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Abstract: Recently the operation of power system 

strategies have changed significantly due to the 

introduction of deregulation in electricity markets. 

Today, the power system are being operated with high 

stress, hence sufficient voltage stability margin and 

reactive power support are necessary to be managed to 

ensure secured operation of power system. This paper 

proposes an Artificial Neural Network (ANN) along with 
Fuzzy Logic Controller (FLC)based tool for online 

voltage stability monitoring and estimation of VAR 

support requirement at the critical buses of power 

system for improving voltage stability margin at different 

operating conditions. The ANN input vector is in the 

form of bus voltage angle and reactive power load. The 

voltage stability margin (VSM) and voltage stability 

factor (VSF) of the most vulnerable bus are used as 

target for ANN. The proposed tool can successfully 

estimate the voltage stability margin and VAR support 

for various transactions in deregulation environment 

and also under N-1 contingency. The ANN input and 
output patterns are generated from offline process for 

various simulated loading conditions using conventional 

continuation power flow method. The proposed method 

has been successfully applied to the IEEE 14 bus and 

IEEE 30 bus test system.  

 

Keywords  Voltage stability margin, Artificial neural 

network, Fuzzy logic controller, VSM, VSF and VAR 

support. 

1.  Introduction 

     The electrical power system is continuously 
expanding in size and growing in complexity all over the 

world with the increase of population and 

modernization. Therefore the governments have been 

changing their rules and regulations by allowing the 

private sectors into the power generation, transmission 

and distribution (Deregulated Power System) [1]. 
Because of less regulation in power flow patterns and 

more intensive use of available transmission facilities 

through bilateral and multilateral transactions in 

deregulated power systems, tend to operate the system 

closer to the voltage stability boundaries [2]. Voltage 

stability refers to the ability of a power system to 

maintain acceptable voltages at all buses both under 

normal operating conditions and after being subject to a 

disturbance [3]. A power system enters a state of voltage 

instability when a disturbance results in a progressive 

and uncontrollable voltage decline leading to voltage 
collapse [4, 5].  Many utilities around the world have 

experienced major blackouts caused by voltage 

instabilities and insufficient reactive power supports [4]. 

One of the main responsibilities of the independent 

system operator (ISO) is to establish an equitable and 

fair transmission services in an open-market structure to 

provide a reliable and secure power systems [6]. 

     In order to prevent the occurrence of voltage collapse, 

it is essential to accurately predict the operating 

condition of a power system. So, ISO need a fast and 

accurate voltage stability index to help them for 

monitoring the system condition. Many authors have 
proposed the voltage stability indices based on repeated 

power flow analysis [7-10]. The main difficulty in these 

methods is that Jacobian matrix of power flow equation 

becomes singular at voltage stability limit. The 

continuation power flow overcomes this problem [11-

12]. The continuation method based voltage stability 

analysis techniques are fairly accurate but hampered by 

the fact of taking longer computational time for large-

scale power systems.  For online applications, there is a 

need for quick detection of the potentially dangerous 
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situations of voltage instability so that necessary actions 

may be taken to avoid the occurrence of voltage collapse 

in a power system. In recent years, the machine learning 

techniques such as artificial neural network, fuzzy logic, 

etc. have been used for power system voltage stability 

analysis. The ANN has been emerged as a powerful tool 
due to its ability to map complex nonlinear problem 

offline with selective training, which can lead to 

sufficiently accurate online response.  

      In reference [13], authors have investigated voltage 

magnitudes and the phase angles are the best predictors 

of online voltage stability margin assessment. The phase 

angles and load reactive power are used as the best 

predictors of online voltage stability margin assessment 

in [14]. In reference [15], a single ANN with fewest 

input features used for estimating voltage stability 

margin with sufficient accuracy and high execution 

speed. Fuzzy logic approach has been used to determine 
the maximum loadability limit in [16]. The comparative 

study of various voltage stability indices for the 

estimation of loadability margin is presented in reference 

[17].  
      In power system, voltage and reactive power support 

are linked to each other. The main factor causing 

instability is the inability of the power system to meet 

the demand for reactive power. In the deregulated power 

markets, reactive power management is under the 

responsibility of ISO. So ISO should take appropriate 

actions to provide VAR support for ensuring voltage 
stability. A multi-objective genetic algorithm is used for 

