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Abstract: Evaluation of pull-in voltage is significant for the
design of electrostatically actuated MEMS devices. This
paper presents simple closed form models for fast and
accurate computation of pull-in voltage of electrostatically
actuated cantilever beams. These models are obtained
based on five different capacitance models suitable for wide
range of dimensions. Using these models pull-in voltages
are computed for different range of dimensions and the
results are compared with the experimentally verified 3D
finite element analysis results.  The results show that, for
every given range of dimension, choice of the model
changes for the evaluation of the pull-in voltage with a
maximum deviation of ±2%.   Therefore for a given range of
dimension appropriate closed form model is to be chosen
for accurate computation of pull-in voltage.

Keywords: Capacitance models, cantilever beams,
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1. Introduction
Micro Electro Mechanical Systems (MEMS)

capacitive type transducers are used to sense external
mechanical excitation such as force, acoustical
pressure, acceleration, as a change in capacitance. It
requires electrical energy and this energy can be
applied as a constant voltage (or) constant charge
[1].The voltage controlled parallel plate electrostatic
actuator exhibits an important behavior called pull-in.
Pull-in voltage is one of the basic parameters of the
design of many electrostatic MEMS devices. Accurate
evaluation of the pull-in voltages is essential in the
design of electrostatically actuated MEMS devices. In
particular, in micromirrors, the designer avoids this
instability in order to achieve stable motions. But in
switching applications, the designer exploits this effect
to optimize the performance of the device [3]. The
pull-in problem of beams cannot be solved
analytically and numerical techniques using Finite

Element Analysis (FEA) are computationally
expensive as they are time consuming. Closed form
expressions are very useful for designers as they
provide some basic information regarding pull-in
voltage. Many attempts have been made by several
authors [10-19] to derive a closed form expression for
the pull-in voltage. Chowdhry et al [10] has derived
closed form model for pull-in voltage calculation by
considering Meji’s and Fokkema’s capacitance
formula [5] as better capacitance model [2]. Here the
investigations were done for selective dimensions of
cantilever beam. But further investigation for wide
range of dimension of cantilever beam shows that the
closed form model used in paper [10] alone is not
sufficient. Different capacitance models are
available in literature [4-9] Chang’s model [4] is
very accurate [2]. But Chang’s model is
computationally expensive. Therefore this paper takes
into consideration of all other capacitance models
available in literature [5-9]. Based on these models
pull-in voltage of cantilever beam is computed for
wide range of dimensions. Moreover the suitability of
each model for the calculation of pull-in voltage has
also been investigated in the present paper. A detailed
comparative analysis is done, by comparing the pull-in
voltages obtained from the closed form models with
CoventorWare FEA model results. The results show
that, for a given range of dimension one particular
model suits better for the evaluation of the pull-in
voltage of cantilever beam with a maximum deviation
of ±2% as compared with the experimentally verified
FEA results.

2. Cantilever Beam Pull-In Voltage Model
The lumped parameter model of the actuator is

shown in Figure 1. The actuator is assumed to be in a
vacuum environment to ensure zero external
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mechanical loading of the top electrode. It is also
assumed that the movable plate’s elastic restoring
force (spring force) is linear. Neglecting any damping
within the system, the equation of motion of the
movable plate due to an electrostatic force FE can be
expressed as,
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The electrostatic attraction force of the plate can be
found by differentiating the stored energy of the
capacitor with respect to the position of the movable
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and the spring force (elastic restoring force) is
represented as

  (4)MF kz=

where MF = Mechanical elastic restoring

force
k – spring constant

  z - displacement
At static equilibrium M EF F=

If electrostatic force is increased by increasing the
applied voltage and if that force is greater than the
elastic restoring force, the equilibrium is lost and the
movable plate will collapse on the fixed ground plate.
This phenomenon is known as pull-in.
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simplifying eqn (5d) , eqn (5e) is obtained
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Figure 2. The basic electrostatic actuator - Lumped
parameter model of parallel plate electrostatic
actuator
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0z  is obtained by solving eqn (5e),
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substituting the z   eqn (5) and simplifying, eqn (6) can be arrived.
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The spring constant of the movable plate is solved
from equation (6) as
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If the applied voltage is increased beyond the pull-in
voltage, the resulting electrostatic force will overcome
the elastic restoring force and will cause the movable
plate collapse on the fixed ground plane and the
capacitor will be short circuited.  By expanding
equation (3) using a Taylor series approximation about
a distance z0 as outlined in paper [12], equation (8)
can be arrived
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After simplification and rearrangement of the terms in

equation (8), equation (9) has been arrived.
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By substituting FE from equation (9) into equation

