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Abstract—This paper discuss a Hybrid Particle Swarm 

Optimization – Genetic Algorithm and  Particle Swarm 
Optimization – Shuffled Frog Leaping Algorithm to Long-
term Generation Maintenance Scheduling to Enhance the 

Reliability of the units. Maintenance scheduling establishes 
the outage time scheduling of units in a particular time 
horizon. In a monopolistic power system, maintenance 
scheduling is being done upon the technical requirements of 

power plants and preserving the grid reliability. While in 
power system, technical viewpoints and system reliability 
are taken into consideration in maintenance scheduling with 
respect to the economical viewpoint. In this paper present a 

Hybrid Particle Swarm Optimization – Genetic Algorithm 
and  Particle Swarm Optimization – Shuffled Frog Leaping 
Algorithm methodology for finding the optimum preventive 
maintenance scheduling of generating units in power 

system. The objective function is to maintain the units as 
earlier as possible. Varies constrains such as spinning 
reserve, duration of maintenance and maintenance crew are 
being taken into account. In case study,  IEEE test system 

consist of 24 buses with 32 generating units is used. 
 

Key words—Generation Maintenance Schedule, 

Optimization, Shuffled frog leaping algorithm, Hybrid 

Particle Swarm Optimization – Genetic Algorithm and  
Particle Swarm Optimization – Shuffled Frog Leaping 
Algorithm 
 

INTRODUCTION 

 

Under the rapid development around the globe, power 

demand has increased drastically during the past decade. 

To meet this demand, the development of power system 

technology has become increasingly important in order to 

maintain a reliable and economic electric power supply. 

One major concern of such development is the 

optimization of power plant maintenance scheduling. 

Maintenance is aimed at extending the lifetime of power 

generating facilities, or at least extending the mean time 

to the next failure for which repair cost may be 

significant. In addition, an effective maintenance policy 

can reduce the frequency of service interruptions and the 

consequences of these interruptions. In other words, 

having an effective maintenance scheduling is very 

important for a power system to operate economically 

and with high reliability. 

 

The focus of this paper was the maintenance decision 

problem for generation unit system with economic 

dependency. In the paper, an opportunistic maintenance 

policy generally applicable to the economic dependency 

problem was proposed for developing optimal 

maintenance schedule. The advances in computer and 

information technology have created a strong trend to 

integrate various operation facilities into large-scale 

system. As a result of this integration, the productivity 

and efficiency of these systems have been significantly 

improved. On the other hand, the integration has created 

a strong functional dependency between the components 

of the system. Failure of any one of these components 

could disable the entire system and hence cause 

significant financial loses and serious safety problems. 

Effective maintenance program development has become 

the major challenge and primary concern for today’s 

system managers. 

 

Many maintenance-scheduling methods have been 

proposed using conventional mathematical programming 

methods or heuristic techniques. Heuristic approaches 

provide the most primitive solution based on trial-and-

error approaches. These techniques may not generally 

lead to the global optimal for a complex problem, i.e. the 

procedure tends to fall into a local minimum if a starting 

point is not carefully chosen. Heuristic methods were 

used earlier in solving maintenance scheduling problems 

for centralized power systems because of their simplicity 

and flexibility.  

 

Mathematical optimization based techniques such as 

integer programming (Dopazo and Merrill, 1975), 

dynamic programming (Zurn and Quintana, 1975; 

Yamayee et al, 1983) and branch-and-bound (Egan et al, 

1976) have been proposed to solve maintenance 

scheduling problems. For small problems these methods 

give an exact optimal solution. However, as the size of 

the problem increases, the size of the solution space 

increases greatly and hence the running time of these 

algorithms. These approaches tend to suffer from an 

excessive computational time with the increase of 

variables. To overcome this difficulty, modern techniques 

such as simulated annealing (Cerny, 1985; Kirkpatrick et 

al, 1983), stochastic evolution (Saab, 1991), genetic 

algorithms (Goldberg, 1985) and Tabu search (Rajan and 

Mohan, 2004) have been proposed as alternatives where 

the problem size precludes traditional techniques. These 

techniques are completely distinct from classical 

programming and trial-and-error heuristic methods. The 

Generic Algorithm method mimics the principles of 

natural genetics and natural selection to constitute search 



 
and optimization procedures. Simulated annealing 

mimics the cooling phenomenon of molten metal’s to 

constitute a search procedure. The Generic Algorithm and 

Simulated Annealing approaches have been reported to 

solve a range of optimization problems in electrical 

power systems with encouraging results (Mirinda et al, 

1998). Fuzzy optimization techniques have been 

developed to solve optimal power flow with fuzzy 

constrains (Xiaohong (Guan and Peter, 1996; Tomsovic, 

1992; Miranda et al, 1992), and to schedule 

manufacturing system with possible breakdowns (Li et al, 

1994) The major limitation of these approaches is to 

consider each generating unit separately in selecting its 

outage interval, large computational time and complexity 

in programming. 

 

A little effort has been reported to implement MOPSO 

for solving power system problems. A fuzzified MOPSO 

(Wang and Singh, 2007) to solve 

environmental/economic dispatch problem with heat 

dispatch and with multiple renewable energy sources. 

The approach presents a fuzzification mechanism for the 

selection of global best individual with interpreting the 

global best as an area, not just as a point. On the other 

hand, only one local best solution is maintained for each 

particle. This will degrade the search capability and 

violates the principle of multiobjective optimization. A 

modified MOPSO (Kitamura et al, 2005)to optimize an 

energy management system where the problem is solved 

in three phases by dividing the original optimization 

problem into partial problem. However, this approach has 

severe limitation in the case of strong interaction among 

the constraints in different subprogram. A MOPSO 

(Hazra and sinha, 2007) based approach to solve the 

congestion management problem where the cost and 

congestion are simultaneously minimized. PSO has been 

successfully implemented to different power system 

optimization problem including the economic power 

dispatch problem with impressive success.(Al-Rashidi  et 

al. 2007) The potential of PSO to handle non smooth and 

non convex economic power dispatch problem was 

demonstrated (Selvakumar and Thanushkodi, 2007). 

