SrS 
 The rS _

 
bacteria with highest cost function 

)(J values die and other half
 
bacteria population 

with the best values split (and the copies that are 
made are placed at the same location as their 
parent). 

[Step 7] If reNk  , go to [step 1]. One has not reached 
the number of specified reproduction steps, so one starts 
the next generation in the chemotaxis loop. 

The detailed mathematical derivations as well as 
theoretical aspect of this new concept are presented in 
[27-28]. 

 
5. Results and Simulations 

In this section, the superiority of the proposed BSO 
algorithm in designing PSS (BSOPSS) in compare to 
optimized PSS with BFOA (BFPSS) and optimized PSS 



controller based on PSO (PSOPSS) is illustrated. Fig. 3. 
shows the variations of objective function with various 
optimization techniques. The objective functions 
decrease monotonically over generations of BFOA, 
PSO and BSO. The final value of the objective function 
is tJ =0 for all algorithms, indicating that all modes 
have been shifted to the specified D-shape sector in the 
S-plane and the proposed objective function is satisfied. 
Moreover, BSO converges at a faster rate (51 
generations) compared to that for PSO (64 generations) 
and BFOA (80 generations).  

 Table (3), shows the system eigenvalues, and 
damping ratio of mechanical mode with three different 
loading conditions. It is clear that the BSOPSS shift 
substantially the electromechanical mode eigenvalues to 
the left of the S-plane and the values of the damping 
factors with the proposed BSOPSS are significantly 
improved to be ( =-0.95,-0.94,-1.05) for light, normal, 
and heavy loading respectively. Also, the damping 
ratios corresponding to BSOPSS controllers are almost 
greater than that corresponding to PSOPSS and BFPSS. 
Hence, compared to BFPSS and PSOPSS, BSOPSS 
greatly enhances the system stability and improves the 
damping characteristics of electromechanical modes. 
Results of PSSs parameters set values based on the 
proposed objective function using BFOA, PSO and 
BSO are given in Table (4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
5.1 Response for light load condition:  

The effectiveness of the performance due to 0.1 
step increase in reference voltage of generator 1 is 
verified. Figs. 4-5, show the response of 12 ,

 
and 

13 due to this disturbance for light loading condition. 
From these figures, it can be seen that the BSOPSS 
using the proposed objective function achieves good 
robust performance, and provides superior damping in 
comparison with the other controllers. Moreover, the 
required mean time to suppress these oscillations is 
approximately 2.1 second with BSOPSS, 2.5 second for 
PSOPSS, and 2.8 second with BFPSS so the designed 
controller is capable of providing sufficient damping to 
the system oscillatory modes.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table (4) Parameters of PSSs for different techniques. 
 BFOA PSO BSO 

PSS1 K=36.3696 

1T =0.2365 

3T =0.2495 

K=26.6544 

1T =0.4684 

3T =0.7428 

K=38.6585 

1T =0.4153 

3T =0.6455 
PSS2 K=7.8812 

1T =0.4986 

3T =0.1921 

K=14.3287 

1T =0.2918 

3T =0.1149 

K=6.4051 

1T =0.3776 

3T =0.9840 
PSS3 K=3.5031 

1T =0.5031 

3T =0.3789 

K=9.2317 

1T =0.4356 

3T =0.3955 

K=2.2337 

1T =0.2027 

3T =0.9160 
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Fig. 3. Variations of objective function. 
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Fig. 4. Change in 12  for light load. 

Table (3) Mechanical modes and   under different 
 loading conditions and controllers.  

 BFPSS PSOPSS BSOPSS 
Light 
load 

 

-3.46  7.27j,0.43 
-2.77  5.99j,0.42 
-0.90  0.71j,0.78 

-3.53  7.37j,0.43 
-6.36  7.07j,0.67 
-0.92  0.67j,0.81 

-3.6  6.01j,0.51 
-6.29  6.70j,0.68 
-0.95  0.63j,0.83 

Normal 
load 

-2.97  6.21j,0.43 
-3.87  6.45j,0.51 
-0.73  0.85j,0.65 

-3.95  8.07j,0.44 
-7.23  7.50j,0.69 
-0.74  0.83j,0.66 

-4.17  8.16j,0.45 
-6.83  7.00j,0.7 

-0.94  0.84j, 0.75 
Heavy 
load 

-3.66  6.73j,0.48 
-2.75  5.67j,0.44 
-1.02  0.85j,0.77 

-4.5  7.75j,0.50 
-7.9  6.67j,0.77 
-1.03  0.86j,0.77 

-4.59  7.76j,0.50 
-7.96  5.56j,0.81 
-1.05  0.85j,0.78 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2 Response for normal load condition:  

