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Abstract: In this study, the complex behavior of buck-boost 

converter is investigated in detail using symbolic sequences 

and complexity measures. Input voltage is taken as 

bifurcation parameter for analysis. Primary and secondary 

symbolic sequences are built and utilized to categorize 

different types of smooth and non-smooth bifurcations. The 

concept of weight complexity and Lempel and Ziv (L-Z) 

complexity are implemented to quantify the bifurcation 

phenomenon of the system. The stability of the switching 

systems is known from the stability index based on weight 

and L-Z complexities. Applying block entropy measure, 

bifurcation types are identified and measured. The 

simulations and programming are performed using 

MATLAB software. 
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1.  Introduction 

 Extensive researches on power electronics in 

renewable energy systems are emerging recently [1]. 

Besides, acquiring optimized output from power 

converters using various control schemes [2, 3] are the 

main concern of engineers today. Such switching 

powers are the rich source of exhibiting nonlinearity. 

For past few decades, nonlinear behavior such as 

bifurcations and chaos has been elaborated in those 

switching power converters [4-8]. It has become vital 

to analyze such unexpected behavior of switching 

systems for engineers to design the stable system.  
The abnormal dynamics in dc-dc converters are 

examined using many tools, including power spectrum 

[9], Lyapunov exponents [10] and fractal dimension. 

But they are too tough and time-consuming for the 

engineering applications. Initially, symbolic sequence 

is used to recognize border collision and bifurcation 

phenomena in power converters [11–13]. However, the 

previous literature involves waveform observation of 

the system to estimate the type of bifurcation. Most 

recently, detecting all types of bifurcation using 

duplicate symbolic sequence [14] has been reported.  

Moreover, a limited number of works has been 

performed using symbolic sequence method for 

bifurcation analysis. In this paper, a new thought of 

secondary symbolic block and the respective sequence 

is generated. And along with the primary symbolic 

sequence, all the bifurcation types are detected. 

 L-Z complexity [15, 16] and weight complexity 

measures based on the finite symbolic sequences has 

been utilized in this work, which concretely exposes 

the system behavior. As design engineers are more 

concerned about the system stability, the stability index 

based on weight and L-Z complexities is presented 

[14]. Also, various periodic motions and chaos are 

detected using block entropy.  

This paper is organized as follows: section 2 deals 

with the concept of generating the primary and 
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secondary sequences. In Section 3, by utilizing some 

norms, the types of standard bifurcations and border 

collision bifurcations are detected. In section 4, 

bifurcation analysis of the system is explained based 

on the concept of weight and L-Z complexity. Section 

5 explains the procedure for estimating the block 

entropy to examine the bifurcation and chaotic 

behavior of the system. To show the truthfulness of the 

concepts, in section 6, simulations results of system is 

illustrated.  Finally, the conclusion of this study is 

described in section 7. 

 

2. Primary and secondary symbolic sequences 

2.1 Primary symbolic sequence 

Primary switching block is generated by inspecting 

the operating modes in one switching period and the 

corresponding symbolic sequence is obtained by 

following primary switching block over infinite 

switching period. In dc–dc switching converters having 

two switching elements (switch and diode), the 

switching states that exist includes (on, off), (off, on) 

and (off, off). For discontinuous conduction mode as 

seen in Fig. 1(a), the sequence of switching states is 

(on, off) → (off, on) → (off, off) during one switching 

period, whereas the switching state (off, off) does not 

appear in continuous conduction mode as shown in 

Fig. 1(b). 

Primary switching block is defined by representing 

the three switching states in one switching cycle using 

binary digits b1, b2, and b3. Let bi = 0 or 1 denotes 

whether the corresponding switching state exists or not 

during one switching cycle.  Primary switching block 

is given as follows:  

 

 

 

 

 

 

 

 

                                           𝑏1𝑏2𝑏3 2  =   𝑂 10                      (1)  

Where, O is a decimal value in the range of (0-7).  The 

string of successive primary switching blocks over 

infinite switching periods, form primary symbolic 

sequence: 

                     𝑂 =  (𝑂0𝑂1𝑂2 . . .  𝑂𝑛  . . . )                   (2) 

2.2 Secondary symbolic sequence 

The primary symbolic sequence reveals only the 

occurrence of border collision bifurcation. In 

particular, since the primary symbolic sequence only 

provides partial information about the dynamics of the 

system. To further identify the different types of 

standard and border collision bifurcation, the 

periodicity of waveforms is required. Hence, the 

concept of the secondary symbolic block and the 

respective sequence is established. 