However, the problem was formulated as a conventional 

dispatch problem with the fuel cost as the only objective 

considered for optimization. Shuffled frog leaping 

algorithm has been successfully applied to several 

engineering optimization problems such as unit 

commitment (M. Eslamian et al.  2009) and job-shop 

scheduling arrangement (A. Rahimi-Vahed and A. H. 

Mirzaei 2007).  

 

A novel mechanism (Changyou and Xifan 

Wang, 2010)for unit maintenance scheduling (UMS) in 

the deregulated environment, based on the different 

functions of power producers and the independent system 

operator (ISO). The proposed scheme aims to achieve a 

tradeoff  between ensuring the producers' benefits and 

maintaining the system reliability, providing satisfactory 

maintenance windows and cost-reflective reward/charge 

to individual producers. Although this can extend 

anymore, such as the preventing from market power, 

UMS coordination mechanism and the mechanism of 

performing the auction sale. A novel concept (Chin Aik 

Koay and Srinivasan D 2003) for the spawning and 

selection mechanism in a hybrid particle swarm 

algorithm. The results suggest that this hybrid model 

converges to a better solution faster than the standard 

PSO algorithm. The hybrid approach proposed here 

(SPSOES) with spawning and selection mechanism 

proves to be superior over classical PSO in the cost 

obtained. Although SPSOES is not as time efficient as 

standard PSO. A model (Suresh and Kumarappan 2013) 

for maintenance scheduling (MS) of generators using 

hybrid improved binary particle swarm optimization 

(IBPSO) based coordinated deterministic and stochastic 

approach. Genetic algorithm (GA) operators are 

introduced in the IBPSO to acquire diversified solutions 

in the search space. Moreover, the hybrid IBPSO based 

economic dispatch (ED) has been decomposed as a sub-

problem in the maintenance model. The authors apply 

their method to determine the preventive maintenance 

schedule in a power system. They mention that the 

method could produce better solutions if some changes 

and modification are made to the solution procedure. 

 

The proposed algorithm is based on a sequential 

optimization process of both economic and reliability 

objectives. The economic purpose is the minimization of 

total variable operating costs (fuel + O&M and 

interruptible energy). Other economic objectives have 

been proposed as maintenance costs, fixed and variable 

costs, maintenance crew costs, etc. The second 

optimization run is done minimizing the sum of the 

differences between the thermal reserve margins of 

consecutive periods. The reserve margin is calculated 

dividing the available thermal capacity by the period peak 

load. This reliability index is the net reserve divided by 

the gross reserve in period t. The gross reserve in any 

period is calculated as the difference between the sum of 

the capacity of all units and the power demand. The net 

reserve is calculated as the difference between the gross 

reserve and the power capacity in maintenance. 

Generally, it is shown that optimal solutions obtained 

under one reliability criterion are also acceptable in terms 

of the others. Here, it has been used the net thermal 

reserve margins leveling between periods in a 

deterministic way, units availability is modeled derating 

the maximum unit power by its equivalent forced outage 

rate. 

 

 

From the literature review, it has been observed that 

existed need for evolving simple and effective methods, 

for obtaining an optimal solution. In this paper an attempt 

has been made using hybrid PSO-GA and PSO-EP 

algorithm for meeting the above requirement, which 

eliminate the drawbacks. In this environment, 

management of generator and grid is separated, each 

maximizing its own benefit. Therefore, the principle to 

draw up the unit maintenance scheduling will be changed 

significantly. So every generator hopes to put its 

maintenance on the weeks when market clearing price 

(MCP) is lowest so that maintenance variable cost 

descends. The objective function is to sell electricity as 

much as possible, according to the market clearing price. 

But the goal of the grid is to maximize the reserve 



 
capacity at every time interval. Depending upon the 

fitness, profit and reliability index select maintenance 

scheduling by taking various technical constraints. In the 

application on IEEE RTS (reliability test system) consist 

of 24 bus (32 Units) that we can find the optimal solution 

effectively and these result are compared. 

 

 

I. PROBLEM FORMULATION 

The objective is to find the generation maintenance 

scheduling, such that minimize total operating cost over 

the operational planning period and to maximizing the 

profit, subject to unit maintenance and variety of  system 

constraints. 
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CONSTRAINTS OF MAINTENANCE 

SCHEDULING PROBLEM   
 There are typical constraints for 

maintenance scheduling problems. Any maintenance 

timetable must satisfy a given set of constraints. In order 

to make the maintenance schedule feasible, certain 

constraints should be fulfilled. Some of basic constrains 

which should be set up are continuousness maintenance 

of some unit, maintenance manpower, maintenance 

window, maintenance duration and so on. 

 

Load Balance 
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Generator Output Limit 
 Each unit is designed to work between 

minimum and maximum power capacity. The following 

constraint ensures that unit is within its respective rated 

minimum and maximum capacities.  

 

 UitPi min ≤ Pit ≤ UitPi max                             (5) 

 

Spinning Reserve  
 Spinning reserve is a safety margin that 

usually is given as a demand proportion. This indicates 

that the total capacity of the units running at each interval 

should not be less than the specified spinning reserve for 

that interval. 
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Maintenance Resources 
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Maintenance Area 
 A maximum number of maintenance is 

imposed in the period t. 
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Crew Constraints 
 There is limited available manpower in each 

maintenance area. 
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Fuel Constraints 
 In some cases thermal units may face fuel 

shortages. Then requires energy should be purchased 

from outside.  