voltage stability enhancement using rescheduling of 

generator and optimal placement of FACTS devices 

briefed in [18]. A reactive power control approach based 

on fuzzy sets theory, for voltage stability enhancement 

by monitoring L-index has been presented in [19].The 

ANN and fuzzy based online tool to determine the 

minimum VAR support required for the projected load 

demand with a view to ensure voltage stability in a 

power system based on VAR support injected in the 

critical bus and remaining load buses of the system had 

been developed in [20]. However, they have not 
computed voltage stability margin and also the 

calculated VAR support was provided at all load buses 

of the power system and this leads to higher VAR 

support requirement for the projected load demand. 
 From the observation of vast literature shows that the 

researchers have considered assessment of voltage 

stability or voltage stability margin estimation or VAR 

support estimation separately in the monopoly power 

system. This paper employs bus voltage angle and load 

reactive power as input attributes and two output voltage 

stability indices VSM and VSF to predict the voltage 
stability margin and determine the minimum VAR 

support required for enhancing voltage stability margin 

in the restructured power system.  This paper presents 

the development of artificial neural network and fuzzy 

logic controller based tool for online voltage stability 

monitoring as well as estimation of adequate VAR 

support provided in the critical buses for enhancing 

voltage stability margin at different loading and system 

configurations in restructured power system. 

The rest of the paper is organized as follows. Section 

2 describes the voltage stability indices and calculation 

of VSM and VSF using CPF. The design of the proposed 

tool by using ANN along with fuzzy logic controller is 

presented in section 3. Section 4 describes the algorithm 

of the proposed approach. The simulation results and the 

effect of VAR support are discussed in section 5 and 

section 6 concludes the paper. 

 

2. Voltage Stability Indices 

2.1 Voltage Stability Margin (VSM) 

      Voltage stability margin is defined as a megawatt 

(MW) distance between the current operating point and 

maximum loading condition according to the system 

loading parameter [15] as illustrated graphically in Fig.1. 

To find successive load flow solution using continuation 

power flow, the load flow equation is reformulated by 

inserting loading parameter λ. So, locally 

parameterization technique can be applied. Using 

constant power load, the general form of power flow 

equations are: 

1

  cos( )
n

i i k ik i k ik

k

P V V Y 


  
                             (1) 

1

  sin( )
n

i i k ik i k ik

k

Q V V Y 


  
                             (2) 

Where, 

Gi LiPi P P  , 
Gi LiQi Q Q   

Pi  = Injected active power at ith bus. 

 Qi =Injected reactive power at ith bus   

PGi = Active power generation at ith bus. 
QGi = Reactive power generation at ith bus. 

 PLi = Active power load at ith bus. 

 QLi= Reactive power load at ith bus. 

Vi = Voltage magnitude at bus i.  

i  = Voltage angle at bus i. 

Vk = Voltage magnitude at bus k. 

k = Voltage angle at bus k. 

Yik= Admittance matrix [Ybus].  

ik = Admittance angle. 

The loading parameter λ is used to simulate the active 

and reactive power load/generation increases, the  

equation of  Pi , Qi  and PLi , QLi can be modified as 

 

( ) ( )i Gi LiP P P  
, ( ) ( )i Gi LiQ Q Q    

Then,  

0( ) [ cos( )]Li Li base iP P S                                 
(3)

 

0( ) [ sin( )]Li Li base iQ Q S    
                            

(4) 

 

Where, 



0cos( )base i LiS P 

 
0sin( )base i LiS Q 

    

0 , 0Li LiP Q = original load at bus i active and reactive 

respectively, 
baseS = Apparent power at original load. 

i = power factor angle of load at bus i. 

So, Equations 3 and 4 can be written as 

                            (5) 

Where,  and are base case load demands at ith 

bus. 

The VSM is expressed as, 

 

    (6)                                                      

 
Where,   and denotes the maximum and base 

case values of the total system apparent powers, 
respectively. For a power system with „n‟ buses, the 

voltage stability margin can be calculated as: 

 

         (7) 

 

Using (5), and are obtained by: 

 

                               (8)                                          

 

 Where, is the maximum system loading parameter.

and denotes the maximum active and 

reactive power load at the ith bus corresponding to . 