The inductor current 𝑖𝐿 is sampled at integral 

multiples of switching period and the maximum 

inductor current is considered as a border current Ib. 

With reference to Ib as a threshold value, the secondary 

switching block is obtained. The secondary switching 

block at nth switching instant is defined as 

                           𝑙𝑛 =  
1, 𝑖𝐿 < 𝐼𝑏
0, 𝑖𝐿 ≥ 𝐼𝑏

                          (3) 

And the corresponding secondary symbolic sequence 

established over infinite switching period is given by, 

                        𝐿 =  (𝑙0𝑙1𝑙2  …  𝑙𝑛  … )                  (4) 

The periodicity of the generated sequence is then 

determined for bifurcation analysis. 

 

3. Bifurcation analysis based on symbolic sequences 

With reference to literature [13], a dc-dc switching 

converter is defined by the iterative map 𝑋𝑛+1 =
 𝑓(𝑋𝑛 , 𝑎), where 𝑎 is a parameter, and 𝑋𝑛  state variable 

sampled at integer multiples of switching time. When 

the converter experiences standard bifurcation as the 

parameter 𝑎 is varied, the form of 𝑓 remains unaltered 

before and after the bifurcation. Whereas, when the 

converter exhibits border collision bifurcation, the 

form of 𝑓 alters as 𝑎 is varied [13]. In the symbolic 

sequence analysis, as the primary symbolic sequence is 

generated based on the form of 𝑓, the onset of border 

collision bifurcation is easily detected by inspecting the 

primary symbolic sequence. 

 Further to distinguish some standard bifurcation 

types such as period doubling bifurcation and border 

collision bifurcation  from  period-n  to  period-n,  

period-m or  chaos,  the  secondary  symbolic sequence   

is generated,  and it reveals the periodicity of the 

               
   

            (a)                                      (b) 

Fig. 1. Primary symbolic sequence for 

(a) Discontinuous mode (b) Continuous mode 

 

 



waveform. Moreover, the order in which the sequences 

are analyzed to classify the bifurcation types is 

𝑂 →  𝐿. 

 Suppose 𝑎1 < 𝑎𝑐 < 𝑎2, where 𝑎𝑐  signifies the 

critical parameter value. Poi and PLi denotes the 

periodicity of the primary and secondary symbolic 

sequences respectively for 𝑎 =  𝑎𝑖  with i = 1 or 2. 

Then, by applying the norms as tabulated in Table I, all 

kinds of bifurcation are determined [14]. 

 
Table I Detecting Bifurcation types based on Symbolic 

Sequences 

 

4. Bifurcation analysis based on complexity 

measures 

 The concept of L–Z complexity and weight 

complexity is explored to study the nonlinear behavior 

of dc–dc switching converters. As the primary 

switching block reveals the information of complexity, 

the weight complexity is utilized to analyze primary 

symbolic sequence. Moreover, the secondary switching 

block is defined from the current level and represented 

as symbols; hence L-Z complexity is used to inspect 

secondary symbolic sequence. 

4. 1 Lempel–Ziv complexity 

 Lempel and Ziv complexity measure C for a given 

finite secondary symbolic sequence 

𝐿 =  𝑙0𝑙1𝑙2 … 𝑙𝑛−1𝑙𝑛  is obtained by following the 

procedure given below [15, 16].  

1) Let 𝑅 and 𝑆 denoted two subsequences of 𝐿, and 𝑅𝑆 

signifies the concatenation 𝑅 and 𝑆, while sequence 

𝑅𝑆𝜋 is produced by excluding the last character from 

𝑅𝑆 sequence (𝜋 denotes the operation of deleting the 

last character in the sequence). Let 𝑉(𝑅𝑆𝜋) denote the 

vocabulary of all different subsequences of 𝑅𝑆𝜋. 

