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ABSTRACT:This paper estimates the micro step 

performance of an electromechanical stepper motor with 

permanent magnet rotor when subjected to load torque 

disturbances. The state of the art is to use sensor-less vector 

control strategy, that allows measurement and monitoring of 

un-measurable variables of the system. The Discrete Kalman  

filter algorithm estimates the mechanical variables of the 

system based on the initial state for constant motor parameters. 

The algebraic manipulation of the two phase dynamic system 

parameters and equations is carried out and the same 

simulated in MATLAB. The accuracy of the sensor-less control 

is obtained by determining steady state error between the 

actual and reference values. Further, the strength of the 

algorithm for motor parameter variants allows algorithm to 

check performance. 

 

Keywords: Kalman Filter, State Estimation, Sensorless 

Control, Permanent Magnet Machine.  

 

 

1. Introduction 

 

 Stepper motors have received considerable attention 

in computer peripherals, machine tools, aerospace etc., 

due to its discrete step positioning capability [1-4] and 

permanet magnet are used as a cost-effective facility and 

high efficiency [5]. 

Although PM stepper motor mathematical based 

exiting work is quite non-linear, considering the 

consequence of difficulties in the design of control 

procedures, numerous papers are in existence, making it 

an optimistic area for research. The control methods 

usually involve feedback and can be broadly classified 

under position and/or velocity control [6-9]. By 

including series resistance i.e. limiting the current or by 

addition of mechanical gear or by incorporating  

microstepping for regulating the stator phase winding 

currents, the position and velocity can be controlled 

provided the sensed actual rotor position is feedback to 

the controller [7,10]. As the stepping rate is increased, on 

account of inertia the rotor takes more time to  

 

reach the steady state [3,9].  

Sensor based control strategy as in robotics, aerospace, 

and high performance applications increase the cost and  

 

size of the system. Further, the characteristic of the 

sensor deteriorate, under change in temperature, 

pulsating environment [7,9]. The low cost sensorless 

control strategy is the state of art [11-13]. 

Computing the speed and rotor position by means of 

sensorless method uses reference frame theory. The 

feedback control signal is obtained by measuring the 

actual rotor position and estimating the same using 

observers. The viewer is most commonly used as a 

sliding mode due to the strong characteristic of motor 

parameter variants [14-15][23].The Kalman Filter and 

another version of Kalman Filter are the both universally 

accepted estimators in sensorless control and are applied 

till date in numerous fields. For example the Kalman 

filter is utilized in the new model wind turbine 

controllers to evaluate the aerodynamic torque quickly 

and precisely [16]. In an electromechnical actuator the 

Kalman filter estimates the position and minimizes the 

angular error [17]. A space teleoperation uses the 

Kalman filter to estimate the control signals of a delayed 

feedback state[18]. The Kalman Filter is used tocontrol 

independently the intensity and power of reactive 

generated by a non-brushbilaterally supplied electricity 

generator by controlling the system parameters [19]. A 

unique aspect of the above applications [16-19] is the use 

of Kalman filter state estimator to measure the 

mechanical level variablessuch as torque, angle, velocity 

by estimating the currents and line voltages. The speed 

observer is used at high and medium speeds whereas the 

extended Kalman filter is used for lower speeds [20].In 

addition to accurate evaluation and forecasting capability, 

the instantaneous response is also one of the main 

motivating factors for proposing and utilizing the 

Kalman filter [21]. 

This study proposes a simple discrete Kalman Filter to 

obtain the information regarding the position of the shaft 

by deducing the voltage and currents from the discrete 

time system equations which act as an auxiliary system. 

The filter is implemented here for middle and high speed 

incorporating the advantage of reduced computing time. 

The dynamic performance is considerably improved by 

applying this sensorless vector control strategy. 

 

2. PM stepper motors with mathematical 

model 
 

The dynamic equations (1) and (2) on the PM stepper 

motor in state variable form is derived from the Kuo 

model exploited in state space in 1978 [21]. 
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The system description after applying D-Q 

transformation is specified by equations (3) to (6). 
𝑑𝑖𝑑

𝑑𝑡
=
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L
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The vector control or field oriented control constitute 

controlling the flux (aligned with d-axis) and torque 

(aligned with q-axis) independently. The stator currents 

are transferred to the rotating reference system by Clark 

transformation. Controlling the motor speed varies the q-

axis has a current parameter or by varying the load 

torque component. This aspect of system can be reduced, 

a continuous Linear Time Invariant (LTI) system by 

choosing 𝑉𝑑 and 𝑉𝑞  after decoupling as in (7) and (8). 

 

𝑉𝑑 = (𝑅𝑖𝑑 + 𝐿
𝑑𝑖𝑑

𝑑𝑡
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 (8) 

 

The continuous LTI system is modeled as in (3) to (6) 

is discretised as (9) to (12) as in [22]. 
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3. Discrete kalman filter algorithm 

 

A linear quadratic estimator is a part of the Kalman 

Filter. It is originally developed to represent a non-linear 

state space model. However the linear model is just a 

special case of non-linear model. For a discrete time 

invariant system the discrete Kalman Filter measures the 

current state along with the input and predicts the next 

state of each input sample for every sampling instant. 