(1), equation (10) is arrived.
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From equation (11) it is evident that the electrostatic
attraction force effectively modifies the spring
constant of the movable plate and the term within the
parenthesis on the left-hand side of equation (11)
represents the effective spring constant at a specific
voltage.  The amount of modification is termed as the
spring softening and can be expressed as
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For parallel plate geometries, the nonlinear
electrostatic force is always uniform.  But for
cantilever beam geometry (figure 2(a)), the
electrostatic force becomes increasingly non-uniform
as the beam deforms (figure 2(b)).  As a result, the tip
of the cantilever will experience a higher attractive
force comparing to the region closer to the fixed end.
Following [11], an expression for a uniform pressure
causing a cantilever tip deflection of z can be derived
as
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Where E is the plate modulus E / (1-ν2) for wide

beams (w≥5h).  For narrow beams (w <5h), E  simply
becomes the Young’s modulus E [11].  A uniform
linearised model of the electrostatic force can be
obtained from (11) and (12) by linearising the
electrostatic force about zero deflection point   (z0 = 0)
as shown in figure 3. Since before any deflection the
beam surface is assumed to be planar, the parallel-
plate approximation can easily be applied without
causing any significant error if airgap thickness (d0) is
very small compared to the lateral dimensions of the
beam.  Linearising (11) about the point z0=0,



Figure 2.    (a). A cantilever beam separated from a fixed ground plane by a dielectric spacer.
               (b). Deformation of the beam due to electrostatic force.
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Rearranging (14) and neglecting the time-dependent
term for a static case, the force equilibrium relation for
any displacement z can be obtained.  It is given in
equation (16).
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The right-hand side of (16) is equal to approximate,
uniform and linear electrostatic force (FE-linear-uniform)
and the left-hand side represent the elastic restoring
force. The effective linearised uniform electrostatic
pressure on the beam can be evaluated from (16) as
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Substituting softk  from (15) into (17) and replacing z

in (17) by the pull-in deflection z = 1/3d0, the pull-in
electrostatic pressure PPI-electrostatic can be evaluated as
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where VPI represents the pull-in voltage. In order
to compensate for the error that arises due to
neglecting higher order terms in Taylor series
expansion and error due to the linearization, a
Compensation Factor (cf) has been determined by
a trial and error method, while comparing the results
with CoventorWare-FEA model results. The

compensation factor is applied to equation (18).  Now
the compensated pull-in electrostatic pressure
PPI-electrostatic is expressed as
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By substituting the pull-in deflection, z = 1/3d0, into
equation (13), the elastic restoring pressure at pull-in
is obtained.
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Since at pull-in equilibrium, the electrostatic pressure
is just counterbalanced by the elastic restoring
pressure (PPI-electrostatic = PPI-elastic), equation (19) and
(20) can now be solved simultaneously to yield the
final closed-form expression for the pull-in voltage VPI

as
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Figure 3. Linearization of the electrostatic force about
the zero deflection point (z0=0)



3.Closed form models of pull-in voltage from
capacitance models

This section presents the closed form models of pull-
in voltage obtained from various models of
capacitances available in literature [5-9], using the
procedure explained in the above section. These
capacitance models are basically parallel plate models
with fringing fields. These capacitance models are
found to be suitable for wide range of dimensions of
parallel plate capacitors [2]. Based on these
capacitance models the closed form models of pull-in
voltage are derived and presented in 3(b). Further its
suitability for different range of dimensions is
extensively investigated in section 4.

A. Meji’s and Fokkema’s model (Model 1)
Meji and Fokkema [5] improved Sakurai’s model [8]
by extending the empirical expression.  The first term
describes the parallel-plate capacitor and the other
allows for all side effects:
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With reference to [2, 5], the maximum deviation from
Chang’s formula [4] is as 2 percent when w/d0 ≥ 1, 0.1
≤ h/d0 ≤ 4 and as 6 percent when w/d0 ≥ 0.3, h/ d0 ≤
10.

B. Yuan and Trick’s model (Model 2)
Yuan and Trick [6] presented simple analytic
approximation.  They replaced the rectangular line
profile with an ‘oval’ one.  The resulting capacitance
is given by
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With reference to [2, 6], a maximum error of 10
percent with respect to Chang’s formula [4] is stated.

C. Elmasry’s model (Model 3)
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The first term of (24) represents parallel plate
capacitance, second term represents capacitance
associated with the side walls, and the third term

represents capacitance associated with the top side of
the beam.