 ∑ �
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Maintenance Window  
 The maintenance timetable stated in terms 

of maintenance variables (Si). The unit maintenance may 

not be scheduled before their earliest period or after latest 

period allowed for maintenance.   
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One-Time Maintenance  
 Each unit has an outage for maintenance 

just once along the time horizon considered. 
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� = 1��
�       (12) 

 

Reliability Indices 
 For simplicity most of the time, no 

uncertainty is considered which means that appropriate 

unit are provided. Nevertheless, unit forced outage rates 

can be approximately taken into account derating their 

corresponding capacities.  
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 In this paper, the focused much attention on 

maintenance scheduling problems for power systems in 

order to improve the economic posture of the generation 

companies. Reducing the total generation cost, including 

the fuel cost, operation and maintenance cost is one of the 

main objectives in power system maintenance 

scheduling.  

 

 



 
 

PARTICLE SWARM OPTIMIZATION  
 Particle swarm optimization (PSO) is 

inspired from the collective behavior exhibited in swarms 

of social insects. It has turned out to be an effective 

optimizer in dealing with a broad variety of engineering 

design problems. In Particle swarm optimization, a 

swarm is made up of many particles, and each particle 

represents a potential solution (i.e., individual). A particle 

has its own position and flight velocity, which keep being 

adjusted during the optimization process based on the 

following rules: 
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where 
1

V
t+

 is the updated particle velocity in the next 

iteration, Vt  is the particle velocity in the current 

iteration, ω  is the inertial dampener which indicates that 

the impact of the particle’s own experience on its next 

movement,
1

C rand∗   represents a uniformly distributed 

number within the interval [0, c1], which reflects how the 

neighbours of the particle affects its flight, 
KP

bi
P  is the 

neighborhood best position, 
P

i
V  is the current position of 

the particle,
2

C rand∗  represents a uniformly distributed 

number within the interval [0, c2],which indicates how 

the particle trusts the global best position,
KP

gi
P  is the 

global best position, and 
1P

i
V

+
 is the updated position of 

the particle.  Under the guidance of these two updating 

rules, the particles will be attracted to move toward the 

best position found thus far. That is, the optimal solutions 

can be sought out due to this driving force. The major 

steps involved in Particle Swarm Optimization approach 

are discussed as follows: 

 

Initialization 
 The initial particles and velocities of each 

particle are also selected randomly. The size of the swarm 

will be (Np x n), where Np is the total number of 

particles in the swarm and ‘n’ is the number of stages.  

Updating The Velocity 
 The velocity is updated by considering the 

current velocity of the particles, the best fitness function 

value among the particles in the swarm. The velocity of 

each particle is modified by using equation (16).The 

value of the weighting factor ω  is modified by following 

equation (18) to enable quick convergence.  

 ( ) /max max maxmin
= − − ∗iter iterω ω ω ω                   

         (18) 

 The term ω < 1 is known as the “inertial 

weight”. It is a friction factor chosen between 0 and 1 in 

order to determine to what extent the particle remains 

along its original course unaffected by the pull of the 

other two terms. It is very important to prevent 

oscillations around the optimal value.    

 

Updating The Position 
 The position of each particle is updated by 

adding the updated velocity with current position of the 

individual in the swarm.  

 

Evolutionary Programming 

 Evolutionary Programming (EP) can be 

traced back to early 1950s when turing discovered a 

relationship between machine learning and evolution. 

Later, Bremermann, Box, Friedberg and others put the 

bases for the evolutionary computation as a tool for 

machine learning and an optimization technique. Great 

attention was given to Evolutionary Programming as a 

powerful tool when Fogal, Burgin, Atmar and others used 

it to create artificial intelligence to predict the events of a 

finite state machines (FSM) on the bases of old 

observation. With advance of the computer performance 

during 1980s, evolutionary programming was used to 

solve difficult real world optimization problems. In 

power system area, Evolutionary Programming has been 

used to solve a number of problems.   

 EP is a mutation-based evolutionary 

algorithm (Cau 2002) and (Nidul Sinha 2003) applied to 

discrete search spaces. David Fogel extended the initial 

work of his father Larry Fogel  1962 for applications 

involving real-parameter optimization problems. Real-

parameter Evolutionary Programming is similar in 

principle to evolution strategy (ES), in that normally 

distributed mutations are performed in both algorithms. 

Both algorithms encode mutation strength (or variance of 

the normal distribution) for each decision variable and a 

self-adapting rule is used to update the mutation 

strengths. Several variants of Evolutionary Programming 

have been suggested.    
 
 

PROPOSED HYBRID ALGORITHM FOR 
PARTICLE SWARM OPTIMIZATION (PSO) 

BASED EVOLUTIONAY PROGRAMMING (EP) 

FOR MAINTENANCE SCHEDULING 

 
 The step by step procedure to compute the 

global optimal solution is follows:  

 Step 1: Initialize a population of particles 

with random positions and velocities on dimensions in 

the problem space. 

 Step 2: For each particle, evaluate the 

desired optimization fitness function in the variables. 

 Step 3: Compare particles fitness evolution 

with particles Pbest . If current value is better then Pbest

, then set Pbest value equal to the current value, and the

Pbest location equal to the current location in the 

dimensional space. 

 Step 4: Compare fitness evaluation with the 

populations overall previous best. If current   value is 

better than gbest , then reset to the current particles array 

index and value. 

 Step 5: Change the velocity and position of 

the particle according to equations (3) and (4) 

respectively.                   



 
 Step 6: Loop to step 2 until  a  criterion  is  

met,  usually  a  sufficiently  good  fitness  or   a  

maximum number of iterations.  