Here the following state vector 𝑋 = [ 𝑖𝑑𝑖𝑞 𝜔 𝜃  ]𝑇 is 

selected along with the input and output vector 𝑈 =

[ 𝑣𝑑𝑣𝑞𝑇𝐿]𝑇  and 𝑌 = [ 𝑖𝑑𝑖𝑞𝜔 𝜃]𝑇  respectively. The 

particular discrete state equation is accounted in equation 

(13). 

𝑋(𝑘 + 1) = 𝑓{𝑋(𝑘), 𝑈(𝑘), 𝑘} + 𝑊(𝑘), 
𝑌(𝑘) = ℎ{𝑋(𝑘), 𝑘} + 𝑉(𝑘),            (13) 

 

then, the measurement and process noise are 

characterized by, 

 

𝐸{𝑊(𝑘), 𝑊(𝐾)𝑇} = 𝑄 and 𝐸{𝑉(𝑘), 𝑉(𝐾)𝑇} = 𝑅 

 

The Riccati equations defined in (14) to (17) are 

applied to the system (13) for a sampling time of 𝜏 =
100𝜇𝑠  to yield the stationary reference frame has the 

instantaneous states of the PM stepper motor 
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Fig. 1. Control Structure of the Two-phase PM Stepper 

Motor with Discrete Kalman Filter. 

 

 

 

4. Feedback controller of full state  

 

The feedback controller of full state computes the q 

axis reference current when the gain constants 𝐾𝜔 , 𝐾𝜃 

are input. The steps for determining the coefficients of 

the controller are given below: 

STEP 1: Determine the controllability matrix 𝑄𝐶  

STEP 2: Determine the system matrices ofthe open loop 

system canonical form 𝐴𝑟 , 𝐵𝑟 

STEP 3: The characteristic of the reference 

modelequation and compare it with before the step. 



STEP 4: Find the controller tuning co-efficient 𝐾𝑟𝜔 ,  𝐾𝑟𝜃 

of the reference model. 

STEP 5: Determine 𝐾 = [𝐾𝜔 𝐾𝜃] from the inverse of 

𝑄𝐶  and modal matrix. 

 

5.  Simulation results and discussion 

 

The PM stepper motor control structure is shown in 

Fig. 1. The simulation is conducted for the motor along 

with the discrete Kalman Filter using SIMULINK in 

MATLAB as shown in Fig. 2.  

 

 
Fig. 2. The Discrete Kalman FilterSimulink Structure 

with Prediction and Correction Phase. 

 

The motor is driven by a micro-step driver using H 

bridge configuration for each phase. The micro-stepping 

currents in the phase windings without feedback 

controller are given in Fig. 3a and Fig. 3b displaying the 

orthogonal connection.  

 

 

 
Fig. 3a. PM stepper motor Phase A winding current 

without feedback controller. 

 

 
Fig. 3b. PM stepper motor Phase B winding current 

without feedback controller. 

 

The Fig.4a and Fig.4b display the phase winding 

currents with feedback controller.  
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Fig. 4a. PM stepper motor Phase A winding current with 

feedback controller. 

 

 

 

 

  
Fig. 4b. PM stepper motor Phase B winding current with 

feedback controller. 

 

For every sampling instant 𝜏 the instantaneous values 

of state  𝑋  is fed to the state feedback controller to 

obtain the reference current 𝑖𝑞
∗ = 𝑓{�̂� , �̂� }. The process 

and measurement noise of the co-variance matrices 

𝑄, 𝑅 used in the simulation is shown in Table I. 

 

Table1 

The Discrete Kalman FilterNoise Covariance Matrices. 

 
 

A standard step signal is used to obtain the load 

disturbance for the discrete time system in transient state 

analysis. The mathematical calculations obtained from 

the full state feedback controller computed offline as 

𝐾𝜔 = 0.3901 , 𝐾𝜃 = 39.01 is fed subsequently to the 

simulator show that the controller is fast and accurate in 

reference tracking capability as observed in Fig. 5.  

 

 
Fig. 5. Speed Response in Rad/s. 

 

 

 

The voltages of d and q axis undergo inverse d-q 

transformation before being feedback to the microstep 

driver for commutation of the conducting devices. The 

estimated speed converges to the true value in 0.0053s.  

 

5.1. Case A: Variations in Load Torque 

 

The load torque variation is carried out from 0 to 

100% by providing a disturbance input to the motor. The 

corresponding motor torque and speed response is 

observed as in Fig. 5 and Fig. 6 corresponding. Fig. 7a 

shows the variation of motor torque for load variation of 

0 to 50%. 
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Fig. 6. Motor Torque Response for load variation from 0 

to 100%. 

