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Abstract In this paper, a nonlinear control strategy of 

the Induction Motor (IM) which associate an input-

output linearizing control conception under a PWM 

inverter with a new nonlinear extended observer 

design. At first, a nonlinear control performed using a 

nonlinear feedback linearization technique that 

controls separately the flux and the speed. Secondarily, 

a new extended observer approach relies on the Mean 

Value Theorem (MVT) using the sector nonlinearity to 

exhibit the error dynamics as a convex theory 

association of known matrices with time-varying 

parameters after representing the nonlinear system as 

a Takagi-Sugeno (TS) model. Using the Lyapunov 

theory, the stability terms are obtained and expressed 

in form of linear matrix inequalities (LMIs), the 

observer gain is gotten by solving the LMIs. With two 

line currents and the rotor speed are measured, the 

extended observer estimates with all IM machine states, 

the load torque, and the rotor position. Finally, the 

suggested approach is applied to IM machine through 

an illustrative simulation to affirm the effectiveness of 

the concept. 

 

Key words: Induction Motor (IM), input-output 
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1. Introduction 

   The induction motor (IM) has the most uses of 

electrical machines in industrial applications due to its 

simple, their high efficiency, high power density, and 

higher torque to weight ratio. However, IMs are 

multivariable nonlinear, strongly coupled time-varying 

systems and the rotor variables are not measurable. 

Owing to these and more IM control is so hard [1, 2]. 

   Due to these disadvantages of nonlinear systems, 

many authors are tried to transfer the nonlinear and 

                                                           
  

 

coupling systems as specific forms of systems, such as 

Lipschitz systems. different approaches have been after 

studied, among them, the high gain observer in [3] and 

the use of the Lie Algebraic Transformation [4].  To 

reach a more precise, robust and fast states estimation 

performance of the IM for control of IM, many 

strategies were suggested in literature among them:  

extended sliding mode observer, extended Kalman 

filter, MRAS (system adaptive reference model) 

observer, nonlinear Luenberger observer and others. In 

detail, An extended Sliding mode observer to estimate 

rotor flux for nonlinear IM control was submitted in[5]. 

A nonlinear control using an extended Kalman filter 

method applied to IM was illustrated in [6]. In [7] the 

authors proposed an MRAS observer for IM control 

that estimates the speed and the rotor flux.  A Nonlinear 

Luenberger observers were proposed for IM speed 

servo drive [8]. A nonlinear observer was used to 

estimate the IM flux which proved to be satisfactory[9]. 

A technique relied on the changing of the original 

system into a linear was proposed [10]. In all mentioned 

observers methods above it was so difficult to reach 

them owing to the strong conditions under which these 

transformations existed.  

  The TS fuzzy approach was extensively used to 

nonlinear systems [11, 12]. The basic idea was to 

transfer the nonlinear system model into a series of 

linear subsystems with associated nonlinear weighting 

functions [13, 14]. The Lipschitz nonlinear systems’ 

class was exhibited [15, 16]. An adaptive resilient 

observer for a Lipschitz nonlinear system was designed 

[15], while in [16] the authors proposed an observer 

based on differential mean value theorem for a 

nonlinear system. An observer design based LMIs was 

submitted in[16] for a class of Lipschitz nonlinear 

dynamical systems. 

    In this paper, a state feedback linearizing controller 

of the induction motor is used in combination with a 



state extended observer designed via the MVT 

approach combined with a transformation via the sector 

nonlinearity. The observer gain matrices are 

determined as a solution of linear matrix inequalities 

(LMIs) (was obtained from the Lyapunov theory) to 

ensure that the observer error dynamics converge 

toward zero. The master idea of this paper is to find the 

extended observer gain so as that the nonlinear and 

coupling model of the IM machine makes as in linear 

model feedback control theory so as for the nonlinear 

control of the IM. The main advantage of the MVT 

theory is to find an observer gain which is calculated 

offline and doesn’t depend on the states machine 

contrarily as in other technics for the nonlinear systems.  