 Step 7: Initialize the parent vector p = [p1, 

p2, … pn], i = 1,2,…Np such that each element in the 

vector is determined by pj ~ random (pjmin, pjmax), j = 

1,2,…N, with one generator as dependent generator. 

 Step 8: Calculate the overall objective 

function is given in equation (1) using the trail vector pi 

and find the minimum of FTi. 

 Step 9: Create the offspring trail solution pi
’
 

using the following steps. 

 (a)  Calculate the standard deviation  

)))(min(/( minmax jjTiTij PPFFj −= βσ  

 (b)  Add a Gaussian random variable to all the 

state variable of pi, to get pi
’
. 

 Step 10: Select the first Np individuals from 

the total 2Np individuals of both pi & pi
’
 using the 

following steps for next iteration. 

(a) Evaluate r = (2Np random (0,1) + 1) 

(b) Evaluate each trail vector by Wpi=sum (Wx) 

Where x  = 1,2,…Np, i = 1,2,…2Np such that Wx = 1 if 

FTij / (FTij+FTir) < random (0,1), otherwise, Wx = 0. 

 Step 11:  Sort the Wpi in descending 

order and the first Np individuals will survive and are 

transcribed along with their elements to form the basis of 

the next generation. 

 Step 12:  The above procedure is 

repeated from Step 8 until a maximum number of 

generations Nm is reached. 

 Step 13:  Selection process is done 

using Evolutionary strategy. 

 

CASE STUDY   
 A IEEE RTS (reliability test system) is an 

IEEE 24 bus system with thirty two generating units has 

been considered as a case studies. A time period of 52 

weeks is considered for solving the thirty two units.  The 

proposed methodology was tested for IEEE-RTS is a 

IEEE 24 bus system with thirty two units.  

 In this paper maintenance cost models have 

been developed with and without failure scenarios. Both 

models include different maintenance cost components 

which may capture a realistic scenario in a real market 

environment. In order to demonstrate the solution 

methodology using the Particle swarm optimization - 

Genetic Algorithm (PSO-GA) technique for solving 

Generation Maintenance Scheduling problems, a test 

system with twelve generating units which must be 

maintained over a 52 week planning horizon is described 

in detail here. 

 Table 1 shows the operation and 

maintenance cost for IEEE-RTS ie IEEE 24 bus system 

with thirty two generating units 

 

Table 1  Operation and maintenance cost of 32 units 

Units 
Pmax 

(MW) 

Fixed O & M 

cost 

(Rs/KW/yr) 

Variable O & 

M cost 

(Rs/MWhr) 

1 – 5 12 4,50,000 18,000 

6 – 9 20 4,05,000 15,000 

10 – 13 76 4,00,000 13,500 

14 – 19 100 3,50,000 11,250 

20 – 23 155 3,15,000 9,500 

24 – 29 197 3,10,000 9,000 

30 350 2,70,000 7,300 

31 & 32 400 2,25,000 5,750 

 

 Table 2 shows the generating units data for 

IEEE-RTS ie IEEE 24 bus system with thirty two 

generating units. 

Table 2 Generating unit data of 32 units 

Units 
Pmax 

(MW) 

Forced 

Outage 
Rate 

(for) 

Schedule 

Maintenance 
weeks/year 

Manpower 

required 
per Week 

1 – 5 12 0.02 1 10 

6 – 9 20 0.1 1 10 

10 – 

13 
76 0.02 3 15 

14 – 

19 
100 0.04 4 15 

20 – 

23 
155 0.04 5 15 

24 – 

29 
197 0.05 6 20 

30 350 0.08 8 20 

31 & 

32 
400 0.12 8 20 

 

 Table 3 gives data on weekly peak load in 

percentage of annual peak load.(IEEE RTS data [24]) 

Table 3 Weekly peak load in percent of annual peak 
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We
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Pea

k 
Loa
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We
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Pea

k 
Loa
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1 86.2 14 75.0 27 75.5 40 72.4 

2 90.0 15 72.1 28 81.6 41 74.3 

3 87.8 16 80.0 29 80.1 42 74.4 

4 83.4 17 75.4 30 88.0 43 80.0 

5 88.0 18 83.7 31 72.2 44 88.1 

6 84.1 19 87.0 32 77.6 45 88.5 

7 83.2 20 88.0 33 80.0 46 90.9 

8 80.6 21 85.6 34 72.9 47 94.0 

9 74.0 22 81.1 35 72.6 48 89.0 

10 73.7 23 90.0 36 70.5 49 94.2 

11 71.5 24 88.7 37 78.0 50 97.0 

12 72.7 25 89.6 38 69.5 51 100 

13 70.4 26 86.1 39 72.4 52 95.5 

 

  

IMPLEMENTATION OF PSO - EP  
 In this paper, a Particle swarm optimization 

(PSO) - Evolutionary Programming (EP) based algorithm 

for solving the Generation Maintenance Scheduling 

problems will be introduced in which the equality and 

inequality constraints of the Generation Maintenance 

Scheduling problems when modifying each particles 

search point in the Particle swarm optimization algorithm 

are set.  In the initialization process, a set of particles is 

created in a random order. The structure of a particle for 

Generation Maintenance Scheduling problems is 



 
composed of a set of elements (i.e. Thermal generations, 

reserve in each interval). Therefore, particles position at 

iteration in period of t can be represented by the vector. 

 To modify the position of each particle, it is 

necessary to calculate the velocity of each particle. In this 

position updating process, the value of parameters such 

as ω, C1, C2 and C3 Should are determined in advance. In 

this thesis, the inertial weight is defined as Equation 18. 

The position of each particle is based on improving 

fitness or achievement of objective function. Thus, each 

particle keeps the previous best position and 

corresponding fitness until the next velocity which leads 

to new best position and achievement. 

 At first, this approach is applied to the test 

system to obtain the acceleration constant C1, C2 and C3. 