 

 
Fig. 7a. Motor Torque Response for load variation from 

0 to 50%. 

 

Fig. 7b and Fig. 7c show the speed response for load 

variations from 0 to 50% and 0 to 75% respectively. 

 

 

 

 

 

 

 
Fig. 7b. Speed Response for load variation from 0 to 

50%. 

 
Fig. 7b. Speed Response for load variation from 0 to 

75% and 𝐼𝑑
∗=0. 

 

The observations of Case A demonstrate that the full 

state feedback controller is robust to variations in load 

and the motor torque remains at 0.2 Nm. Further, the 

motor seep response is regulated from no load on the 

whole load. 

 

5.1. Case B: Variations in Reference Current 

 

The motor speed and torque response for the reference 

current 𝐼𝑑
∗ has the variations are shown in Fig.8 and 

Fig.9. Table II gives the settling time and the Kalman 

filter steady state error for variations in the reference 

current. 
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Fig. 8a. Speed response in Rad/s when  𝐼𝑑

∗  is positive 

constant. 

 

 
Fig. 8b. Motor Torque in Nm when  𝐼𝑑

∗  is positive 

constant. 

 

 
Fig. 9a. Speed response in Rad/s when  𝐼𝑑

∗  is negative 

constant. 

 

 

 

 
Fig. 9b. Motor Torque in Nm when  𝐼𝑑

∗  is negative 

constant. 

 

Table 2 

 Variation in Reference Current 

Referenc

e 

Current 

Actual 

Rotor 

Speed in 

Rad/s 

Kalman 

Filter 

Speed 

output 

Rad/s 

Settling 

Time 

(s) 

 Id*=0 401.5 399.1 0.00531 

Id* >0 401.5 394.6 0.032 

Id*<0 401.5 383.1 0.035 

 

The dynamic process is speedy and reliable, 

converging to the steady-state within a short span of 

.0053s as seen in Table 2. An extended portion of this 

work can further be the implementation of the same in 

FPGA.  

 

 

6. ROBUSTNESS OF THE CONTROLLER 

 

The proposed discrete Kalman filter algorithm 

effectiveness is tested through varying the electrical 

constants of the motor. The increase in R does not affect 

the rotor speed response as much as the increase in L as 

observed in Fig. 10 and Fig. 11. 

 
Fig. 10. Speed response in Rad/s when R is increased by 

50%. 



 

The increase in L leads to a large amount of overshoot 

at the onset of tracking and hence more time to settle at 

the steady-state as in Figure 11.  

 

 

 

 
Fig. 11. Speed response in Rad/s when L is increased by 

50% 

 

On the contrary if the L/R ratio is maintained constant 

then the speed response and settling time remain the 

same as in Fig. 7c. The performance in measures is 

specified in Table 3.  

 

Table3 

 Variation of Winding Constants of the PM stepper  

motor.  

Phase 

winding 

Max. 

Speed 

Rad/s 

Min . 

Speed 

Rad/s 

Mean 

Speed 

Rad/s      

Std. 

Deviation 

Rad/s 

Speed 

at 

t=0.025s 

in 

Rad/s 

R 

increased 

by 25% 

426.8 -112 383.8 61.41 396.9 

R 

increased 

by 50% 

432.8 -102 381.2 61.02 393.9 

L 

increased 

by 25% 

357.4 -156 272.5 66.82 287.5 

L 

increased 

by 50% 

392.2 -284 233.0 74.79 255.0 

L 

increased 

by 75% 

342.0 -188 190.4 80.31 244.4 

 

 The Table 4 is shown the parameters of motor 

utilized in the simulation. 

 

Table4 

 PM Stepper motor Parameters and driver 

Phase Winding Resistance  R=0.7 Ω 

Phase Winding Inductance L=7.5 mH 

Step Angle θ =  1.8 ° 

Max. Flux Linkage  ΦM = 0.005 Vs 

Detent Torque Td = 0.12 Nm 

Moment of Inertia Of motor J=1.2 x 10-7 Kg 

m2 

Frictional Constant  B=1 x 10-4 Kg m/s 

Initial Speed of the rotor 0 Rd/sec 

Initial Step angle of the 

rotor 

0 degree 

Microstep Driver Input 

Voltage 

20V DC 

Shunted Resistance per 

Phase  

1 Ω , 5 mH 

 

 

 

7.  Conclusion 

 

A discrete mathematical model of the 2 phase PM 

stepper motor is developed. The linearized case of the 

non-linear model neglecting the detent torque is fed to 

the discrete Kalman filterand tested for effectiveness. 

The simulation results obtained show that the discrete 

Kalman filter when applied to a physical system filters 

the thermic noise in the resistors and quantization noise 

through complex mathematical routines. This algorithm 

has the advantage of low cost, feasibility and accurate 

estimation of the speed and position of the rotor during 

load transients without encoder.The controller gain 

constants 𝑲𝝎 and 𝑲𝜽  are determined offline through 

MATLAB programming. 
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