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Abstract: This paper presents a new approach to solve the 
short-term unit commitment problem using hybrid algorithm 
based on Evolutionary Programming, Simulated Annealing 
and Tabu Search Method. The objective of this paper is to 
find the generation scheduling such that the total operating 
cost can be minimized, when subjected to a variety of 
constraints.  This also means that it is desirable to find the 
optimal generating unit commitment in the power system for 
the next H hours. Evolutionary programming, which 
happens to be a Global Optimization technique for solving 
Unit Commitment Problem, operates on a system, which is 
designed to encode each unit’s operating schedule with 
regard to its minimum up/down time. And Simulated 
Annealing and Tabu Search methods improve the status by 
avoiding entrapment in local minima. A thermal power 
station in India demonstrates the effectiveness of the 
proposed approach; extensive studies have also been 
performed for different IEEE test systems consist of 10, 26, 
34 generating units. Numerical results are shown 
comparing the cost solutions and computation time obtained 
by the proposed hybrid method and other conventional 
methods like Dynamic Programming, Lagrangian 
Relaxation in reaching proper unit commitment. 
 
Key words: Evolutionary Programming; Simulated 
Annealing; Tabu Search; Unit Commitment 
 
1. Introduction 

The daily load pattern for a given power system 
exhibits large fluctuation between the minimum and 
the maximum demand. Adequate, reliable power must 
be synchronized prior to the actual occurrence of the 
load. As the load varies continuously with time, the 
optimum operating condition of units alters along with 
it. Hence, it is not economical to run all the units 
available in the power station, all the time. Therefore, 
the problem of determining the units of a plant that 
should operate for a given load for a particular time 
horizon is the UCP. 

 
The Unit Commitment Problem (UCP) has been an 
active area of research for the past three decades. 
Deregulation has been introduced in many countries to 
meet the ever-increasing demand of electricity. 
Research endeavors, therefore, have been focused on 
efficient, near-optimal UC algorithms, which can be 

applied to large-scale power systems and have 
reasonable storage and computation time requirements. 
The UCP [28] is a large-scale, non-linear, 
combinatorial optimization problem, which is used in 
power systems to properly schedule the ON/OFF 
status of all the generating units in the system.  
  
The ultimate goal is to determine the minimum cost 
turn ON and turn OFF of power generating units to 
meet the load demand in addition to satisfying various 
operating constraints of the generating units.  
Generally the UCP has been difficult to solve in case 
of large power systems due to the complex nature of 
problem. The various operating constraints of the 
generating units make the problem highly non-linear. 
The exact solution of UCP can be obtained by a 
complete enumeration of all feasible combination of 
generating units, which would be a huge task. 
 
Research endeavors, therefore, have been focused on; 
efficient, near-optimal UC algorithms, which can be 
applied to large-scale, power systems and have 
reasonable storage and computation time requirements. 
A survey of existing literature [1-32] on the problem 
reveals that various numerical optimization techniques 
have been employed to approach the complicated unit 
commitment problem. More specifically, these are the 
Dynamic Programming method (DP), the Mixed 
Integer Programming method (MIP), the Lagrangian 
relaxation method (LR), the Branch and Bound 
method (BB), the Expert system (ES), the Fuzzy 
Theorem method (FT), the Simulated Annealing (SA), 
the Tabu Search method (TS), the Genetic Algorithm 
(GA), the Artificial Neural Network (ANN), the 
integration of Genetic Algorithm, Tabu search, 
Simulated Annealing (GTS), the TS and 
Decomposition method (TSD), the extended 
neighborhood search algorithm (ENSA), the 
Evolutionary Programming (EP) and so on. The major 
limitations of the numerical techniques are the 



 
 

problem dimensions, large computational time and 
complexity in programming.  
 
The DP method [1-2], [13] is flexible but the 
disadvantage is the “curse of dimensionality”, which 
results it may leads to more mathematical complexity 
and increase in computation time if the constraints are 
taken in to consideration. The MIP methods [3-4] for 
solving the unit commitment problems would exhibit 
globally optimal solution with enhanced modeling 
capabilities. The LR approach [5-7] to solve the short-
term UC Problems was found that it provides faster 
solution but it will fail to obtain solution feasibility 
and solution quality problems and becomes complex if 
the number of units increased. And the total 
production costs and CPU time over the scheduled 
time horizon are less expansive than conventional 
methods and LR, GA, EP LRGA methods. The BB 
method [8] employs a linear function to represent fuel 
cost and start-up cost and obtains a lower and upper 
bounds. The difficulty of this method is the 
exponential growth in the execution time for systems 
of a practical size.  
 