 

 This paper is arranged as followings: the mathematical 

model of IM is performed in Section 2, Sections 3 

provides the nonlinear controller design and show the 

newly extended observer design respectively. In 

Section 4, simulation results are submitted to prove the 

effectiveness of suggested approach. At last, 

conclusions are noted in Section 5. 

 

2. Mathematical model of induction motor1 

The choice of the IM model is related to the objective 

of the used approach. The extended model chosen 

contains the usual dynamic model of the IM in a  d, q  

synchronous reference [2] with the dynamics of the 

load torque and the rotor position: 

  

�̇�𝑒 = 𝑓𝑒(𝑥𝑒) + 𝐵𝑈 (1) 

Where: 

𝑓𝑒(𝑥𝑒) = 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 −𝛾𝑖𝑠𝑑 + 𝑤𝑠𝑖𝑠𝑞 +

𝑘𝑠 
𝜏𝑟 
𝛹𝑟𝑑 + 𝑘𝑠𝑛𝑝 𝑤𝑟𝛹𝑟𝑞

−𝑤𝑠𝑖𝑠𝑑 − 𝛾𝑖𝑠𝑞 − 𝑘𝑠𝑛𝑝 𝑤𝑟𝛹𝑟𝑑 +
𝑘𝑠 
𝜏𝑟 
𝛹𝑟𝑞

𝑀

𝜏𝑟 
𝑖𝑠𝑑 −

1

𝜏𝑟 
𝛹𝑟𝑑 + (𝑤𝑠 − 𝑛𝑝 𝑤𝑟)𝛹𝑟𝑞

𝑀

𝜏𝑟 
𝑖𝑠𝑞 − (𝑤𝑠 − 𝑛𝑝 𝑤𝑟)𝛹𝑟𝑑 −

1

𝜏𝑟 
𝛹𝑟𝑞

𝑛𝑝 𝑀

𝐽 𝐿𝑟 
(𝛹𝑟𝑑  𝑖𝑠𝑞 − 𝛹𝑟𝑞  𝑖𝑠𝑑) −

𝑓

𝐽
𝑤𝑟 −

1

𝐽
𝑇𝐿

0
𝑤𝑟 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(2) 

 

 

𝑥𝑒 = [𝑖𝑠𝑑 𝑖𝑠𝑞 𝛹𝑟𝑑   𝛹𝑟𝑞 𝜔𝑟 𝑇𝐿 𝛳𝑟]𝑇 (3) 

                                                           
 

And 

𝐵 = [

1

𝜎𝐿𝑠
   0 0 0     0     0 0

   0   
1

𝜎𝐿𝑠
  0 0 0     0 0

]

𝑇

𝑈

= [
𝑈𝑑𝑠
𝑈𝑞𝑠

]   

 
 

(4) 

 

𝛾 = (
1

𝜎𝜏𝑠
+
1 − 𝜎

𝜎𝜏𝑟
) ,    𝑘𝑠 = 

𝑀

𝜎𝐿𝑠𝐿𝑟
 , 𝜏𝑟 = 

𝐿𝑟
𝑅𝑟
,    

𝜏𝑠 = 
𝐿𝑠
𝑅𝑠
,     𝜎 =  1 −

𝑀2

𝐿𝑠𝐿𝑟
 

3. Input-output linearization control design 

based on a newly extended MVT observer 

 

3.1. Feedback linearizing controller for IM  

 

3.1.1. The choice of outputs 

    The choice of outputs is according to the objectives 

of control. The rotor speed is chosen as the first output 

while the second output selected is the square of the 

rotor flux so as for tracking the purposed control 

trajectory. 

𝑦(𝑥) = [
ℎ1(𝑥𝑒)

ℎ2(𝑥𝑒)
] = [

𝑤𝑟
(𝛹𝑟𝑑

2 + 𝛹𝑟𝑞
2 )] = [

𝑤𝑟
𝛹𝑟
2] 

 

(5) 

  

3.1.2. Coordinates transformation 

     Defining the following transfer of coordinates that’s 

given the next equations system: 

[

𝑧1
𝑧2
𝑧3
𝑧4

] =

[
 
 
 
 
ℎ1(𝑥𝑒)

ℎ̇1(𝑥𝑒)

ℎ2(𝑥𝑒)