Figs. 6-7, show the response of the system due to 
the same disturbance for normal loading condition. 
These figures indicate the capability of the BSOPSS in 
reducing the settling time and damping power system 
oscillations. Moreover, the mean settling time of these 
oscillations is

 sT =1.1, 1.29, and 2.23 second for 
BSOPSS, PSOPSS, and BFPSS respectively. In 
addition, the proposed BSOPSS outperforms and 
outlasts PSOPSS and BFPSS controller in damping 
oscillations effectively and reducing settling time. 
Hence, BSOPSS controller greatly enhances the system 
stability and improves the damping characteristics of 
power system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
5.3 Response for heavy load condition:  

Figs. 8-9, show the system response at heavy 
loading condition with fixing the controller parameters. 
From these figures, it can be seen that the response with 
the proposed BSOPSS shows good damping 
characteristics to low frequency oscillations and the 
system is more quickly stabilized than PSOPSS and 
BFPSS. The mean settling time of oscillation is

 sT  =1, 
1.42, and 1.96 second for BSOPSS, PSOPSS, and 
BFPSS respectively. Hence, the proposed BSOPSS 
extend the power system stability limit. 
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Fig. 8. Change in 12 for heavy load. 

Fig. 6. Change in 12 for normal load. 
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Fig. 7. Change in 13 for normal load. 
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Fig. 5. Change in 13  for light load. 



 

 

 

 

 

 

 

 

 

 
 
5.4 Response for severe disturbance:  

The effectiveness of the proposed BSOPSS is 
verified by applying a three phase fault of 6 cycle 
duration at 1.0 second near bus 7. Figs. 10-11, show the 
response of 12  and 13 due to severe disturbance 
for normal loading condition. From these figures, it is 
can be seen that the BSO based PSSs using the proposed 
objective function achieves good robust performance 
and provides superior damping in comparison with the 
other methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
5.5 Robustness and performance index:  

To demonstrate the robustness of the proposed 
controller, a performance index: the Integral of the Time 
multiplied Absolute value of the Error (ITAE) is being 
used as: 

ITAE =   







30

0
132312 dtwwwt                      (8) 

It is worth mentioning that the lower the value of 
this index is, the better the system response in terms of 
time domain characteristics. Numerical results of 
performance robustness for all cases are listed in Table 
(5). It can be seen that the values of these system 
performance with the BSOPSS are smaller compared to 
that of PSOPSS and BFPSS. This demonstrates that the 
overshoot, undershoot, settling time and speed 
deviations of all units are greatly reduced by applying 
the proposed BSO based tuned PSSs. 
 
 
 
 
 
 
 
 
 
 
6. Conclusions 
This paper proposes a new optimization algorithm 
known as BSO, which synergistically couples the 
BFOA with the PSO for optimal designing of PSSs 
controller. The design problem of the proposed 
controller is formulated as an optimization problem and 
BSO is employed to search for optimal controller 
parameters. An eigenvalue based objective function 

Table (5) Values of performance index. 
ITAE * 10-4  

BFPSS PSOPSS BSOPSS 
Light load 1.1240 0.9845 0.5831 

Normal load 1.5176 1.1483 0.7715 
Heavy load 2.2662 1.5067 1.3347 

Fig. 10. Change in 12 for severe disturbance. 
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Fig. 11. Change in 13 for severe disturbance. 
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Fig. 9. Change 23 for heavy load. 



reflecting the combination of damping factor and 
damping ratio is optimized for different operating 
conditions. Simulations results assure the effectiveness 
of the proposed controller in providing good damping 
characteristic to system oscillations over a wide range of 
loading conditions. Also, these results confirm the 
superiority of the proposed method in tuning controller 
compared with PSO and BFOA over wide range of 
operating conditions.  
Validation of the present approach to large scale power 
system using model reduction technique isn’t the 
situation in this paper, and it will be carried out in 
another one. 
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Appendix 
The system data are as shown below: 
a) Excitation system: 400;AK 

 
second; 0.05AT  

 0.025;fK 
   

.second 1fT 
 b) Bacteria parameters: Number of bacteria =10; number of 

chemotatic steps =10; number of elimination and dispersal events 
= 2; number of reproduction steps = 4; probability of elimination 
and dispersal = 0.25. 

c) PSO parameters:  
1

C =
2

C =2.0,  =0.9. 