Then two different test systems were tested to verify the 

feasibility solution of the proposed method to solve 

Generation Maintenance Scheduling problem. The value 

of ωmax,  ωmin and itermax are 1.0, 0,1 and 100 respectively. 

The other parameter such as C1, C2 and C3 are selected 

through the evaluation of the output, after many runs on 

the test system. 

  

 To solve an optimization problem using 

Particle Swarm Optimization based Evolutionary 

Programming (PSO – EP), first the possible solutions of 

the problem have to be coded in chromosomes. Next a 

fitness function to compare the chromosomes has to be 

defined. The period of maintenance scheduling is usually 

one year and is divided into T stages. When a stage is one 

week, T is equal to 52. In solving the generation 

maintenance problem, the main variables to be identified 

are maintenance states of the generating units. The 

schedule for unit i could be represented by a string of 

zeros and ones, Uij where one means the unit i is under 

maintenance in the stage t. We take the maintenance 

schedule corresponding to an individual generating unit 

as a gene and build the chromosome from these genes. 

Therefore a single chromosome will completely describe 

the maintenance schedules for power generating units. 

Next the last generation individuals are taken as input for 

Evolutionary Programming, and then offspring will be 

generated and best individuals are taken for transcribed 

along with their elements. Finally the selection process 

will be done using Evolutionary Programming.   

 In this Evolutionary Programming a set of 

experiments for the twelve generator units was carried 

out. Evolutionary Programming search technique moves 

from one solution to another using a probabilistic search 

method. However, the new solution may render 

infeasible. Therefore, using Evolutionary Programming 

alone may take a long time to reach the optimal solution 

or it may get trapped in a local optimum. So, the Hill-

Climbing technique is used in conjunction with 

Evolutionary Programming to find a feasible solution in 

the neighborhood of the new infeasible solution. The 

Evolutionary Programming search ability and the 

feasibility watch of the Hill-Climbing motivate the 

sequential solution of the Generation Maintenance 

Scheduling problem. Selecting the individuals, which 

survive to the next generation, is based on the overall 

objective function. 

 

 To solve for Generation Maintenance 

Scheduling problem, the proposed hybrid methodology 

was developed Particle Swarm Optimization based 

Evolutionary Programming (PSO – EP) program has 

been carried out on a Pentium IV 2-GHz PC with a 512 

Mbyte RAM (in MATLAB 7.3). The software provides 

interactive approach in dealing with the various data 

input required for solving the Generation Maintenance 

Scheduling with constraints which should be set up are 

the continuity of maintenance activity, specific time 

interval for maintenance of some generating units, 

maximum and minimum capacity of each generating unit, 

minimum net reserve. 

 The annual peak load for the thirty two 

generator test system is 2850 MW. Each unit must be 

maintained (without interruption) for a given duration 

within an allowed period. The allowed period for each 

generator is the result of a technical assessment and the 

experience of the maintenance personnel, which ensures 

adequate maintenance period.  

 Figure 1 shows performance of the hybrid 

Particle Swarm Optimization based Evolutionary 

Programming (PSO – EP) over 1000 generations when 

maintenance scheduling of the generating units 

formulated based on its desired objective function and 

figure, the fitness of the population are illustrated. For the 

maximization problem fitness function is same as the 

objective function.   

 
Figure 1  Performance of object function for 32 units 

 

 Figure 2. Shows the during the week 8 

maximum generator maintenance is carried out.  

 
 

 

 
Figure 3. shows maintenance schedule of generating units 

and the profit is maximum during the week 51. 
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Figure 3 Scheduling of objective function for 32 Units 

  

 To measure the degree of security 

throughout the weeks of the year, the reliability index is 

defined for period t. The reliability index is shown in 

Figure 4 for thirty two generating units. This reliability 

index is the net reserve divided by the gross reserve in 

period t. The gross reserve in any period is calculated as 

the difference between the sum of the capacity of all units 

and the power demand. The net reserve is calculated as 

the difference between the gross reserve and the power 

capacity in maintenance.   

 

 
Figure 4. Reliability index for objective function for 32 

units 

  

 

SHUFFLED FROG LEAPING ALGORITHM 

 

 The Shuffled frog leaping algorithm is a 

meta-heuristic optimization method which is based on 

observing, imitating, and modeling the behavior of a 

group of frogs when searching for the location that has 

the maximum amount of available food [19]. Shuffled 

frog leaping algorithm, originally developed by Eusuff 

and Lansey in 2003, can be used to solve many complex 

optimization problems, which are nonlinear, non 

differentiable, and multi-modal [20]. Shuffled frog 

leaping algorithm has been successfully applied to 

several engineering optimization problems such as water 

resource distribution [21], bridge deck repairs [22], job-

shop scheduling arrangement [23], and traveling 

salesman problem (TSP) [24]. The most distinguished 

benefit of Shuffled frog leaping algorithm is its fast 

convergence speed [25]. The Shuffled frog leaping 

algorithm combines the benefits of the both the genetic-

based memetic algorithm (MA) and the social behavior-

based Particle Swarm Optimization algorithm. 

 Shuffled frog leaping algorithm is a 

population based random search algorithm inspired by 

nature memetics. In the Shuffled Frog Leaping algorithm, 

a population of possible solution defined by a group of 

frogs that is partitioned into several communities referred 

to as memeplexes. Each frog in the memeplexes is 

performing a local search. Within each memeplex, the 

individual frog’s behavior can be influenced by behaviors 

of other frogs, and it will evolve through a process of 

memetic evolution. After a certain number of memetics 

evolution steps, the memeplexes are forced to mix 

together and new memeplexes are formed through a 

shuffling process. The local search and the shuffling 

processes continue until convergence criteria are 

satisfied. The flowchart of Shuffled frog leaping 

algorithm is illustrated in varies steps are as follows: 

 Step 1: The Shuffled frog leaping algorithm 

involves a population ‘P’ of possible solution, defined by 

a group of virtual frogs(n). 