ℎ̇2(𝑥𝑒)]
 
 
 
 

= 

[
 
 
 
 
 
 

𝜔𝑟
𝑛𝑝 𝑀

𝐽 𝐿𝑟 
(𝛹𝑟𝑑  𝑖𝑠𝑞 − 𝛹𝑟𝑞 𝑖𝑠𝑑) −

𝑓

𝐽
𝑤𝑟 −

1

𝐽
𝑇𝐿

𝛹𝑟
2

2

𝜏𝑟
(𝑀(𝛹𝑟𝑑  𝑖𝑠𝑞 − 𝛹𝑟𝑞 𝑖𝑠𝑑) − (𝛹𝑟𝑑

2 + 𝛹𝑟𝑞
2 ))

]
 
 
 
 
 
 

 

 

 

 

(6) 

    We can obtain the nonlinear state feedback control 

of IM as follow (for more details, see [2, 17]) 

[
𝑈𝑑𝑠
𝑈𝑞𝑠

] = 𝐷(𝑥𝑒)
−1 [−𝐴(𝑥𝑒) +

𝑣𝑑
𝑣𝑞
] 

 

(7) 

 



Where: 

𝐷(𝑥𝑒) =
1

𝐿𝑠 −
𝑀
𝐿𝑟 [
 
 
 
𝑑𝛹𝑟𝑞

𝑑𝑡

𝑑𝛹𝑟𝑑
𝑑𝑡

2𝑀

𝜏𝑟

𝑑𝛹𝑟𝑑
𝑑𝑡

2𝑀

𝜏𝑟

𝑑𝛹𝑟𝑞

𝑑𝑡 ]
 
 
 

 

 

(8) 

 

And  

𝐴(𝑥𝑒) = 

[
 
 
 
 (
4

𝜏𝑟
2
+
2𝑘𝑠
𝜏𝑟
2
𝑀)(𝛹𝑟𝑑

2 +𝛹𝑟𝑞
2 ) − (

6𝑀

𝜏𝑟
2
+
2𝛾𝑀

𝜏𝑟
) (𝛹𝑟𝑑

2  𝑖𝑠𝑑 − 𝛹𝑟𝑞 𝑖𝑠𝑞) +
2𝑛𝑝 𝑤𝑟𝑀

𝜏𝑟
(𝛹𝑟𝑑

2  𝑖𝑠𝑞 − 𝛹𝑟𝑞 𝑖𝑠𝑑) +
2𝑀2

𝜏𝑟
2
( 𝑖𝑠𝑞 − 𝑖𝑠𝑑)

𝑛𝑝 𝑀

𝐽𝐿𝑟
((𝛹𝑟𝑑

2  𝑖𝑠𝑞 − 𝛹𝑟𝑞
2  𝑖𝑠𝑑) + 𝑛𝑝 𝑤𝑟(𝛹𝑟𝑞 𝑖𝑠𝑑 − 𝛹𝑟𝑞 𝑖𝑠𝑞) + 𝑛𝑝 𝑘𝑠𝑤𝑟(𝛹𝑟𝑑

2  −  𝛹𝑟𝑞
2 )) −

𝑓

𝐽2
(𝑇𝐿 − 𝑓𝑤𝑟) ]

 
 
 
 

 

 
 

 

(9) 

    To ensure a faultless tracking of the rotor speed and 

the square of the rotor flux trajectories, respectively. 

The variables 𝑣𝑑 and 𝑣𝑞  are calculated through [17]: 

 

𝑣𝑑 = −𝑘11(𝑤𝑟 −𝑤𝑟 𝑟𝑒𝑓)−𝑘12 (
𝑑𝑤𝑟
𝑑𝑡

−
𝑑𝑤𝑟 𝑟𝑒𝑓

𝑑𝑡
) 

𝑣𝑞 = −𝑘21(𝛹𝑟
2 − 𝛹𝑟 𝑟𝑒𝑓

2 )−𝑘22 (
𝑑𝛹𝑟

2

𝑑𝑡

−
𝑑𝛹𝑟 𝑟𝑒𝑓

2

𝑑𝑡
) 

 

 
 

(10) 

   

 Where k11, k12, k21, and k22 could be determined so as 

to make assured the closed loop system stable and to 

have a fast response in trajectory tracking.  