An ES algorithm [9], [14] rectifies the complexity in 
calculations and saving in computation time. But it 
will face the problem if the new schedule is differing 
from schedule in database. In the FT method [10], [14] 
using fuzzy set solves the forecasted load schedules 
error but it will also suffer from complexity. The ANN 
[11], [28] has the advantages of giving good solution 
quality and rapid convergence. The level of accuracy 
of forecasting performance is improved. The 
improvement in forecasting calculation improves the 
quality of unit commitment scheduling and results in a 
large amount of cost savings. GA [12-13], [21-22] is 
more effective when the last data have similar 
characteristics. The cost effective schedule was 
produced by the intelligent mutation and grey zone 
modification methods. And the use of integer coding 
and new genetic operators differentiates the new GA 
from previous binary GA implementation. In addition, 
the new problem specific operators that drastically 
improve the performance of the algorithm are 
introduced.  SA [15-18], [32] is a powerful, general-
purpose stochastic optimization technique, which can 
theoretically converge asymptotically to a global 
optimum solution with probability one. But it will take 
much time to reach the near-global minimum. TS [19-
20] is a powerful, general-purpose stochastic 
optimization technique, which can theoretically 
converge asymptotically to a global optimum solution 
with probability one. But it will take much time to 

reach the near-global minimum.  The EP [25-26], [30-
31], has the advantages of good convergent property 
and a significant speedup over traditional GA’s and 
can obtain high quality solutions. The “Curse of 
dimensionality” is surmounted, and the computational 
burden is almost linear with the problem scale.   
 
The GTS [23] shows the reasonable combination of 
local and global search. It adopts the acceptance 
probability of SA to improve the convergence of the 
simple GA, and the tabu search is introduced to find 
more accurate solutions.  The TSD [24] has considered 
the time varying start-up costs as well as the non-
linearity in the hydrothermal systems. The proposed 
approach by this paper can be used in conjunction with 
the other optimization method to pursue a more 
comprehensive feasible solution if the initial solutions 
obtained by other optimization methods fail to satisfy 
some specific constraints.  In ENSA [25], the 
constrained models for fuel limits, emission limits and 
generation capacity limits are discussed and used for 
typical models. Most suitably, and starts from an 
initial solution even though the solution may be 
feasible. The proposed method may be used for 
rescheduling purposes where the experience of human 
experts will be combined with the analytical method of 
optimal scheduling. The algorithm can also be used in 
other complicated mixed integer programming 
problems, such as integrated resource planning.  
  
EP is capable of determining the global or near global 
solution. It is based on the basic genetic operation of 
human chromosomes. It operates with the stochastic 
mechanics, which combine offspring creation based on 
the performance of current trail solutions and 
competition and selection based on the successive 
generations, form a considerably robust scheme for 
large – scale real - valued combinational optimization. 
In this proposed work, the parents are obtained from a 
pre-defined set of solution’s i.e. each and every 
solution is adjusted to meet the requirements. And the 
selection process is done using Evolutionary Strategy 
(ES) [26-27], [30-31]. 
 
From the literature review, it has been observed that 
there exists a need for evolving simple and effective 
methods, for obtaining an optimal solution for the 
UCP. Hence, in this paper, an attempt has been made 
to couple EP, SA and TS for meeting these 
requirements of the UCP, which eliminates the above-
mentioned drawbacks. In case of SA and TS, the 
demand is taken as control parameter. Hence the 
quality of solution is improved. The algorithm is based 



 
 

on the annealing neural network. Classical 
optimization methods are a direct means for solving 
this problem. EP seems to be promising and is still 
evolving. EP has the great advantage of good 
convergent property and, hence, the computation time 
is considerably reduced. The EP combines good 
solution quality for SA and TS with rapid convergence 
for EP. The hybridizing of EP, SA and TS (EPSATS) 
is used to find the short-term thermal unit 
commitment. By doing so, it can help to find the 
optimum solution rapidly and efficiently.  
 
The application on the utility power system in India 
and IEEE test systems consists of 10, 26, 34 
generating unit’s shows that we can find the optimal 
solution effectively and these results are compared 
with the conventional methods. 
 