D. Sakurai and Tamaru’s model (Model 4)
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The first term of (25) represents the capacitance of the
top and side walls of the beam and the second term
represents side wall contribution.

E. Palmer’s model (Model 5)
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This model includes parallel plate capacitance and
includes fringing field capacitance due to the width of
the capacitance.  But it neglects the capacitance due to
the lateral surfaces.

3(a). Pull-in Voltage Models

Based on the above capacitance models the closed
form models of pull-in voltages are derived based on
the procedure outlined in paper [12], whose final form
is presented table 1. It is to be noted that the model 1
shown below has been already discussed in paper [10].
Here as explained before a compensation factor is
applied for every model whose value is same
irrespective of change in dimensions.

3(b). FEA Based Computation of Pull-in Voltage
The cantilever beam is modeled and analyzed for

wide range of dimensions using Finite Element
Analysis (FEA) based software platform
CoventorWare.  Meshing is done based on mesh
convergence study.  Cosolve (coupled analysis of
MemMech and MemElectro) is one of the solvers of
CoventorWare that is used to detect the pull-in
voltage. The FEA model used in this study is shown
figure 4.

4.Model validation
Pull-in voltages of cantilever beam have been

computed using the models in section 3 over wide
range of dimensions. The specific ranges used for the
calculation of pull-in voltage are based on the paper
[2].



Table 1. Pull-in voltage formulas based on various models.
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Here the values of do are selected as very low to suit
the parallel plate approximation as considered in the
derivation of closed form models. The pull-in voltage
for different ranges is computed and presented from
Table 1 through Table 4. The values of pull-in voltage
are validated using Cosolve FEA results; where in
Cosolve FEA results have been already verified with
the experimental results [6, 10].  It was reported that
the difference of the experimentally measured values
and Cosolve FEA results as 0.83%.  Therefore the
authors of paper [10] have used Cosolve FEA results
as a bench mark.  Though it is claimed that the
accuracy of pull-in voltage obtained from FEA based
models are best compared with closed form models [2,
10], the former is time consuming compared to the
later.

Here it is to be noted that for each closed form
model the compensation factor applied is unique
across all dimensions and it has taken care of the
reduction of error substantially. If the closed form
model’s error within ±2% is considered as less error
[10], then that model can be considered as a better
model. The better suited model amongst them is in
bold form as shown in Table 1 through 4.

Figure 4. FEA simulation model in CoventorWare

Table.2 Pull-in voltage and %Error comparison for w/d0 ≤ 2

Common parameters: h = 1.3µm, d0 = 0.75 µm,
Poisson’s ratio v = 0.06, Young’s modulus E=169GPa,
l=100 µm.

w/d0 0.667 1.2 1.333 2
VPI, 1 5.2554 6.0076 6.1286 6.5473

%Error 0.4856 1.4185 0.6871 0.1937
VPI, 2 5.1518 5.9663 6.0977 6.5512

%Error 1.4955 2.0957 1.1872 0.1339
VPI, 3 5.1956 5.8984 6.0132 6.4249

%Error 0.6568 3.2098 2.5568 2.0597
VPI, 4 5.3769 5.9885 6.0806 6.3840

%Error 2.808 1.7308 1.4648 2.6774
VPI, 5 5.4816 6.1 6.1930 6.4996

%Error 4.8103 0.0985 0.3559 0.9206
Cosolve

FEA
5.23 6.094 6.171 6.56

Table 2 shows the Pull-in voltage and its %Error for
w/d0 ≤ 2.  In this range VPI, 1 ’s error is within 2%.
Therefore for the range of w/d0 ≤ 2, VPI, 1 is a better
suited model.

Table 3. Pull-in voltage and %Error comparison for w/d0≥
10

Common parameters h = 1.3µm, d0 = 0.75 µm,
Poisson’s ratio v = 0.06, Young’s modulus E=169GPa,
l=100 µm.
w/d0 10 15 28 30 40 50

VPI, 1
7.515

5
7.612

5
7.7
358
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5

%Er
ror

8.332
1

9.663
10.
024

9

9.662
1

10.12
14

10.40
70

VPI, 2
7.562

4
7.667

8
7.7
697

7.777
8

7.806 7.823
1

%Er
ror

9.007
1

10.27
78

10.
506

9

10.12
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73
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93
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2
8.090

2
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180

8.561
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8.733 8.855
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13.38
81

17.53
57

21.
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22.45
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21

26.65
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2.747
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6.94 6.95

7.0
31

7.06 7.06 7.06

Table 3 shows the pull-in voltage and the %Error for the
range of w/d0≥ 10.In this range VPI, 4’s error is less
compared to other models.  Therefore in the range of w/d0≥
10, it is concluded that VPI, 4 is a better suited model