Substituting and from Eq. (8) into Eq.(7), 

one can easily show that the VSM is indeed equal to

. In other words, we have:  

 

VSM =       (9)  

2.2 Voltage Stability Factor (VSF) 

 The differential change in voltage magnitude at each 

bus for a given differential change in total active power 

demand is defined as VSF [11]. 

 for bus 
VSF of bus  

sum of  for all buses

dV i
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Where,  and  are respectively total active 

demand change and per unit voltage magnitude change 

at ith bus in the system. As  is same for all buses 

and hence, the determine the VSF. The bus with the 

highest VSF can be treated as the most critical bus in the 

system. The most critical bus is the one that is nearest to 

experiencing voltage collapse. This index will be zero 
when the critical bus is far away from voltage instability.  

 

2.3 Calculation of VSM 

     The VSM  max  and VSF are computed by using 

continuation power flow method. CPF is a powerful 

algorithm to trace the power flow solutions, starting 

from a base case load level and leading up to the steady 

state voltage stability limit.CPF finds successive load 

flow solutions according to the given load scenario. It 

consists of prediction and correction steps. From a 

known base solution, a tangent predictor is used so as to 

estimate the next solution for a specified pattern of load 

increase. The corrector step then determines the exact 

solution using Newton-Raphson technique. After that a 

new prediction is made for a specified increase in load 

based upon the new tangent vector. Then corrector step 
is applied. This process goes until critical point is 

reached. The critical point is the point where the tangent 

vector is zero. In Fig. 1, the VSM is the distance from 

the current operating point (λ1) to the critical point on the 

λ –V curve. Pre-VSM is VSM with no contingency in 

the system. Post-VSM is VSM after N-1 contingency in 

the system. VSM for the post-contingency (
max

c ) is 

less than that of pre-contingency (
max

n ) due to N-1 

contingency.VSMT to be kept in the system for voltage 

stability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

   

  Fig.1. Definition of VSMT, Pre-VSM and Post-VSM. 
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Fig.2. The block diagram representation of the proposed system.
 

3. Proposed system   
 

     Fig.2 conceptually shows the structure and process of 

the proposed online tool. It is developed using an ANN, 

fuzzy logic controller and Q-limit control logic. A 
multilayer feed forward ANN model evaluates the 

voltage stability state of the power system by monitoring 

the values of VSM and VSF at the critical bus in 

different system configurations. The weakest bus is the 

one that is nearest to experiencing voltage collapse. It is 

a recognized fact that the voltage stability assessment by 

VSM and VSF at the most critical bus and enhancement 

at the most critical bus by VAR support improves the 

voltage stability of the entire power system. In other 

words, the information available at the most critical bus 

is an indication of how far the system is away from the 
instability point [20]. 

The VSM value of the most vulnerable bus is 

same for all load buses in the system. When the power 

system operating conditions are closer to voltage 

instability limit, a fuzzy logic along with Q-limit logic 

controller compute the required VAR support to be 

provided to enhance the voltage stability of the system. 

The design of an ANN and Fuzzy logic controller is 

described as follows. 

 

 

 

3.1. Artificial Neural Network methodology 

     

       Among the numerous artificial neural networks 

which have been proposed, the most widely utilized type 
of neural network topology is the multilayer feed-

forward network, because it is suitable for dealing with 

the nonlinear problems. This network, also called multi-

layered perceptron (MLP), An MLP neural network 

consists of one input layer, one output layer and one or 

more hidden layers. Processing elements in an ANN are 

known as neuron. Each neuron is connected to other 

neurons through communication links, each with an 

associated weight.  

       The neuron calculates its output by finding the 

weighted sum of its input and then applying an 
activation function which produces an activation level 

inside the neuron. Generally the activation function is 

sigmoidal function and is linear for the hidden and 

output layers, respectively. After calculating the output 

layer is compared to a target and the error is applied in a 

backpropagation process to adjust the weights for 

minimize the total squared error of the output. A trial-

and-error procedure is usually employed to determine 

the number of neurons in the hidden layers. 
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3.2. Design of fuzzy logic controller  

3.2.1 Fuzzy modeling 

       Fuzzy Logic is a methodology to solve the problems 

which are too complex to be understood quantitatively. It 

is based on fuzzy set theory, introduced by Prof. Zadeh 

[21]. Use of fuzzy sets in logical expression is known as 
fuzzy logic. In this paper, fuzzy logic is used to compute 

the reactive power support required to be provided in the 

system. The proposed system takes change in VSM 

(∆VSM) and change in VSF (∆VSF) as inputs and gives 

the required reactive power  at a load bus (∆QC ) as 

output. The fuzzy inputs ∆VSM and ∆VSF are 

determined from Eq. (12). 