2. Problem Formulation 

The objective of unit commitment is to develop the 
most economical start up and shut down schedule for 
all the available generating units in the power station 
that satisfies the forecasted load demand and the units’ 
operating requirements over the scheduling period. 
The major component of the operating cost, for 
thermal units is the fuel cost of the committed units 
and this is given in a quadratic form which is given in 
equation (1). 
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Where 
Ai, Bi, Ci ~ the cost function parameters of unit i 
(Rs./MW2hr, Rs./MWhr, Rs/hr) 
F it(P it ) ~ production cost  of unit i at a time t (Rs/hr) 
P it ~ output power from unit i at time t (MW)  
 
The start up cost depends upon the down time of the 
unit, which can vary from a maximum value, when the 
unit i is started from cold state, to a much smaller 
value, if the unit i has been turned off recently. The 
start up cost calculation depends upon the treatment 
method for the thermal unit during down time periods. 
The start-up cost Sit, is a function of the down time of 
unit i as given in (2). 
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Where 
Soi  ~ unit i cold start – up cost (Rs) 
Di, Ei ~ start – up cost coefficients for unit i 
The overall objective function of the UCP is given in 
(3). 
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Where 
Uit ~ unit i status at hour t=1(if unit is ON)=0(if unit is 
OFF) 
Vit ~ unit i start up / shut down status at hour t =1 if 
the unit is started at hour t and 0 otherwise. 
FT ~ total operating cost over the schedule horizon 
(Rs/Hr) 
Sit ~ start up cost of unit i at hour t (Rs) 
 
2.1 Constraints  
Depending on the nature of the power system under 
study, the UCP is subject to many constraints, the 
main being the load balance constraints and the 
spinning reserve constraints. The other constraints 
include the thermal constraints, fuel constraints, 
security constraints etc. [29] 
 
2.1.1 Load   Balance Constraints 
The real power generated must be sufficient enough to 
meet the load demand and must satisfy the following 
factors given in (4). 
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Where  
PD t ~ system peak demand at hour t (MW) 
N ~ number of available generating units 
U(0,1) ~ the uniform distribution with parameters 0 
and 1 
UD(a,b) ~ the discrete uniform distribution with 
parameters a and b 

2.1.2 Spinning Reserve Constraints 
The   spinning reserve is the total amount of real 
power generation available from all synchronized units 
minus the present load plus the losses.  The   reserve   
is   considered   to   be a pre specified amount or a 
given percentage of the forecasted peak demand.  It 
must be sufficient enough to meet the loss of the most 
heavily loaded unit in the system. The reserves must 
be allocated appropriately among fast responding units 
and slow responding units.  This allows the automatic 
generation control signal to restore frequency and 
interchange quickly, in the event of generating unit 
outage. This has to satisfy the equation given in (5). 
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Where 
Pmaxi ~ Maximum generation limit of unit i 
Rt ~ spinning reserve at time t (MW) 
T ~ scheduled time horizon (24 hrs.) 



 
 

2.1.3 Thermal Constraints 
The temperature and pressure of the thermal units vary 
very gradually and the units must be synchronized 
before they are brought online. A time period of even 
1 hour is considered as the minimum down time of the 
units. There are certain factors, which govern the 
thermal constraints, like minimum up time, minimum 
down time and crew constraints. 

Minimum up time:  
If the units have already been shut down, there will be 
a minimum time before they can be restarted and the 
constraint is given in (6). 

)6(ii TupTon ≥  
Where 
Toni ~ duration for which unit i is continuously ON 
(Hr) 
Tup i ~ unit i minimum up time (Hr) 

Minimum down time: 
If all the units are running already, they cannot be shut 
down simultaneously and the constraint is given in (7). 

)7(ii TdownToff ≥  
Where 
T down i ~ unit i minimum down time (Hr) 
T off i ~ duration for which unit i is continuously OFF 
(Hr) 

2.1.4 Must Run Units 
Generally in a power system, some of the units are 
given a must run status in order to provide voltage 
support for the network. 
 
3. Simulated Annealing 

3.1 Simulated Annealing General Algorithm 
Step (0): Find the Initial Feasible Solution By 

Optimum Allocation. 
Step (1): Demand and Temperature are taken as the 

Control Parameter. 
Step (2): Generate the Trial Solution. 
Step (3): Check for the stopping criterion. 

