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Abstract: Nowadays the energy production by wind turbines 

has been increasing because its production is 

environmentally friendly; therefore the technology 

developed for the production of energy through wind 

turbines brings great challenges in the investigation. The 

system is studied under nominal conditions by means 

nominal wind power and maximum pitch angle. A sensitivity 

analysis is implemented to study the system performance at 

the design margins of different parameters like wind speed, 

tip speed ratio and pitch angle. 

The paper deals with the modeling and power control of 

horizontal variable speed wind turbines using an enhanced 

LQG controller. The proposed LQG controller is designed 

to realize a compromise between the maximum-power-point 

generations under randomized wind energy condition 

changes. The effectiveness and robustness of the proposed 

control approach are proven by numerical simulations. 

LQR is a conventional controller is built and the system 

performance is studied and compared with LQG. The 

results confirms that the proposed LQG controller success 

to maintain the output power equal or close to the rated 

value at different operating conditions while LQR is not. 

The LQG protects the wind turbine system from wind storms 

and force the system for shuts down. 
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1. introduction 

An increasing amount of research and development 

has been directed towards variable-speed control of 

wind turbines (WT), where the aim is to benefit from 

increased aerodynamic efficiency and decreased 

mechanical loads in the drive system. Another key 

area is the design of a control system that optimizes 

the above benefits. A prerequisite of this is a reliable 

drive-system model of reasonable complexity. 

Physical modeling of the drive train will result in 

models of different orders, depending on the number 

of rotating masses. Variable-speed control of wind 

turbines requires good knowledge of the dynamics to 

be controlled. This is particularly important when 

combined with the increasingly common soft concept 

resulting in structural Eigen frequencies within the 

closed-loop bandwidth.  

Most literature on wind turbine control has established 

an objective in the maximization of the power 

produced when the wind speed is in the range between 

the cut-in and the cutout wind speed. This goal is 

usually achieved by controlling the electromagnetic 

torque of the generator in order to obtain the optimal 

rotor speed for optimum power coefficient [1], [16]. 

Classical techniques such as PID and PI controllers of 

blade pitch are typically used to limit power and speed 

for turbine operating above rated wind speed. Many 

researchers have also developed other methods 

reducing loads using adaptive control method. 

The purpose of this work is to design a multi-model 

LQG. Furthermore, because of the high non linearity 

of the wind turbine behavior, the LQG approach is 

based on a linearization of the system around different 

operating points corresponding to the subsystems of 

the multi-model base, and then a state feedback is 

tuned in order to satisfy the different control 

objectives: regulating the rotational speed and the 

electrical power around their nominal values by acting 

on two control variables which are the blade pitch 

angle and the electromagnetic torque. 
 

1.1. Power in the Wind and Wind Turbines 

The power of motion (kinetic energy) contained 

in a moving air stream can be calculated by the 

following formula [2]: 
3KP  ½  A V 

      Eq. 1 
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Where:  

KP kinetic power (watts) 

 Air density (1.225kg/m3 at standard Condition) 

V wind speed. 

 

It should be noted that, the kinetic power depends 

on the cube of the wind speed, so if the wind speed 

doubles, the amount of kinetic power in the wind 

increases by eight. Thus, wind speeds higher than the 

average wind speed contain much more power than 

those below the average wind speed do. For typical 

variation of wind speed, the average kinetic power can 

be calculated from the average speed by the formula: 

1.2. Average kinetic power 

The energy available on site, produced by the 

wind (without considering the limitations of the 

physical system that produces the energy) in a time 

unit, can be computed using the following 

mathematical expression [3]: 
3
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    Eq. 2 

Where: 

6/ Multiplier accounts for the distribution of wind 

 speed, and therefore kinetic power, with time. 

Vav Average wind speed at the center of the rotor  (m/s) 

 

A wind turbine cannot capture al the kinetic 

power in the wind. A well suited, designed properly 

for the wind conditions at the site, will convert about 

25% of the kinetic power in the wind into useful 

power. So, the average power output of a good wind 

turbine is: 
 

3
av avP         0.25*1.17 A V

    Eq. 3 

Where: 

Pav average power output from the wind turbine  (Watt), 

A Swept area by the wind turbine rotor (m2) 

 

The specific energy of the wind-turbine Generator 

power is also modeled by the following formula [4]: 
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Where   

a  = Pr / (Vr
3 – VCI

3),  

b  = VCI
3 / (Vr

3 – VCI
3),  

Pr rated power, 

Vr rated wind speed, 

VCI cut-in wind speed, and 

VCO cut-out wind speed. 

 

The relation between the wind turbine output 

power and the wind speeds for 2000W rated wind 

turbine (f.e.) is shown in Figure 1. The cut-in speed is 

3m/s, rated speed is 9m/s while cut-out speed is 20m/s. 

 

2. Dynamic Modeling of the Wind Turbine 

The wind turbine is characterized by no 

dimensional curves of the power coefficient (Cp) as a 

function of both the tip speed ratio (λ) and the blade 

pitch angle (β). In order to fully utilize the available 

wind energy, the value of (λ) should be maintained at 

its optimum value. Therefore, the power coefficient 

corresponding to that value will become maximum 

also.  

The model is based on the steady-state power 

characteristics of the turbine. The stiffness of the drive 

train is infinite and the friction factor and the inertia of 

the turbine must be combined with those of the 

generator coupled to the turbine [5], [6]. 
 

 
Figure 1, Wind turbine Power to Wind speed curve 

 

 

 
Figure 2, WTS and its corresponding control scheme [7] 

 

The tip speed ratio (λ) can be defined as the ratio 

of the angular rotor speed of the wind turbine to the 

linear wind speed at the tip of the blades. It can be 

expressed as follows [8]: 



/t R V 
       Eq. 5 

Where  

R  is the wind turbine rotor radius,  

Vω  is the wind speed and ωt is the mechanical 

 angular rotor speed of the wind turbine.  