2) Let 𝑅 =  𝑙0𝑙1𝑙2 … 𝑙𝑟−1𝑙𝑟  and 𝑆 =  𝑙𝑟+1, in general, 

then 𝑅𝑆𝜋 =  𝑙0𝑙1𝑙2 …  𝑙𝑟 ; if 𝑆 is a part of 𝑉(𝑅𝑆𝜋), then 

𝑆 is a subsequence of 𝑅𝑆𝜋, not a new sequence.  

3) Renew 𝑆 to be 𝑙𝑟+1𝑙𝑟+2, and check whether 𝑆 

belongs to 𝑉(𝑅𝑆𝜋) or not.  

4) Repeat the previous steps until 𝑆 does not belong to 

𝑉(𝑅𝑆𝜋). Now, 𝑆 =  𝑙𝑟+1𝑙𝑟+2𝑙𝑟+3 … 𝑙𝑟+𝑖  is not a 

subsequence of 𝑉(𝑅𝑆𝜋) =  𝑙0𝑙1𝑙2 … 𝑙𝑟 , so the separator 

• is included to separate the sequence as 𝑅𝑆 =
 𝑙0𝑙1𝑙2 … 𝑙𝑟 • 𝑙𝑟+1𝑙𝑟+2𝑙𝑟+3 … 𝑙𝑟+𝑖  and C is incremented 

by one.  

5) Then, 𝑅 is renewed to be 𝑅 =  𝑙0𝑙1𝑙2 … 𝑙𝑟+𝑖  and 

𝑆 =  𝑙𝑟+𝑖+1. 
6) The aforementioned procedure is repeated till 𝑆 is 

the last character. The number of different 

subsequences in 𝐿 is the measure of complexity C. 

4.2 Weight complexity 

 The weight complexity Cd is obtained by finding 

the sum of the maximal primary switching blocks of 

each subsequence in the new primary symbolic 

sequence [14]. The concept of weight complexity is 

enlightened with primary symbolic sequence 𝑂 =
(676767676 ···)  =  (67)∞ as an example. 

1) Initially, 𝑂 =   676767676 ···  is transformed 

as 𝑂 =  (76767676 ···). 

2) Next, take 𝑅 =  𝑂1  =  7, 𝑆 =  𝑂2  =  6, 𝑅𝑆 =
 76 and 𝑅𝑆𝜋 =  7, so 𝑆 is not the subsequence of RSπ, 

and then, introduce the separator • on 𝑅𝑆 sequence, 

so 𝑅𝑆 = 7 • 6 •. 

3) After that, let 𝑅 =  𝑂1𝑂2 =  76, 𝑆 =  𝑂3 =  7,
𝑅𝑆 =  767 and 𝑅𝑆𝜋 =  76, so 𝑆 is the subsequence of 

𝑅𝑆𝜋 and 𝑅𝑆 =  7 • 6 • 7. 

4) Then, let 𝑅 =  𝑂1𝑂2 =  76, 𝑆 =  𝑂3𝑂4 =  76,
𝑅𝑆 =  7676 and 𝑅𝑆𝜋 =  767, so 𝑆 is the subsequence 

of 𝑅𝑆𝜋 and 𝑅𝑆 =  7 • 6 • 76. 

5) Steps 2 and 3 are repeated, and then, finally 

get 𝑂 =  7 • 6 • 76767676 ···. 
6) So, this primary symbolic sequence has three 

subsequences. The maximal blocks in the three 

subsequences are 7, 6 and 7, respectively. Thus, the 

weight complexity of the primary symbolic sequence is 

Cd = 7 + 6 + 7 = 20. 

4.3 Conditions based on complexity measures to 

differentiate bifurcation types 

 With the aid of complexity measures C and Cd, the 

bifurcation types are categorized with the following 

conditions [14]. 

Standard 

Bifurcation 

Period 

Doubling 

O1=O2 

PO1=PO2 

L1≠L2 

2PL1=PL2 

Saddle Node 
O1=O2 

PO1=PO2 

L1≠L2 

PL1>>PL2 

Hopf 
O1=O2 

  PO1=PO2 

L1≠L2 

   PL1<<PL2 

Border 

collision 

Bifurcation 

Period-n to  

Period-n 

O1≠O2 

PO1≠ PO2 

L1=L2 

PL1 = PL2 

Period-n to  

Period-m 

O1≠O2 

PO1≠ PO2 

L1≠L2 

 PL1  ≠ PL2 

Period-n to 

chaos 

O1≠O2 

PO1<<PO2 

L1≠L2 

PL1<< PL2 



1) If C changes and Cd does not change, the system 

undergoes standard bifurcations. To further identify the 

different types of standard bifurcation, the variation in 

C is analyzed. When the growth of C is less, the system 

will experience flip (period doubling) bifurcation. 