 

;  T CB CB TVSM VSM VSM VSF VSF VSF                     (12)   

       The membership function and its ranges for fuzzy 

inputs (∆VSM, ∆VSF) and output (∆QC )are shown in 

Figure.3.The corresponding linguistic variables are 

defined as L (low), LM (low medium), M (medium),HM 

(high medium) and H (high). For simplicity triangular 

and trapezoidal membership functions are considered. 

    In fuzzy logic based approaches, the decisions are 

made by forming a series of rules that relate the input 

variables to the output variables using if–then 
statements. The output is derived on the basis of rules 

defined by an inference matrix. The number of rules 

depends on the number of inputs and their linguistic 

variables. Two inputs (∆VSM and ∆VSF) with each five 

linguistic variable produce twenty five rules for the 

fuzzy Inference System is shown in Table 1. For 

illustration purpose, two rules are explained below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Membership functions of input-output variable 

If ∆VSM is „low‟ and ∆VSF „medium‟ then required 

change in the VAR support  (∆Qc)is „low medium‟. 

If ∆VSM is „high‟ and ∆VSF is „high‟ then required 

change in the VAR support (∆Qc) is „high‟. 

Fuzzy output signal is defuzzified by the centre of 

gravity defuzzification strategy to get the crisp output 
value [22]. 

 

Table 1  

Fuzzy inference system rules 

 

AND ∆VSM 

 L LM M HM H 

 

∆VSF 

L L L LM M M 

LM L LM M M M 

M LM M M M HM 

HM M M M HM H 

H M M HM H H 

 

3.2.2 VAR limit control   

      In order to minimize VAR devices investment cost, 

the number of VAR support location should be reduced. 

So, the VAR support should be provided on the critical 

buses. The VAR limit control updates the VAR support 

required at the critical buses ( QCBS

C
) subject to a 

maximum of reactive load power at the critical buses  

( QCBS

L
) using following Eq. (13). 

 

Q Q QCBS CBS

C C C              (13)

   
if, Q Q , then set Q =QCBS CBS CBS CBS

C L C L  

 
The maximum VAR support required at the critical 

buses is limited to 
L

QCBS  for avoiding over 

compensation. 

     The proposed system is tested with different system 

configurations. In each configuration, ANN model 

estimate the VSMCB and VSFCB. These estimated values 

are compared with threshold values of VSMT and VSFT. 

If both the error components  and VSM VSF   are less 

than or equal to zero, then the system remains in stable. 

If any one or both the error components are positive, 

then the fuzzy logic determines the CQ  and the VAR 

limit controller provides the required VAR support at the 

critical buses( CBS

CQ ). This calculated VAR support is 

injected in the corresponding critical buses and the new 

values of VSMCB and VSFCB are recalculated. These 

values are compared again with threshold values, and 

this process is continued until the error components 

 and VSM VSF  become zero or negative. 
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3.3. Generation of training and testing data 

The training and testing data of the ANN is generated for 

different system configurations as follows. 

 The system under normal operating condition. 

 The load active and reactive powers are changed  

(  30% of the base case values) and supplied by 
slack generator. 

 The load active and reactive powers are changed  

(  30% of the base case values and +50% 

generator active powers). 

 The system under N-1 contingency. 

 The system under N-1 contingency with load and 

generator changes. 

The power factor at each bus is maintained constant 

during pattern generation. 

 

4.  Proposed algorithm. 

     The solution algorithm for voltage stability estimation 

and required VAR support provided for enhance voltage 

stability can be briefly described in the following steps: 

 

1. Determine the weakest bus of the given multi-bus 
system using VSF. 

2. Different system configurations are created randomly 

by perturbing the load, generator and line as described in 

the subsection 3.3. 

3. The random cases are gathered through a conventional 

power flow program to ensure that only the acceptable 

cases pass into the CPF.  