 Step 2: Frogs are sorted in descending order 

according to their fitness and then partitioned into subsets 

called as memeplexes (m). 

 Step 3:  Froges i is expressed as Xi = (Xi1, 

Xi2, …..Xis) where S represents number of variables. 

 Step 4: Within each memeplex, the frog 

with worst and best fitness are identified as Xw and Xb. 

 Step 5: Frog with globle best fitness is 

identified as Xg. 

 Step 6: The frog with worst fitness is 

improved according to the following equation. 

         Di = rand()(Xb – Xw)   

         (19) 

     Xneww = Xoldw + Di (-Dmax ≤ Di ≤ 

Dmax)                   (20)       

 Where rand is a random number in the 

range of [0,1];  

 

 Di is the frog leaping step size of the ith frog 

and Dmax is the maximum step allowed change in a frog’s 

position. If the fitness value of new Xw is better than the 

current one, Xw will be accepted. If it isn’t improved, 

then the calculated (19) and (20) are repeated with Xb 

replaced by Xg. If no improvement becomes possible in 

the case, a new Xw will be generated randomly. Repeat 

the update operation for a specific number of iterations. 

Therefore, Shuffled frog leaping algorithm 

simultaneously performs an independent local search in 

each memeplex using a process similar to the Particle 

Swarm Optimization algorithm. The flowchart of local 

search of Shuffled frog leaping algorithm is illustrated in 

Figure 5. 

 After a predefined number of memetic 

evolutionary steps within each memeplex, the solutions 

of evolved memeplexes are replaced into new population. 

This is called the shuffling process. The shuffling process 

promotes a global information exchange among the frogs. 

Then, the population is sorted in order of decreasing 

performance value and updates the population best frog’s 



 
position, repartition the frog group into memeplexes, and 

progress the evolution within each memeplex until the 

conversion criteria are satisfied. Usually, the convergence 

criteria can be defined as follows :  

 The relative change in the fitness of 

the global frog within a number of consecutive shuffling 

iterations is less than a pre-specified tolerance.  

 The maximum predefined number 

of shuffling iteration has been obtained 

 

 

Figure 5 Flowchart of local search 

PROPOSED HYBRID ALGORITHM FOR PSO & 

SFLA  FOR MAINTENANCE SCHEDULING 
 The step by step procedure to compute the 

global optimal solution is follows:  

 Step 1: Initialize a population of particles 

with random positions and velocities on dimensions in 

the problem space. 

 Step 2: For each particle, evaluate the 

desired optimization fitness function in the variables. 

 Step 3: Compare particles fitness evolution 

with particles Pbest . If current value is better then Pbest

, then set  Pbest   value equal to the current value, and 

the Pbest  location equal to the current location in the 

dimensional space. 

 Step 4: Compare fitness evaluation with the 

populations overall previous best.  If current   value is 

better than gbest , then reset to the current particles array 

index and value. 

 Step 5: Change the velocity and position of 

the particle according to Equations (17) and (18) 

respectively.                   

 Step 6: Loop to step 2 until  a  criterion  is  

met,  usually  a  sufficiently  good  fitness  or   a  

maximum number of iterations.  

 Step 7: Initialize the population ‘P’ of 

possible solution, defined by a group of virtual frogs (n). 

 Step 8: Frogs are sorted in descending order 

according to their fitness and then partitioned into subsets 

called as memeplexes (m). 

 Step 9: Frogs i is expressed as Xi = (Xi1, Xi2, 

…..Xis) where S represents number of variables. 

 Step 10: Within each memeplex, the frog 

with worst and best fitness are identified as Xw and Xb. 

 Step 11: Frog with globle best fitness is 

identified as Xg. 

 Step 12: The frog with worst fitness is 

improved according to the Equations (19) and (20). 

 

IMPLEMENTATION OF PSO - SFLA    
 The total operating cost of the Generation 

Maintenance Scheduling problem is expressed as the sum 

of fuel costs, operation and maintenance variable costs 

(OMVC), operation and maintenance fixed costs 

(OMFC) of the generating units. The fuel cost is the 

major component of the operating cost, which is normally 

modeled by a quadratic input/output curve. The 

Generation Maintenance Scheduling problem can be 

formulated as an integer programming problem by using 

integer variable variables to represent the period in which 

the maintenance of each unit starts. The variables are 

bounded by maintenance window constraints. However, 

for clarity the problem is first formulated using binary 

variables which indicate the start of maintenance of each 

unit at each time. A reliability criterion is considered to 

formulate the Generation Maintenance Scheduling 

problem. The leveling of the reserve generation over the 

planning period can be used as a reliability criterion. The 

net reserve of the system during any period t is the total 

installed capacity minus the peak load forecast for the 

period and the reserve loss due to the pre-scheduling 

outage. The reserve can be levelized by maximizing net 

reserve of the system during any period.  



 
 To solve for Generation Maintenance 

Scheduling problem, the proposed hybrid methodology 

was developed Particle Swarm Optimization based 

Shuffled frog leaping Algorithm (PSO – SFLA) program 

has been carried out on a Pentium IV 2-GHz PC with a 

512 Mbyte RAM (in MATLAB 7.3). The software 

provides interactive approach in dealing with the various 

data input required for solving the Generation 

Maintenance Scheduling with constraints which should 

be set up are the continuity of maintenance activity, 

specific time interval for maintenance of some generating 

units, maximum and minimum capacity of each 

generating unit, minimum net reserve. 

 

 Figure 6 shows performance of the hybrid 

PSO-SFLA over 1000 generations when maintenance 

scheduling of the generating units formulated based on its 

desired objective function and figure, the fitness of the 

population are illustrated. For the maximization problem 

fitness function is same as the objective function. 