However, when C falls abruptly, the system will 

exhibit saddle-node bifurcation. Then, if C increases 

and the increment of C is more, the systems will 

exhibit slow frequency oscillation via Hopf bifurcation. 

2) If C does not change but Cd changes, the system 

exhibit border collision bifurcation and jumps from a 

periodic motion to another periodic motion with a 

same periodic number of the former. 

3) If both C and Cd changes, the converter is said to 

experience border collision bifurcation and jumps from 

a one periodic orbit to another periodic orbit with a 

different periodic number of the former or chaotic 

orbit. 

4.4 Stability index of DC–DC switching converters 

based on complexity measures 

 The primary switching block shows the converter 

switching states in one switching period, which also 

infers the degree of the system stability. That is, weight 

complexity Cd reflects the stability of the system, and it 

is inversely proportional to the stability degree. When 

Cd is low, the system’s stability is high and vice-versa. 

The L–Z complexity derived from secondary switching 

sequence also has a similar relation to the stability 

degree. With the variation of bifurcation parameter 

beyond the critical value, C is high, which further 

imply that the system losses its stability i.e., stability 

degree is low. The stability index is given as follow 

[14]: 

                               𝑆𝐼 =
𝐶𝑂𝐶𝑑𝑜

𝐶𝐶𝑑
                     (5) 

Where, C0 andCd0 are the values of C and Cd, when the 

system functions in stable period-1operation. The 

period-1 orbit has the highest stability SI = 1. 

 

5.  Analysis of chaotic behavior using block entropy 

 Block entropy scheme is implemented in the 

secondary symbolic sequence to analyze the dynamics 

of the system. The algorithm for computing block 

entropy is illustrated in Fig. 2. Initially, the symbolic 

sequence is grouped to form a subsequence of a 

suitable length L, and then, such a combination of 

symbolic codes of the same length is moved as shown 

in the Fig. 2. Next, each subsequence is converted into 

decimals, and the probabilities of various decimal 

codes representing subsequences in series are found 

[17]. 

Let Pi denotes the probability of a decimal code i in a 

series    

                  𝑃𝑖  =
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑑𝑒𝑐𝑖𝑎𝑚𝑙  𝑐𝑜𝑑𝑒  𝑖

  𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟   𝑜𝑓  𝑑𝑒𝑐𝑖𝑚𝑎𝑙  𝑐𝑜𝑑𝑒𝑠
            (6) 

According to Shannon’s measure, the uncertainty of 

the system operation is quantified by the block entropy 

HL which is given as follows [17]: 

                      𝐻𝐿   =  −   𝑃𝑖
𝑁
𝑖=1 𝑙𝑜𝑔2𝑃𝑖                     (7)         

Where, N = 2
L
. Furthermore, the block entropy 

provides the quantitative descriptions of a sequence.  

 

6. Applied example 

 The circuit diagram of the current mode controlled 

buck-boost converter is shown in Fig. 3. To analyze the 

chaotic behavior of the system, the parameters chosen 

is tabulated in Table II. The investigation of bifurcation 

phenomena is carried out by keeping input voltage (E) 

as the bifurcation parameter. Varying E in the range of 

(10-50) V, a bifurcation diagram is plotted and the 

onset of border collision bifurcation is also depicted in  

the Fig. 4. From this diagram, it  is  observed  that  the 

 

converter exhibits period doubling cascade as the value 

of E is varied from 45V to 24.4V. Further, the 

converter bifurcates to chaos if E < 24.4V. When E is 

in the range of 12.2V to 11.8V, a small periodic 

window is examined between the chaotic regions, 

 
Fig. 2. Block entropy algorithm 

 

Table II 

Specification of current controlled buck-boost converter 

Parameters Values 

Supply Voltage 50V 

Switching Frequency 20 kHz 

Load Resistance 20 

Output Voltage 35V 

Duty Ratio(Buck mode) 0.4 

Load current (2-4)A 

Inductance 0.5mH 

Capacitance 4µF 

  



where the converter undergoes period-3 to period-6 

operation. 