(a) If satisfied, go to the Next Hour for 
Checking the Same. 
(b) Else, Decrement the System Peak Demand 
for that instant and again generate the Trial 
Solution. 

Step (4): Get the Optimal Schedule and 
(a) Assuming the Fuel Cost to be Constant per 
hour. Equate the total power demand to the 
total no of units switched ON. 

(b) From the Total Fuel Cost subtract the 
constant cost function C. Equate the 
Remaining Cost Value to the ON Units 
Equally. 
(c) Assume the Initial Temperature of the 
turbine as 660 degrees and a generation of 210 
MW. 
(d) If the Demand Decreases/Increases, then 
the temperature should Decrease/Increase by 
an amount  

)10())3/)1ln(.(1/((1 kkkk CpCpCpCp σδ++=+

Where, 
Cp  ~ Control Temperature in Degrees. 
δ   ~ Distance Parameter. 
σ  ~ Standard Deviation of the Cost Value 
Generated. 

Step (5): Calculate the Total Operating Cost Ft as the 
Summation of Running Cost and Start up Shut down 
Cost by equation (3).  
The flowchart of SA method is shown in Fig. 1.  

 
Fig.1 Flowchart of SA algorithm 

 
3.2 Generating Trial Solution  
The neighbors should be randomly generated, feasible, 
and span as much as possible the problem solution 
space. Because of the constraints in the UCP this is not 
a simple matter. The most difficult constraints to 
satisfy are the minimum up/down times. The 
implementation of new rules to obtain randomly 
feasible solutions faster are done by the rules is 
described in [15].  
3.3 Generating an Initial Solution 
The TS algorithm requires a starting feasible schedule, 
which satisfies all the system and units constraints. 
This schedule is randomly generated. The algorithm 
given in [15] is used for finding this starting solution. 



 
 

3.4 Operating Cost Calculation  
Once a trail solution is obtained, the corresponding 
total operating cost is determined. Since the 
production cost is a quadratic function, the EDP is 
solved using a quadratic programming routine. The 
start – up cost is then calculated for the given 
schedule. 
 
3.5 Stopping Criteria 
There may be several   stopping criteria for the search. 
For this implementation, the search is stopped if the 
following conditions are satisfied: 

 The load balance constraints are satisfied. 
 The spinning reserve constraints are satisfied. 

 
4. Tabu Search 
4.1 Tabu Search General Algorithm  
Step(0):  Assume that the fuel costs to be fixed for 

each hour and all the generators share the 
loads equally.   

Step(1):  By optimum allocation find the initial     
feasible  solution (Ui, Vi).  

Step(2):   Demand is taken as the control parameter.  
Step(3):   Generate the trial solution. 
Step(4): Calculate the total operating cost,  Ft, as the 

summation of running cost   and Start up – 
shut down cost. 

Step(5): Tabulate the fuel cost for each unit for every 
hour. 

The procedural steps to generate trail solution, 
generate an initial solution, calculate the operating cost 
and stopping criteria for TS method is same as SA 
method. The flowchart for TS is shown in “Fig. 2”. 
 
4.2 Tabu List  
TL is controlled by the trial solutions in the order in 
which they are made. Each time a new element is 
added to the “bottom” of a list, the oldest element on 
the list is dropped from the “top”. Empirically, TL 
sizes, which provide good results, often grow with the 
size of the problem and stronger restrictions are 
generally coupled with smaller sizes [19]. Best sizes of 
TL lie in an intermediate range between these 
extremes. In some applications a simple choice of TL 
size in a range centered on seven seems to be quite 
effective.  
 
4.3 Aspiration Criteria  
This is another important criteria of TS arises when the 
move under consideration has been found to be tabu. 
Associated with each entry in the tabu list there is a 
certain value for the evaluation function called 
“Aspiration Level”. Normally, the Aspiration level 

criteria are designed to override tabu status if a move 
is “good enough” [19].   

    
Fig. 2.  Flowchart of Tabu Search Algorithm 

 
5. Evolutionary Programming 
5.1 Introduction 
 EP [30-31] is a mutation-based evolutionary 
algorithm applied to discrete search spaces. David 
Fogel (Fogel 1988) extended the initial work of his 
father Larry Fogel (Fogel, 1962) for applications 
involving real-parameter optimization problems. Real-
parameter EP is similar in principle to ES, in that 
normally distributed mutations are performed in both 
algorithms. Both algorithms encode mutation strength 
(or variance of the normal distribution) for each 
decision variable and a self-adapting rule is used to 
update the mutation strengths. Several variants of EP 
have been suggested (Fogel, 1992). 
  