  

 
Figure 6 Scheduling of objective function for 32 units 

  

 

Figure 7 show the week 8 maximum generator 

maintenance is carried out.  Figure 8 shows maintenance 

schedule of generating units and the profit is maximum 

during the week 51.   

. 

 

 
 

 

Fig.  7 – Maintenance Scheduling of Objective function 

for 32 Generator Units 

 
Figure 8 Reliability index for objective function for 32 

units 

  

 To measure the degree of security 

throughout the weeks of the year, the reliability index is 

defined for period t. The reliability index is shown in 

Figure 8 for thirty two generating units. This reliability 

index is the net reserve divided by the gross reserve in 

period t. The gross reserve in any period is calculated as 

the difference between the sum of the capacity of all units 

and the power demand. The net reserve is calculated as 

the difference between the gross reserve and the power 

capacity in maintenance 

 

 

NUMERICAL RESULTS AND DISCUSSIONS 
 
 A IEEE RTS (reliability test system) – 24 

bus system with thirty two generating units has been 

considered for this work. Fuel cost function of each 

generator is estimated into quadratic form.  
 A time period of 52 weeks is considered for 

solving this maintenance problem for thirty two units. 

Generation maintenance scheduling with reserve margin 

is solved for thirty two generating unit by the three hybrid 

algorithms which gives total cost, computation timing 

and reliability index.  

  

 Two proposed hybrid algorithms were 

applied and compared with other conventional method 

and it is shown in Table 4. The comparison of the total 

cost and central processing unit (CPU) time are as shown 

in Table 5. The comparison of the total profit with 

reserve margin for all weeks is as shown in Table 6.  The 

comparison of reliability index is shown in Figure 7 for 

thirty two generating units. Here, total cost computed by 

using hybrid Particle Swarm Optimization based 

Evolutionary Programming (PSO-EP) is higher than 

Particle Swarm Optimization based Shuffled Frog 

Leaping Algorithm (PSO-SFLA), but computation time is 

greater than Particle Swarm Optimization based Shuffled 

frog leaping Algorithm (PSO-SFLA). When comparing 

the profit Particle Swarm Optimization based Shuffled 

Frog Leaping Algorithm (PSO-SFLA) is higher than 

Particle Swarm Optimization based Evolutionary 

Programming (PSO-EP). When comparing the reliability 

index for reserve, the hybrid Particle Swarm 

Optimization based Shuffled Frog Leaping Algorithm 
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(PSO-SFLA) has maximum value in week one and hybrid 

Particle Swarm Optimization based Evolutionary 

Programming (PSO-EP) have minimum value in week 

thirty one. When compared with average reserve hybrid 

Particle Swarm Optimization based Shuffled Frog 

Leaping Algorithm (PSO-SFLA) has higher value than 

Particle Swarm Optimization based Evolutionary 

Programming (PSO-EP). 

 

 

Three proposed hybrid algorithms were applied and 

compared with other conventional method and it is shown 

in Table 4. The comparison of the total cost and central 

processing unit (CPU) time are as shown in Table 5. The 

comparison of the total profit with reserve margin for all 

weeks is as shown in Table 6.  The comparison of 

reliability index is shown in Figure 7 for thirty two 

generating units. Here, total cost computed by using 

hybrid Particle Swarm Optimization based Genetic 

Algorithm (PSO-GA) is higher than Particle Swarm 

Optimization based Shuffled Frog Leaping Algorithm 

(PSO-SFLA), but computation time is less than Particle 

Swarm Optimization based Genetic Algorithm (PSO-GA) 

and greater then Particle Swarm Optimization based 

Shuffled frog leaping Algorithm (PSO-SFLA). When 

comparing the profit Particle Swarm Optimization based 

Shuffled Frog Leaping Algorithm (PSO-SFLA) is higher 

than Particle Swarm Optimization based Genetic 

Algorithm (PSO-GA). When comparing the reliability 

index for reserve, the hybrid Particle Swarm 

Optimization based Shuffled Frog Leaping Algorithm 

(PSO-SFLA) has maximum value in week one and hybrid 

Particle Swarm Optimization based Genetic Algorithm 

(PSO-GA) have minimum value in week. When 

compared with average reserve hybrid Particle Swarm 

Optimization based Shuffled Frog Leaping Algorithm 

(PSO-SFLA) has higher value than Particle Swarm 

Optimization based Genetic Algorithm (PSO-GA). 

 