 

3.2.  New extended MVT observer design 

 

3.2.1. problem declaration 

   In this section, we present an effectual method for 

designing nonlinear systems’ observers. Considering 

the following nonlinear system. 

{
�̇�(𝑡) = 𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢

𝑦 = 𝐶𝑥(𝑡)
 

 

(11) 

We can write (11) in the Lipchitzien form as (where 

this passage is well illustrated in [1, 18, 19] ): 

 

{
 
 

 
 

�̇�(𝑡) = 𝐴0𝑥(𝑡) + 𝐵0𝑢(𝑡) +

∑𝜇𝑖(𝑥(𝑡))

𝑟

𝑖=1

(�̅�𝑖𝑥(𝑡) + �̅�𝑖𝑢(𝑡))

𝑦 = 𝐶𝑥(𝑡)

 

 

(12) 

   

   We can also present the state equation of the 

observer as follow: 

�̇�(𝑡) = 𝐴0𝑥(𝑡) + 𝐵0𝑢(𝑡) + 𝐿0(𝑦(𝑡) − �̂�(𝑡)) 

+∑𝜇𝑖(𝑥(𝑡)) (�̅�𝑖𝑥(𝑡) + �̅�𝑖𝑢(𝑡))

𝑟

𝑖=1

 

 

(13) 

The dynamic of the state error (𝑒(𝑡) = 𝑥(𝑡) − �̂�(𝑡)) 
can be written as: 

�̇�(𝑡) = 

(𝐴0 − 𝐿0𝐶)𝑒(𝑡) + ( ∅(𝑥, 𝑢) − ∅(�̂�, 𝑢)) 

 

(14) 

   Where: 

∅(𝑥, 𝑢) =∑𝜇𝑖(𝑥(𝑡)) (�̅�𝑖𝑥(𝑡) + �̅�𝑖𝑢(𝑡))

𝑟

𝑖=1

 
 

(15) 

 

The stability analysis of (14) can’t directly be affected. 

The aim is to find the gain 𝐿0 of the observer (13) that 

stabilizes the dynamic of the state estimation error 

equation (14). 

3.2.2.  Mean value theorem 

 

  In this part, the MVT approach is presented so as to 

develop the extended observer gain 𝐿0. The MVT 

approach has been well illustrated in[1, 18]. 

Appending the MVT approach to (14) the dynamics of 

the observer errors can be exhibited as follows: 

�̇�(𝑡) = 

((𝐴0 − 𝐿0𝐶) +∑∑𝑒𝑛(𝑖)

𝑛

𝑗=1

𝑛

𝑖=1

𝑒𝑛
𝑇(𝑗)

𝜕∅𝑖
𝜕𝑥𝑗

(𝜉𝑖))𝑒(𝑡) 

 

(16) 

  

Combining the sector nonlinearity with the MVT 

approach, the dynamics of the observer errors (16) 

becomes as (for more details, see references [1, 18] ): 



�̇�(𝑡) =∑𝜇𝑖(𝜉(𝑡))(𝐴0 − 𝐿0𝐶 + 𝐴𝑖
∗)𝑒(𝑡)

𝑟

𝑟=1

 

 

(17) 

Where: 𝑟 ≤ 2𝑛
2
and 𝜉(𝑡) ∈ [𝑥, �̂�] . 

The stability of the state estimation error (17) is studied 

so as to find the observer gain 𝐿0 by applying the 

quadratic Lyapunov function that is given as follows: 

  𝑉(𝑒(𝑡)) = 𝑒𝑇(𝑡)𝑃𝑒(𝑡) (18) 

 

The state estimation error asymptotically converges to 

zero if there exists a matrix 𝑃 = 𝑃𝑇 > 0 such as the 

following LMI be verified: 

𝐴0
𝑇𝑃 + 𝑃𝐴0 + 𝐴𝑖

∗𝑇𝑃 + 𝑃𝐴𝑖 −𝑀𝐶 −𝑀
𝑇𝐶𝑇

+ 𝛼𝑃 < 0 

(19) 

For (𝑖 = 1,⋯ , 2𝑛
2

) 

Knowing that the extended observer gain is calculated 

as: 

𝐿0 = 𝑃−1𝑀 (20) 

 

3.2.3. Extended observer design for IM 

Firstly, the system is transformed in canonical form, 

then an observer is suggested to estimate the unknown 

extended states of the IM via the observer equation 

(13). 