5.2 Evolutionary Strategies                      
For the case of ES, D. B. Fogel remarks “evolution can 
be categorized by several levels of hierarchy: the gene, 
the chromosome, the individual, the species, and the 
ecosystem.”  Thus, while GA stresses models of 
genetic operators, Evolutionary Strategies emphasize 
mutational transformation that maintains behavioral 
linkage between each parent and its offspring at the 
level of the individual.  ES are a joint development of 
Bienert, Rechenberg, and Schwefel.  The first 
applications were experimental and addressed some 
optimization problems in hydrodynamics [30].   
 
5.3 Evolutionary Programming for UCP 
1. Initialize the parent vector p = [p1, p2, … pn], i = 

1,2,…Np such that each element in the vector is 
determined by pj ~ random (pjmin, pjmax), j = 



 
 

1,2,…N, with one generator as dependent 
generator. 

2. Calculate the overall objective function if the UCP 
is given in equation (3) using the trail vector pi 
and find the minimum of FTi.  

3. Create the offspring trail solution pi
’ using the 

following steps. 
(a) Calculate the standard deviation  

  )))(min(/( minmax jjTiTij PPFFj −= βσ  

 (b) Add a Gaussian random variable N (0, σj
2) to 

all the state variable of pi, to get pi
’. 

4. Select the first Np individuals from the total 2Np 
individuals of both pi & pi

’ using the following 
steps for next iteration. 
(a) Evaluate r = (2Np random (0,1) + 1) 
(b) Evaluate each trail vector by Wpi=sum (Wx) 
Where x  = 1,2,…Np, i = 1,2,…2Np such that Wx = 
1 if FTij / (FTij+FTir) < random (0,1), otherwise, Wx 
= 0. 

5. Sort the Wpi in descending order and the first Np 
individuals will survive and are transcribed along 
with their elements to form the basis of the next 
generation. 

6. The above procedure is repeated from step (2) 
until a maximum number of generations Nm is 
reached. 

7. Selection process is done using Evolutionary 
strategy. 

 
6. EPSATS Hybrid Method for UCP 

Evolutionary Strategies selects the initial status 
using Kuhn Tucker conditions and Economic Load 
Dispatch to determine the ON/OFF status for different 
generations. 
1. Get the demand for 24 hours and number of 

iterations to be carried out. 
2. Generate population of parents (N) by adjusting 

the existing solution to the given demand by ES to 
the form of state variables. 

3. Use random recommitment to solve unit Up/Down 
time constraints. Here TS algorithm is used to find 
the nearest solution. The TL and aspiration 
criterion helps us not to trap on the wrong path of 
recommitment. If the constraints are not met then 
repair the schedule as given in section 6.1. 

4. Perform ELD and calculate total production cost. 
5. Add combined random variable (Cauchy and 

Gaussian) to each state variable and hence create 
an offspring. This will further undergo for some 
repair operations as given in section 6.2. 
Following these, the new schedules are checked in 
order to verify that all constraints are met.   

6. Improve the status of the evolved offspring and 
verify the constraints by SA. 

7. Formulate the rank for the entire population using 
Boltzman and SA weighting procedure of 
reference probability. 

8. Select the best N number of population for next 
iteration. 

9. Check for an iteration count reached. If Yes go to 
step 10 otherwise go to step 2. 

10. Select the best population by ES [26-27].   
11.  Print the optimum schedule. 
 
6.1  Repair Mechanism 
A repair mechanism to restore the feasibility of the 
constraints is applied and described as follows: 
• Pick at random one of the OFF units at one of the 

violated hours. 
• Apply the rules in section 3.4 to switch the 

selected unit from OFF to ON keeping the 
feasibility of the down time constraints. 

• Check for the reserve constraints at this hour. 
Otherwise repeat the process at the same hour for 
another unit. 