4. An input vector 𝜃𝐿0, and   𝑄𝐿0  are generated using 

conventional power flow and related target vector 

VSM and VSFCB CB are generated using CPF. 

5. Select the set of training parameters such as number of 

epochs, learning increment and rate, performance goal 

with Mean Squared Error (MSE) and minimum and 

maximum gradient. 

6. Train the network using the training data and validate 

its performance with testing data. If the performance is 

unsatisfactory, adjust the number of hidden layers, 

neurons and activation functions and repeat this process 
till satisfactory performance is obtained. 

7. Evaluate the performance of the testing data through 

mean absolute error (MAE) as in Eq.(14). 

0

1 0

1
MAE % = *100%

M
i

i

y y

M y


       (14)

  
(10) 

  
(10)   Here, 𝑦0 is the target VSM and VSF obtained from the CPF program and   𝑦𝑖  is the VSM and VSF estimated by the ANN. M is the number of unseen cases. 

Here, 𝑦0 is the target VSM and VSF obtained from the 

CPF program and   𝑦𝑖  is the VSM and VSF estimated by 

the ANN. M is the number of cases. 

8. Develop the fuzzy logic model to obtain CQ  by 

mapping ΔVSM and ΔVSF. 

9. Choose threshold values T TVSM and VSF  by 

experimentally and set Q 0.CBS

C   

 

10. Compute error components ΔVSM and ΔVSF using 

Eq. (12) for a new system configuration. If   both the 

error components are 0, then the system is stable, 

stop. Else, compute CQ by the FLC. 

10. Determine QCBS

C using Eq. (12). It changes the 

operating condition of the system and adjust the value of

VSM and VSF ,CB CB  then go to step 10. 

 

5.  Simulation results and discussions 
     The proposed algorithm is applied to the IEEE 14 bus 

and IEEE 30 bus systems. These are the standard test 
systems used by the researchers to validate their results. 

The numerical data for IEEE 14 bus and IEEE 30 bus 

systems are taken from the reference [23]. Initially 

critical buses are computed by VSF for each test case 

with heavy loading conditions as explained in section 

2.2. The ranking of the critical buses of the test systems 

are shown in Table 2. It is identified that buses 14 and 30 

are the most vulnerable buses for IEEE14 and IEEE30 

bus system respectively.  

Table 2 

Ranking of critical buses of the test systems 

 

 

 

 
     In 

each system configuration, the input vectors, bus voltage 

angle (θL) and load reactive power (QL) at the initial 

operating point of the load buses are computed from the 

conventional Newton-Raphson method. For real time 

application, bus voltage angles and load reactive power 

can be obtained from phasor measurement units [24]. 

The voltage stability indices, VSMCB and VSFCB are then 
computed by the continuation power flow method. In 

this paper, conventional power flow and continuation 

power flow solutions are obtained by using Power 

System Analysis Toolbox (PSAT). PSAT is a MATLAB 

based open source software tool for electric power 

system analysis and control [25]. All the computations 

are performed on a personal computer with 2.5GHz Intel 

Core i5-2450M CPU and 4 GB of RAM in MATLAB 

7.8 software. 

 

5.1. ANN performance  
      There are 6470 and 8010 patterns were generated in 

IEEE 14 bus and IEEE 30 bus respectively by varying 

the real, reactive loads and generator active power 

randomly from its base case value. Out of these patterns 

5823 and 7209 patterns (90%) are randomly selected for 

ANN training, while the left and 647 and 801   patterns 

(10%) are used as the testing data to verify the ANN 

Test system Critical buses for VAR 

support( CBS

CQ ) 

IEEE-14 Bus 14, 9, 5, 4, 10 

IEEE-30 Bus 30, 29, 26, 24, 19, 20, 21 

  



performance in each test system. The network was 

trained for a maximum of 300 epochs or until the 

network training mean-squared error falls below 1e-4. A 

learning rate of 0.01 and a momentum constant of 0.9 

was used in this study. A single ANN is trained for input 

features and output indices by the set of the training 
patterns. The number of hidden layers and the number of 

neurons in that layer were determined experimentally to 

be one hidden layer with six neurons for 14-bus and 

seven neurons for 30-bus system. The trained ANN can 

be used to predict the VSM and VSF of the most critical 

bus for unseen test cases.  

 

 

Fig.4. ANN VSM and VSF estimation performance of 

IEEE 14 bus and IEEE 30 bus. 