Secondly, it is assumed that the first, the second and 

the fifth components of the state vector are measured, 

those conduct to the output: 

𝑦(𝑡) = 𝐶𝑥𝑒(𝑡) such that 𝐶 =

(
1 0 0     0 0 0 0
0 1 0     0 0 0 0
0 0 0     0 1 0 0

) 

 

(21) 

Where: 

𝑥𝑒 = [𝑖𝑠𝑑 𝑖𝑠𝑞 𝛹𝑟𝑑   𝛹𝑟𝑞 𝜔𝑟 𝑇𝐿 𝛳𝑟]𝑇 

The dynamics state estimation error is given as (17) 

where 𝐴𝑖
∗ are obtained from: 

𝜕𝑓𝑒
𝜕𝑥

(𝜉) =∑∑𝑒𝑛
𝑇(𝑖)𝑒𝑛(𝑗)

𝜕𝑓𝑒𝑖
𝜕𝑥𝑗

(ξi)

5

𝑗=1

5

𝑖=1

 

 

(22) 

 

 

 

𝜕𝑓𝑒
𝜕𝑥

(𝜉) = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 −γ

∂𝑓𝑒1 
∂x2 

(ξ)
ks 
τr 

∂𝑓𝑒1 
∂x4 

(ξ)
∂𝑓𝑒1 
∂x5 

(ξ) 0 0

∂𝑓𝑒2 
∂x1 

(ξ)
∂𝑓𝑒2 
∂x2 

(ξ)
∂𝑓𝑒2
∂x3 

(ξ)
ks 
τr 

∂𝑓𝑒2 
∂x5 

(ξ) 0 0

M

τr 

∂𝑓𝑒3 
∂x2 

(ξ) −
1

τr 

∂𝑓𝑒3 
∂x4 

(ξ) 0 0 0

0
∂𝑓𝑒4 
∂x2 

(ξ)
∂𝑓𝑒4 
∂x3

(ξ) −
1

τr 
0 0 0

∂𝑓𝑒5 
∂x1 

(ξ)
∂𝑓𝑒5 
∂x2 

(ξ)
∂𝑓𝑒5 
∂x3 

(ξ)
∂𝑓𝑒5 
∂x4

(ξ) −
f

J
−
1

J
0

0 0 0 0 0 0 0
0 0 0 0 1 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

With: 

∂𝑓𝑒1
∂x2

(ξ) = np. ξ5 + 2. k1. ξ2 

 

∂𝑓𝑒1
∂x4

(ξ) =
∂𝑓𝑒2
∂x3

(ξ) = ksnp. ξ5 

∂𝑓𝑒1
∂x5

(ξ) = ks. np. ξ4 + np. ξ2 

 

∂𝑓𝑒2
∂x1

(ξ) = −np. ξ5 − k1. ξ2 

∂𝑓𝑒2
∂x2

(ξ) = −γ + k2
∂𝑓𝑒5
∂x4

(ξ) 

= −γ − k1. ξ1 

 

∂𝑓𝑒2
∂x5

(ξ) = −ks. np. ξ3 − np. ξ1 

∂𝑓𝑒3
∂x2

(ξ) = −k2
∂𝑓𝑒5
∂x1

(ξ) 

= k1. ξ4 

∂𝑓𝑒3
∂x4

(ξ) = −
∂𝑓𝑒4
∂x3

(ξ)

= k2
∂𝑓𝑒5
∂x3

(ξ) = −k1. ξ2 

 
∂𝑓𝑒4
∂x2

(ξ) =
M

τr 
− k2

∂𝑓𝑒5
∂x2

(ξ) =–
M(Ψrd + 1)

τr Ψrd
. ξ3 

 