 
6.2 Making offspring feasible 
While solving the constrained optimization problem, 
there are various techniques to repair an infeasible 
solution [26-27]. In this paper we have chosen the 
technique, which evolve only the feasible solutions. 
That is the schedule, which satisfies the set of 
constraints as mentioned earlier. Here, in this paper, 
the selection routine is involved as “culling force” to 
eliminate the feasible schedules. Before the best 
solution is selected by evolutionary strategy, the trail 
is made to correct the unwanted mutations.      
 
7. Numerical Results 

A thermal utility power system in India with seven 
generating units, each with a capacity of 210MW, has 
been considered as a case study. A time period of 24 
hours is considered; the unit commitment problem is 
solved for these seven units and also compared with 
IEEE test systems consists of 10, 26, and 34 
generating units. The required inputs for solving the 
UCP are briefed here. The total number of generating 
units, the maximum real power generation of each unit 
and the cost function parameters of each unit are 
tabulated for a day, respectively, as shown in Table I 
and Table II for utility system. The status of unit i at 
time t and the start-up / shut - down status obtained are 
the necessary solution for SA, TS, EP, EPSATS, DP, 
LR methods for utility system. The comparison of the 
total costs and Central Processing unit (CPU) time is 



 
 

shown in Table III for utility system, IEEE test 
systems of 10, 26, and 34 generating units. “Fig. 3” 
represents the total production cost obtained by each 
parent for four iterations in EP method. Similarly, for 
eight and ten iterations are obtained. “Fig. 4” gives the 
plot of EPSATS average performance from 100 runs. 
The “Fig. 5” gives the plot of No. of units switched 
ON during every hour. From these results, the 
EPSATS method had lesser total cost and took lesser 
CPU time in all the power systems considered 
including utility system. 
 
In our proposed hybrid method, the EP, SA and TS 
method was used. As indicated in this paper, the EP 
algorithm has also proved to be an efficient tool for 
solving the important economic dispatch problem for 
units with “non-smooth” fuel cost functions as referred 
in [27]. Such functions may be included in the 
proposed EP search for practical problem solving. The 
proposed EPSATS approach was compared to the 
related methods in the references indented to serve this 
purpose, such as the DP with a zoom feature, the SA, 
and the GA approaches. And with the use of Tabu 
Search method, the status is improved by avoiding the 
entrapment in local minima. By means of 
stochastically searching multiple points at one time 
and considering trail solutions of successive 
generations, the EPSATS approach avoids entrapping 
in local optimum solutions. Also, disadvantages of 
huge memory size required by the SA method are 
eliminated. Moreover, intellectual schemes of 
encoding and decoding entailed by the GA approach 
are not needed in the proposed EPSATS approach.  

TABLE I 
DAILY GENERATION OF SEVEN UNITS IN MW 

TABLE II 
GENERATION SYSTEM OPERATION DATA 

The problem of power unbalance previously existing 
in the solution of GA is circumvented as well in this 
paper. In comparison with the results produced by the 
referenced techniques, the EPSATS method obviously  
displays a satisfactory performance with respect to the 
quality of its evolved solutions and to its 
computational requirements. 

TABLE III 
COMPARISONS OF COST AND CPU TIME FOR UTILITY AND 

IEEE 10, 26, 34 UNIT SYSTEMS 

 

 
Fig. 3. Total production cost for 3 iterations 

 

  
Fig. 4. EPSATS average performance from 100 runs 

 

 
Fig. 5. No. of units switched ON during every hour 



 
 

8. Conclusion 
This paper presents a hybrid EPSATS method to 

the unit commitment problem. In this proposed work, 
the parents are obtained from a pre-defined set of 
solution’s i.e. each and every solution is obtained from 
the SA and TS method. Then, a random recommitment 
is carried out with respect to the unit’s minimum down 
times.  And the selection process is done using 
Evolutionary Strategy. In comparison with the results 
produced by the referenced techniques (EP, DP, LR 
and SA & TS), the EPSATS method obviously 
displays a satisfactory performance.  There is no 
obvious limitation on the size of the problem that must 
be addressed, for its data structure is such that the 
search space is reduced to a minimum; No relaxation 
of constraints is required; instead, populations of 
feasible solutions are produced at each generation and 
throughout the evolution process; Multiple near 
optimal solutions to the problem involving multiple 
constraints and conflicting objectives can be obtained 
in a reasonable time with the use of heuristics; It 
works only with feasible solutions generated based on 
heuristics, thus avoiding the computational burden 
entailed by the GA methods which first generate all 
feasible solutions and then purge the infeasible ones.  
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