Table 4 Comparison of generation maintenance schedule 

of units for 32 generator units 

Week 
Generating units scheduled for Maintenance 

PSO-EP PSO-SFLA 

1 27 - 

2 16,  27, 30 25 

3 16,  27, 30 18, 25 

4 16,  27, 30 6, 17, 18, 25 

5 16,  27, 30 17, 18, 24,  25 

6 27,  30 10, 17, 18 24,  25 

7 7,  9, 30 10, 17, 24,  25 

8 5,  30 10, 12, 24 26,  29 

9 17,  28, 30 12, 24, 26 29 

10 1, 17, 28 3, 12,  24 26, 29 

11 17,  18, 28 8,  23, 26 29 

12 17, 18, 23, 28 11, 13, 23, 26,29 

13 18,  23, 28 11, 13, 23,  26,29 

14 18,  21, 23,  28 11, 13, 20,  23,28 

15 21, 23 20, 23, 28 

16 21, 23 20, 22, 28 

17 21 20, 22, 28 

18 6,  20, 21 14, 20, 22, 28 

19 2, 12, 20 14,  22, 28 

20 12,  20, 26 14,  22 

21 12,  20, 26 14,  31 

22 8, 20, 24, 26 4,  21, 31 

23 24,  26 7,  21,  31 

24 24,  26 21, 31 

25 15,  24, 26 21, 31 

26 4, 15, 24, 31 21, 31 

27 15,  24, 31 2, 15, 31 

28 15,  31 5, 15, 31 

29 31 15, 30 

30 10,  31 15, 16,  30 

31 10,  31 16, 30 

32 10,  31 16, 30 

33 31 16, 30 

34 - 30 

35 11 30 

36 11,  22 30 

37 11,  22 1,  19 

38 22 19,  27 

39 14,  22 9, 19, 27 

40 14,  22, 29 19,  27 

41 3,  14, 29,  32 27,  32 

42 14, 29, 32 27,  32 

43 29,  32 27,  32 

44 29,  32 32 

45 25,  29, 32 32 

46 13,  25, 32 32 

47 13,  19, 25,  32 32 

48 13,  19, 25,  32 32 

49 19,  25 - 

50 19,  25 - 

51 - - 

52 - - 

 

Table 5 Comparison of cost and CPU time for 32 units 

System Method 
Total Cost 

(pu) 

CPU Time 

(Sec) 

32 Units 

DP 

LR 

PSO 

EP 

PSO-EP 

PSO - SFLA 

1.0535 

1.0687 

1.0387 

1.0392 

1.0385 

1.0381 

918 

850 

417 

422 

410 

407 

 

 

 
Table 6 Comparison of  profit/cost  for 32 generator units 

in each week 

Week 

Generating units 

scheduled for 

Maintenance 

Week 

Generating units 

scheduled for 

Maintenance 

PSO-EP 

(in 

million `) 

PSO-

SFLA 

(in million 

Rs) 

 

PSO-EP 

(in 

million `) 

PSO-

SFLA 

(in million 

Rs) 

1 1.124 1.139 27 0.534 0.556 

2 1.039 1.264 28 0.815 0.806 

3 0.955 1.111 29 0.787 0.778 

4 0.871 1.000 30 1.039 1.028 

5 1.011 1.083 31 0.337 0.361 

6 0.955 0.944 32 0.646 0.667 



 
7 0.969 0.944 33 0.758 0.778 

8 0.815 0.833 34 0.506 0.403 

9 0.478 0.528 35 0.449 0.389 

10 0.520 0.500 36 0.393 0.361 

11 0.421 0.403 37 0.758 0.806 

12 0.449 0.417 38 0.337 0.361 

13 0.393 0.361 39 0.421 0.472 

14 0.562 0.528 40 0.421 0.458 

15 0.365 0.361 41 0.449 0.472 

16 0.843 0.806 42 0.463 0.486 

17 0.646 0.583 43 0.758 0.750 

18 0.955 0.917 44 1.011 1.028 

19 1.067 1.028 45 0.955 1.056 

20 1.070 1.111 46 1.096 1.167 

21 1.011 0.931 47 1.152 1.278 

22 0.857 0.750 48 0.983 1.083 

23 1.236 1.069 49 1.433 1.528 

24 1.152 1.000 50 1.545 1.639 

25 1.152 1.028 51 2.444 2.444 

26 0.899 0.889 52 1.573 1.556 

Total in Million ` 43.879 44.236 

 
Table 7  Comparison of reliability index for 

objective function for 32 units 

Method Max 

Value 

Week Min 

Value 
Week 

Average 

Value 

PSO – 

EP 

0.958 8 &18 0.79 31 0.958 

PSO - 

SFLA 
1.00 1 0.825 8 0.925 

 
 As a result of maximum profit and better 

reserve margin, hybrid Particle Swarm Optimization 

based Shuffled Frog Leaping Algorithm (PSO-SFLA) is 

the best of achieving objective function among the three 

proposed algorithms in all IEEE (RTS) systems. 

 

 

II. CONCLUSIONS 

This paper shows a new approach for solving the 

generation maintenance scheduling problem based on 

modified Shuffled frog leaping algorithm and the 

optimum maintenance scheduling over the planning 

period was obtained. The algorithm has been tested on 

thirty two generating unit systems. The proposed method 

has been compared with the results of other method such 

as Lagrangian Relaxation, Dynamic Programming, 

Evolutionary Programming, Particle Swarm Optimization 

and  Shuffled frog leaping Algorithm and hybrid Particle 

Swarm Optimization based Evolutionary Programming 

(PSO-EP) and Particle Swarm Optimization based 

Shuffled Frog Leaping Algorithm (PSO – SFLA) give an 

idea regarding how generator schedule and reserve 

should be maintained to maximize profit reduce the 

computation timing. 

 

To conclude, hybrid particle swarm optimization 

based Shuffled Frog Leaping Algorithm (PSO-SFLA) 

gives the best solution quality, robust, cost-effective, 

reserve margin and consumes minimum computation 

time for generation maintenance scheduling of thermal 

units. 

 

III. APPENDIX 

Ai, Bi, Ci – the cost function parameters of unit I  

( Rs/MW
2
hr, Rs/MWhr, Rs/hr) 

Fit (Pit) – production cost of unit I at a time t (Rs/hr) 

Pit – output power from unit i at time t (MW) 

PDt – system peak demand at hour t (MW) 

N – Number of available generating units.  

Rit – reserve contribution of unit i at time t. 

nt – number of units 

Uit – commitment state of unit i at time t (on = 1, off = 0) 

OMVC – operation and maintenance variable cost 

OMFC – operation and maintenance fixed cost 

Ts & Te – Starting and ending stage of the time interval 

for j
th 

unit 

I(t) - Reliability index of grid in period t. 

αt(k) - kth maintenances resource at the tth period. 

β - Maximum number of maintenance generator in the 

same area. 

di - Maintenance duration of the i
th

 generator 

si- Maintenance starting period of the i
th

 generator. 
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