 The simulated result showing the generation of 

primary and secondary symbolic sequences for 

different values of the input voltage is illustrated in the 

Fig. 5 and Fig. 6, respectively. 

6.1 Analysis of bifurcation behavior based on 

primary and secondary symbolic sequences 
 The primary and secondary symbolic sequences and 

their periodicity for different ranges of input voltages 

are identified and tabulated in Table III. It can be 

inferred from the table that for the range of (50-42.5) 

V, the converter exhibits period-1 operation. As the 

input voltage (E) is decreased from 42.5V to 42.4V, 

there is no change in the periodic number of primary 

sequence (Po) i.e., PO1 = PO2 but periodicity of 

secondary sequence (PL) is found to be doubled i.e., 

2PL1 = PL2. This implies that period doubling, a type of 

standard bifurcation has occurred. When E is reduced 

from 28.5V to 28.4V, PO1 ≠ PO2, PL1 = PL2. This shows 

the occurrence of period-2 to period-2 border collision 

bifurcation. It is depicted in Fig. 6(c), and also 

confirms from the bifurcation diagram shown in Fig. 

4(a). When E is changed from 25.3V to 25.2V, PO1 ≠ 

PO2 and PL1 ≠ PL2, it communicates that border collision 

bifurcation has occurred, and jumps from period-2 

orbit to period-4 orbit. Moreover, when E is further 

reduced from 24.4V to 24.3V, PO1 = PO2   and 2PL1 = 

PL2, exemplifies that converter exhibits period doubling 

bifurcation, and forks from period-4 orbit to period-8 

orbit. 

 The converter enters chaotic region when E < 

23.5V. After the intermittent chaos, a small periodic 

window is observed, which also exhibits period 

doubling cascade, is embedded in the chaotic region. In 

the periodic window, the system shows period-3 

operation at input voltage E = 12.2V. As E is decreased 

to 12V, PO1 = PO2 and 2PL1=PL2 implying period 

doubling bifurcation have occurred as it jumps from 

period-3 orbit to period-6 orbit. When E = 11.8V, PO1 ≠ 

PO2 and PL1 = PL2, indicates that system exhibits border 

collision bifurcation and forks from period-6 orbit to 

another period-6 orbit. For further decrement of E 

below 11.8V, both the sequences become more 

random. This shows that the system enters into the 

chaotic region again. 

 

6.2 Analysis of bifurcation behavior based on 

complexity measures 
 The weight complexity measure Cd, L-Z complexity 

measure C, and stability Index (SI) for various range of  

(a) 
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e 
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Fig. 3. Circuit diagram of a current controlled buck-boost 

converter 
 

Table III 

Primary and Secondary Symbolic Sequences 

Input 

voltage E 

(V) 

Primary 

Sequence 
Po 

Secondary 

Sequence 
PL 

 (50-42.5) (6)∞ 1 (0)∞ 1 

(42.4-28.5) (6)∞ 1 (01)∞ 2 

(28.4-25.3) (46)∞ 2 (01)∞ 2 

(25.2-24.4) (6664)∞ 4 (1011)∞ 4 

(24.3-23.5) (6664)∞ 4 (10111111)∞ 8 

(23.4-12.3) ∞ +∞ ∞ +∞ 

12.2 (466) ∞ 3 (101)∞ 3 

12 (466) ∞ 3 (101111) ∞ 6 

11.8 (446466) ∞ 6 (101111) ∞ 6 

E<11.8 ∞ +∞ ∞ +∞ 

 

 

 
 

 

 
 

Fig. 4. (a) Bifurcation diagram (b) Zoomed form of (a), 

showing a periodic window 

 

 

Onset of Border 
collision bifurcation 



 

 

 

 

(a)                (b) 

Fig. 5. Simulated results showing primary symbolic sequence (a) Period-1 operation (b) Period-2 operation. 