     Fig. 4 shows the accuracy of the estimated VSM and 

VSF by the ANNs trained in IEEE14bus and IEEE 30 

bus system respectively. The graphs plot the “Target 

VSM and VSF” against the “Forecasted VSM and VSF” 

by the ANN, for the unseen test cases. If the target VSM 

and VSF completely matches with the forecasted VSM 

and VSF, all points should lie on the diagonal line. Table 

3 lists the Mean Absolute Error % for the unseen test 

cases in each test system. 

 
Table 3 

Mean Absolute Error for the test cases 

 
     The proposed tool not only assess the voltage 

stability and also provide VAR support needed when 

system enters near the unstable condition by using fuzzy 

logic controller. The fuzzy inputs ∆VSM and ∆VSF are 

computed using Eq. (12) and are obtained from trained 

ANN. The threshold value for VSMT and VSFT depends 

on the power system configuration and the operating 

state, hence they are computed experimentally.The 
values of VSM and VSF for IEEE 14 bus system under 

base case system condition are 3.973 and 0.0151 

respectively. If these values are chosen as VSMT and 

VSFT, then the VAR support to be provided become 

excessive. On the other hand, VSM and VSF values in 

the same system under line outage (4-9) with 30% real 

power loading all load buses are 3.2828 and 0.0799 

respectively. If these values are chosen as VSMT and 

VSFT, then they do not ensure that the power system is 

maintained in the stable condition. The threshold values 

are chosen within these two operating conditions through 
empirical observation. A similar procedure was adopted 

for the choice of threshold values for the IEEE 30 bus 

system. Once the threshold values are chosen for a given 

system, it is treated as constant for all the operating 

conditions. The chosen threshold values for VSMT and 

VSFT are given in Table 4. 
Table 4 

Threshold Values 

 

     The proposed tool quickly provides the required 
reactive power support at the critical buses to enhance 

the voltage stability. The required VAR support 

provided in the critical buses in each test systems are 

shown in Table 2. It is also noted that in all the test cases 

the VAR support at the critical buses are limited to the 

local reactive power demand requirement. The proposed 

tool is then tested for different bilateral and multilateral 

transactions in every test system. 

 

5.2. Cost of VAR compensation 

      It is assumed that the reactive compensators are 
installed at critical buses. The charge for using 

capacitors is assumed proportional to the amount of the 

reactive power output purchased and can be expressed in 

[26]. 

 

Ccj (Qcj ) = rcjQcj                                                                                          (15) 

 

Where, 

Qcj: injected reactive power at the bus j in (MVAh). rcj is 

the price of reactive power per MVAh. The amount 

injected reactive power depends on the system operating 
condition and the voltage stability margin requirement. 

The price of reactive power depending on some factors 

such as capital cost, period of a life time and average 

utilization factor. For example, investment cost of VAR 

support device is $22000/MVAh, lifetime of 30 years and 

average use of 2/3, rcj can be calculated as follows: 

 

 

 
cj

Investment cost

Operating h s
r

our
   

 

$22000
0.1255 $/ MVAh)

2
30 365 24

3

cjr  

  

 

Test system    Mean Absolute Error %                      

IEEE 14-bus                                5.66574e-4 

IEEE 30-bus 7.33671e-5 

Test system VSMT VSFT 

IEEE-14 Bus 3.8230 0.0250 

IEEE-30 Bus 5.2321 0.0200 



Table 5 

VAR support of the IEEE 14-bus system  

 

 
Table 6 

VAR support of the IEEE 30-bus system  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Trans 
action 

VAR support of the critical buses ( CBS

CΔQ ) (p.u) Total 
VAR 
support 
(∆QC) 

VAR 
support 

cost 
$/MVAh 

Before 
Compensation 

After 
Compensation 

14 9 5 4 10 
VSMCB VSFCB VSMCB  VSFCB 

 

1 

 

0.0000 

 

0.0000 

 

0.0000 

 

0.0000 

 

0.0000 

 

0.0000 

 

0.0000 

 

3.9403 

 

0.0201 

 

3.9403 

 