    The MVT approach gives the following matrix gain 𝐿0 

guaranteeing the exponential convergence of the suggested 

extended observer. The observer gain 𝐿0 is obtained from 

(20) by solving the LMI problem (19): 

 

𝐿0 = 

(

 
 
 
 

1.7888 × 107 −3.1442 × 104 4.9969 × 103

−2.5728 × 104 1.6267 × 107 −2.9907 × 106

2.3671 × 106 −7.1504 × 103 1.0246 × 103

−721.9369 2.1529 × 106 −3.9564 × 104

 −2.6528 × 103  3.575 × 105 9.7711 × 106

6.04 × 104 −1.136 × 108 −3.9638 × 106

−2.7277 × 10−5 9.419 × 10−4 0.9997 )

 
 
 
 

 

 

4. Simulation results 

   The proposed control technique based on the MVT 

extended observer (global scheme is shown in Fig. 1) 

are implemented and the simulation results are obtained 



under Matlab/Simulink environment. This technique is 

applied to the IM which has the followings 

parameters[13]: 

 

Pole Pair  np 2 

Rotor Inductance Lr 0.4718 H 

Stator Inductance Ls 0.4718 H 

Rotor Resistance Rr 4.30 Ω 

Stator Resistance Rs 9.65 Ω 

Mutual Inductance M 0.4475 H 

Moment of Inertia J 0.0293 Kg.m-2 

 

 

 
Fig. 1. Global diagram of the proposed controller based 

extended MVT observer applied to IM 

 

    The input-output linearizing controller based on the 

rotor flux( 𝛹𝑟) which has a tracking state of 0.854 wb 

and the rotor speed (𝜔𝑟) that has the desired trajectory 

begin by 50 rad/s  and has increased to 100 rad/s at 

t=0.5s. The desired states are shown in blue in Fig. 2, 

3. Initially, the motor is unloaded, after that, a load 

torque of 3Nm is applied to the IM at t = 0.3s that is 

offered in Fig. 7. 

 The suggested extended observer design is applied to 

the IM machine so as to estimate all ordinary IM states 

(𝑖𝑑𝑠, 𝑖𝑞𝑠, 𝛹𝑟𝑑 , 𝛹𝑟𝑞   and 𝑤𝑟) and moreover the load 

torque ( 𝑇𝐿) and the rotor position ( 𝛳𝑟). In Figs. 2 to 8, 

the real states have the red line, while the dashed green 

line indicates the estimated states. 

 
Fig. 2. The desired rotor flux (blue), d-axis rotor flux and 

its estimation 

 

 
Fig. 3. Rotor speed, its desired and its estimation 

 

 
Fig. 4. d-axis stator current and its estimation 

 



 
Fig. 5. q-axis stator current and its estimation 

 

 
Fig. 6. q-axis rotor flux and its estimation 

 

 
      Fig. 7. Load torque and its estimation 

 

 
Fig. 8. Rotor position and its estimation. 

 

     By analyzing the simulation results, the obtained 

performance of the rotor speed and the rotor flux 

tracking are very appropriate (Fig2 and 3). The Fig.2 to 

8 present that the estimation errors approximately 

converge to zero with a fast response time. The results 

described above prove the effectiveness of the MVT 

extended observer for a very complex nonlinear system 

that is the induction motor. However, low cost and fast 

digital signal processors making an easy 

implementation comparatively with the other 

approaches (sliding mode, MRAS, etc.). 

5. Conclusion 

    The concept of input-output linearization and 

decoupling control is applied to the induction motor 

drive across a PWM inverter is distinctly presented. 

The new nonlinear extended observer based on MVT 

combined with the sector nonlinearity which estimates 

the extended IM machine states (the classical IM 

machine states, the load torque, and the rotor position) 

has been exhibited. The concept of the controller and 

the newest extended MVT observer have been 

implemented to the IM (powered by a PWM inverter) 

under the Matlab/Simulink environment. The 

numerical simulations those have been presented reveal 

the effectiveness of the suggested nonlinear control and 

the newly extended MVT observer. In future work, the 

testing of the suggested algorithm in real experimental 

trials will be taken into consideration. 
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