 

 

 

 

   

 

           (a)              (b) 

      

    

 

 

 

 

 

      (c)                                                   (d) 

Fig. 6. Simulated results showing secondary symbolic sequence (a) Period-1operation (b) Period-2 operation (c) Period-2 to 

period-2 border collision (d) Period-4 operation 
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6          6                     6 Po =1   
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input voltage are presented in Table IV. When the 

input voltage is in the range of (50-42.5) V, the 

system is found to functions in the period-1 regime, 

and the corresponding values of C and Cd are taken as 

Co and Cdo, respectively. With E decreased from 42.5V 

to 42.4V, it is observed that there is no change in Cd, 

but C increases. As the increment of C is less, it is 

understood that the system bifurcates to period-2 

operation. When E is reduced from 28.5V to 28.4V, Cd 

changes, but C does not change. This reveals the 

occurrence of border collision (period-2 to period-2) at 

E = 28.4V. Both the measures Cd and C changes, when 

E is varied from 25.3V to 25.2V, showing the 

existence of period-2 to period-4 border collision 

bifurcation. Moreover, when E is further reduced from 

24.4V to 24.3V, Cd remains the same but C increases 

by only one, it implies that system exhibits period 

doubling bifurcation, and branches from period-4 orbit 

to period-8 orbit. For E < 23.5V, the value of 

complexity measures increases abruptly, and this 

shows that the system enters the chaotic region. At E = 

12.2 V, it is noticed that Cd decreases to 3, and C to 18 

implying that period-3 operation has occurred after 

intermittent chaos. When E = 12V, C increases only by 

one, but Cd remains the same revealing that the 

 
(a)             (b) 

 
(c) 

 

Fig. 7 (a) L-Z complexity plot (b) Weight complexity plot (c) Stability index plot 
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Table IV Complexity measures and SI for various 

values of E 

E (V) C Cd SI 

(50-42.5) 1 12 1 

(42.4-28.5) 2 12 0.5 

(28.4-25.3) 2 16 0.375 

(25.2-24.4) 3 24 0.1667 

(24.3-23.5) 4 24 0.125 

(23.4-12.3) +∞ +∞ Decreases 

12.2 3 18 0.2222 

12 4 18 0.1667 

11.8 4 26 0.1153 

E < 11.8 +∞ +∞ Decreases 

 



converter undergoes period doubling bifurcation as it 

jumps from period-3 orbit to period-6 orbit. For further 

decrement of E to 11.8V, C does not change and Cd 

changes. This infers that the system exhibits border 

collision bifurcation, and it jumps from period-6 orbit 

to another period-6 orbit. Below 11.8V, both the 

measures, again increases gruffly implying that the 

system enters into the chaotic region. The plots of 

complexity measures for variation in input voltage are 

shown in Fig. 7 (a, b). 

 Using equation (5), stability Index is calculated and 

plotted against bifurcation parameter E as depicted in 

Fig. 7(c). From this plot, it is clear that stability of the 

system is high (i.e., SI = 1) for stable operation and 

decreases gradually as the system bifurcates via period 

doubling cascade. During chaotic region SI is least. 

Study of stability of the system over the wide range of 

bifurcation parameter is beneficial for the design 

engineers. 

6.3 Analysis of bifurcation behavior based on block 

entropy measure 

 With the help of block, entropy scheme applied on 

secondary symbolic sequence, the scrutiny of dynamics 

of the converter is carried out, and it highly correlate 

with results obtained based on L-Z and weight 

complexities. Using Shannon’s measure (7), the block 

entropy algorithm is implemented and the entropy 

values are plotted against the bifurcation parameter as 

shown in Fig. 8. When the entropy value remains 

constant, the system is periodic. The entropy value 

rises with the evolution of chaotic behavior. 

7. Conclusion 

 In this work, the chaotic and bifurcation behavior of 

a current mode controlled buck-boost converter in 

continuous conduction mode is investigated using 

symbolic sequence method and complexity measures. 

It is shown that as the input voltage is varied, the 

system enters chaotic regime via period doubling route. 

With the help of primary and secondary sequences, the 

events of bifurcation phenomena are identified. The 

anticipated bifurcations scenario of the system is also 

confirmed using complexity measures. System stability 

is known from the stability index, which is inevitable 

for design engineers. 
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