0.0201 

2 0.0340 0.1060 0.0121 0.0200 0.0392 
 

0.2111 0.0264 3.6679 0.0509 3.8465 0.0226 

     3 0.0198 0.0761 0.0102 0.0231 0.0300 0.1592 0.0199 3.7327 0.0507 3.8672 0.0201 

4 0.0365 0.1260 0.0132 0.0323 0.0452 0.2532 0.0317 3.4961 0.0485 3.8408 0.0200 

5 0.0249 0.0913 0.0346 0.0258 0.0110 0.1876 0.0235 3.4463 0.0635 3.9205 0.0211 

6 0.0178 0.0742 0.0100 0.0220 0.0292 0.1532 0.0192 3.7384 0.0485 3.8512 0.0234 

7 0.0300 0.1061 0.0122 0.0225 0.0391 0.2099 0.0263 3.6028 0.0776 3.8303 0.0214 

8 0.0200 0.0763 0.0300 0.0228 0.0101 0.1591 0.0199 3.6802 0.0576 3.8254 0.0213 

9 0.0499 0.1660 0.0578 0.0397 0.0155 0.3279 0.0412 3.5825 0.0662 3.8560 0.0247 

 
Transac
tion 

VAR support of the critical buses (p.u) Total 
VAR 
support 
(∆QC) 

VAR 

support 

cost 

$/MVAh 

Before 
Compensation 

After 
Compensation 

30 29 26 24 19 20 
VSMCB VSFCB VSMCB  VSFCB 

     1 0.0049 0.0030 0.0094 0.0322 0.0189 0.0044 0.0728 0.0091 5.2068 0.0443 5.2525 0.0200 

2 0.0128 0.0063 0.0170 0.0516 0.0273 0.0058 0.1208 0.0152 5.1742 0.0441 5.2388 0.0183 

3 0.0181 0.0057 0.0154 0.0476 0.0316 0.0056 0,1240 0.0156 5.1056 0.0372 5.2215 0.0061 

4 0.0140 0.0069 0.0181 0.0546 0.0286 0.0061 0.1282 0.0161 4.8720 0.0918 5.2485 0.0332 

5 0.0080 0.0044 0.0046 0.0201 0.0136 0.0035 0.1542 0.0194 5.0914 0.0399 5.2323 0.0097 

6 0.0051 0.0031 0.0096 0.0328 0.0191 0.0044 0.0741 0.0093 5.1839 0.0441 5.2610 0.0215 

7 0.0045 0.0028 0.0090 0.0313 0.0185 0.0043 0.0704 0.0088 5.2037 0.0405 5.2357 0.0202 

8 0.0114 0.0058 0.0156 0.0482 0.0258 0.0056 0.1125 0.0141 5.1717 0.0387 5.2348 0.0125 

9 0.0118 0.0059 0.0156 0.0483 0.0258 0.0060 0.1134 0.0142 5.0029 0.0395 5.2356 0.0130 



5.3. VAR support estimation 

 

    In IEEE 14 bus system, the following bilateral and 

multilateral transactions have been considered.  

 

1. 5MW of power injected at generator bus 6 and the 
same amount is consumed by the load at bus 10. 

 

2. 10MW of power injected at generator bus 2 and the 

same amount is consumed by the load bus 13.   

  

3. 10 MW of power injected at generator bus 2 and the 

same amount is consumed by the load bus 9. 

 

4.  12MW of power injected at generator bus 2 and the 

same amount is consumed by the load bus 2 with line 9-

10 is outage. 

 
 5. 5MW of power injected at generator bus 6 and the 

same amount is consumed by the load bus 6 with line 6-

11 is outage. 

 

6. 5 MW of power injected at generator buses 3 and 6 

respectively and 5 MW consumed by the load buses 

5and 13 respectively. 

 

7. 10 MW of power injected at generator buses 2 and 6 

respectively and 10 MW consumed by the load buses 

5and 13 respectively.  
 

8. 10 MW and 5MW of power injected at generator 

buses 2 and 3 respectively and 10 MW and 5MW 

consumed by the load buses 10 and 12 respectively.  

 

9. 10 MW and 5MW of power injected at generator 

buses 2 and 3 respectively and 10 MW and 5MW 

consumed by the load buses 10and 12 respectively with 

line 6-12 is outage.  