Table 4. Pull-in voltage and %Error comparison for w ≥ h/2
and h ≈ d0

Common parameters h = 0.75µm, d0 = 0.75 µm,
Poisson’s ratio v = 0.06, Young’s modulus E=169GPa,
l=100 µm.
 (h ≈ d0)

w 0.375 1.5 2.5 3.5
VPI, 1 2.2603 2.9469 3.1073 3.1874

%Error 0.2325 0.7339 0.5662 1.9965
VPI, 2 2.1396 2.9168 3.0996 3.1892

%Error 5.5628 1.7475 0.8123 2.0549
VPI, 3 2.2637 2.9728 3.1803 3.3071

%Error 0.0836 0.1386 1.777 5.8261
VPI, 4 2.2688 2.8313 2.9428 2.9948

%Error 0.1393 4.6274 5.8305 4.1673
VPI, 5 2.2454 2.8482 2.9713 3.0292

%Error 0.89 4.0604 4.9176 3.0645
Cosolve

FEA
2.2656 2.9687 3.125 3.125

Table 4 shows that VPI, 1’s percentage error is less
compared with other models for the range of w ≥ h/2
and h ≈ d0.  If the thickness of the beam is equal to the
gap between the substrate and the beam, and w ≥ h/2,
the model VPI, 1 is a better suited model.

Table 1. Pull-in voltage and %Error comparison for h/d0≤
15
Common parameters w = 1.5µm, d0 = 0.75 µm, Poisson’s
ratio v = 0.06, Young’s modulus E=169GPa, l=100 µm.
h/d0 2 2.667 6.667 13.333
VPI, 1 8.0504 12.1803 44.9252 118.7092

%Err
or

0.045
2.5574 7.6981

12.9238

VPI, 2 8.1083 12.5188 56.0039 355.332
%Err

or
0.7640 0.1505 15.0140 160.6458

VPI, 3 7.8712 11.8764 45.0835 125.6792
%Err

or
2.1821 4.9889 7.3728 7.8112

VPI, 4 7.8872 12.0599 46.5252 128.8569
%Err

or
1.983 3.5209 4.4108 5.4802

VPI, 5 8.0558 12.4027 49.0261 138.6667
%Err

or 0.1119 0.7782 0.7275 1.7155

Cosol
ve

FEA
8.0468 12.5 48.67 136.3

In Table 5 pull-in voltages and %Error for h/d0≤ 15 is
given.  In this range VPI, 5 is with less error compared
to other models.  Therefore for the beams with higher
thickness (h), the model VPI, 5 is a better suited model.

Figure 5. Pull-in voltage Versus width of the beam

Figure 6. Pull-in voltage Versus height of the beam

Moreover, figure 5 and figure 6 shows the pull-in
voltage versus width of the beam and the pull-in
voltage versus height of the beam respectively with
respect to both the closed form model results and the
CoventorWare results. Here the results are plotted for
further a wide range; width varying from 0.25 µm to



50µm and height varying from 1 µm to 10 µm. It
could be seen that the models 1, 4 and 5 are found to
be closer to CoventorWare results. This corroborates
with the results already presented from Tables 1
through 4. Therefore it could be concluded that a
particular model is better suited for a particular
dimension but indeed not in the entire range.

Paper [10] presented a closed form model for the
computation of pull-in voltage based on Meji’s and
Fokkema’s capacitance model. Investigation shows
that this model is suitable only for particular
dimensions but not for wide range of variation in
dimension of cantilever beam. Therefore appropriate
model has to be chosen for the appropriate dimension
of cantilever beam for the calculation of pull-in
voltage.

It is observed that the pull-in voltage values can be
computed in a few micro-seconds with regard to every
model as against the FEA model, which takes
relatively a much larger time duration. It is clear that
the closed form models can be used for specific range
of dimensions as against the FEA model for speedier
computation of pull-in voltage without sacrificing the
accuracy.

5. Conclusion

In this paper five closed form models for the
calculation of pull-in voltages have been derived from
different capacitance models.  These models are
validated by comparing the results with Cosolve FEA
results for wide range of dimensions. Comparison of
the pull-in voltages determined from these models
shows that particular models are better suited for
particular given ranges. The error is within ±2%
deviation as compared to the experimentally verified
results for those particular models.  It is observed that
to get accurate value of pull-in voltage, appropriate
models have to be chosen for the respective range of
dimensions. These models are relatively simple and
less time consuming against the FEA models.  Such
analysis can also be extended for other ranges, if
necessary.
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