 

     The total VAR supports are obtained by injecting the 

VAR requirement at the critical buses ( CBS

CΔQ ) and VAR 

support cost of ANN is given as Table 5.  In transaction 

1, VSMCB value is greater than VSMT and the VSFCB 

value is less than the VSFT. According to Eq. (13) there 

is no need for VAR support. But in transaction 2, the 

VSMCB value is less than VSMT and VSFCB value is 

greater than the VSFT, then the system reaches the 

instability condition. Hence there is a need for VAR 

support. The required VAR support at the critical buses 

are shown in the second row of Table 5 and the total 
amount of VAR support (∆QC) 0.2111is need to be 

provided for the system to reach the stable condition. 

Similarly VAR support provided for the remaining 

transactions of IEEE 14 bus system as shown in Table 5. 

 

     The one line diagram of IEEE 30 bus system with the 

splitting of Area 1, 2 and 3 are given in fig.5. The 

following bilateral and multilateral transactions are 

considered for the system. 

 

1. Generator at bus 2 in area 1 supplies 10 MW to the 

load at bus 15 in area 2. 

 
2. Generator at bus 2 in area 1 supplies 10 MW to the 

load at bus 17 in area 2. 

 

3. Generator at bus 2 in area 1 supplies 10 MW to the 

load at buses 14 and 17 in area 2  

 

4. Generator at bus 13 in area 2 supplies 10 MW to the 

load at bus 15 in area 3. 

 

5. Generator at buses 13 and 23 in area 2 supplies 10 

MW to the load at buses 10 and 21 at area 3. 

 
6. Generator at bus 13 in area 2 supplies 10 MW to the 

load at bus 10 in area 3 with line10-21outage. 

 

7. Generator at bus 27 in area 3 supplies 10 MW to the 

load at bus 8 in area 1. 

 

8. Generator at buses 27 and 22 in area 3 supplies 10 

MW and 5MW to the load at buses 3 and 7in  area 1with 

line 6-9 outage. 

 

9. Generator at bus 27 in area 2 supplies 10 MW to the 
load at bus 19 in area 2. 

 

 
       

 Fig.5. Single line diagram of IEEE 30 bus system. 

 

    The total VAR supports are obtained by injecting the 

VAR requirement at the critical buses ( CBS

CΔQ ) and VAR 

support cost of ANN is given as Table 6. In all 

transactions, the VSMCB value is less than VSMT and 

VSFCB value is greater than the VSFT, then the system 

reaches the instability condition. The required VAR 

support at the critical buses and the total amount of VAR 

support (∆QC) provided for the system to reach the stable 

condition for the all transactions of IEEE 30 bus system 

are shown in the Table 6. 



 

 
 

 

Fig.6. VSMCB before and after VAR support in test 
systems. 
 

 
 
 

Fig. 7. VSFCB before and after VAR support in test 

systems. 

 

     The VSMCB and VSFCB values obtained for each 

transaction of IEEE14 bus and IEEE 30 bus system 

before compensation (BC) and after compensation (AC) 

are graphically displayed through bar charts in Figs. 6 

and 7 respectively. From these figures, it is observed that 

the operating point of transaction1 of 14-bus system is in 

the safe region, hence this case do not require VAR 

support. However, for the remaining cases of all test 

systems, the VSMCB and VSFCB values are in the critical 

region. Therefore, require VAR support to be provided 

at the critical buses of the each test system in order to 

traverse into the safe region. Thus, the proposed tool 

effectively monitor voltage stability through trained 

ANN and sufficient VAR support provided during 

unhealthy condition of the power system. 

 

 

6. Conclusion 

       This paper has been developed an artificial neural 

network along with a fuzzy logic based tool for online 

voltage stability assessment and improvement. The 

voltage stability indices, VSM and VSF for most critical 

bus in the power system can be calculated using the 

ANN at every monitoring period. Moreover, a fuzzy 
logic methodology has been formulated to estimate the 

required VAR support to improve the voltage stability in 

a power system. The proposed tool has been used to 

estimate the voltage stability and required VAR support 

under normal operating conditions, N-1 contingencies as 

well as deregulated environment. The validity of the 

proposed model has been demonstrated by applying it to 

the IEEE 14 bus and IEEE 30 bus systems. The results 

from ANN performance and VAR support calculation of 

all transactions of the power systems network shows that 

the proposed algorithm is effective and computationally 
feasible for online voltage stability assessment and 

improvement. 
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