 

A generic equation is used to model Cp(λ,β). 

This equation, based on the modeling turbine 

characteristics of [5], is: 

  5( / )

1 2 3 4 6( , ) * / * * *iC

P iC C C C C e C
    

   
 Eq. 6 

Where the coefficients c1 to c6 are:  

c1 = 0.5176,  c2 = 116,   c3 = 0.4,  

c4 = 5,   c5 = 21 and  c6 = 0.0068.  

In addition to Eq. 6, the relation between λ and β 

can be found in the following relation [5]: 

3
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1/
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     Eq. 7 

 

The Cp-λ characteristics, for different values of 

the pitch angle β, are illustrated below. The maximum 

value of Cp (Cpmax = 0.48) is achieved for β = 0 

degree and for λ = 8.1. This particular value of λ is 

defined as the nominal value (λ_nom).  

 

The instantaneous values of Cp as a function of 

rotor speed and angle of attack is shown in Eq. 6. Wind 

turbine is designed to have low cut-in and cut-out 

speed (2-3m/s: 7-9m/s) to suit Jazan wind condition. 

The power output equation [8] of wind turbine can be 

described in Eq. 8: 
321

2
. ( , ).t pP R C V  

    Eq. 8 

Where:   

PT  is wind power (W) 

  is air density (kg/m3) 

V  is wind speed (m/s) 

R  is radius of turbine blades (m2) 

CP  is wind power coefficient. 

 

From (Eq. 8), the power that can be produced is 

proportional with the cube of the wind speed, thus it is 

necessary to define the wind speed. The wind speed is 

a non-stationary random process which can be 

described by the following equation: 

( ) ( ) ( )w s tt t t   
     Eq. 9 

Where: 
(t)

s


 Low frequency component (wind currents 

  and their long term variations) and  

(t)
t


 Turbulent component, (the fast, high  

  frequency variations).  
 

 
Figure 3, Wind turbine Cp-λ characteristics 

 

 

It is easily understood that the wind speed 

components play a very important role in the energy 

production process and their influence must be 

considered in the design of the controller in order to 

obtain satisfactory results. 
 

3. Mechanical Equations Of Wind Turbine 

Components 

The wind turbine is an assembly of subsystems 

interconnected: aerodynamic, mechanical, electrical 

and pitch actuator [9]. In order to continue with the 

mathematical model definition the Lagrange equation 

will be used: 

C C D P

t t t t

E E E Ed
Q

dt q q q q

    
    

      Eq. 10 

Where: 

EC  is the kinetic energy,  

EP  is the potential energy,  

ED  is the dissipated energy of the system, and 

Q  is the vector of the forces acting on the system, 

and 

q  is the vector of generalized coordinates.  

 

The three energies can be expressed as sums of 

energies specific to the wind turbine components 

considered for the model, see equation (11),  
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 Eq. 11 

Where: 

, , , , , , ,T G T P A P A P TJ J M M K K d d and d
 are 

coefficients specific to the wind turbine 

 components,  

ωG  is the generator angular speed and  

Pr  is the distance from the rotor hub to the point 

 on the blade where the generalized thrust force 

 is applied. 

 

As the wind turbine can be considered a 

mechanical system, the following motion equation 

will be used: 

( , , , )Mq Cq Kq Q q q t u  
   Eq. 12 

Where: 

M, C and K are the mass, damping, and the 

stiffness matrices [10].  

 

For the wind turbine model, the generalized 

coordinate’s vector is: 

1 2( , , , , )T G Tq     
    Eq. 13 

Where: 

θT  is the angular position of the rotor,  

θG  represents the angular position of the generator,  

ζ1 and  ζ2 are the flaps of the blades, while  

yT  represents the horizontal movement of the tower.  

 
Figure 4, flaps of the blades (ζ) and tower horizontal 

movement (yT) [7] 

 

The vector Q representing the forces acting on 

the system is: 

,1 ,2( , , ,2 )aero em aero aero aeroQ C C F F F 
  Eq. 14 

 

Where: 

aeroC
  is the aerodynamic torque,  

emC
   represents the electromagnetic torque and  

aeroF
 stands for the thrust force acting on the 

  blades. 

 

As stated previously some simplifying 

hypotheses were made in order to decrease the model 

order. The thrust forces acting on the blades can be 

considered equal, thus it can be written

1 2aero aero aeroF F F 
.  

The mathematical model design starts with the 

definition of the two important factors of a wind 

turbine: the power coefficient and thrust coefficient, 

both depending on two variables specific to the wind 

turbine the tip speed ratio and the pitch angle of the 

blades. In consequence, as the blades are similar, it can 

be assumed that the blade flaps are equal under the 

action of the same thrust force, ζ1 = ζ2 = ζ. Having the 

two factors ( , )aC    and ( , )PC   defined, and 

considering equations (1) and (3), the mathematical 

expressions for the aerodynamic torque and the thrust 

force can be written as follows: 
3
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  Eq. 15 

As the mathematical expressions of 
C

aero  and

F
aero , described by equations (15), introduce a certain 

level of nonlinearity to the system, it is necessary to 

perform a linearization on the model, around an 

operating point: 

,( , , )op T op op medP   
. 

 

Thus the equations (15) can be written 
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 Eq. 16 

Where: 

Δ  operator describes a small deviation from 

 the optimal value 
( . . )T T Tope g     

 

 and xyD
 are the first order partial derivative 

 coefficients  of the equations (11) with respect 

 to ωT, β and  

v: 
( . . / )cw aero Te g D C   

 

 



Another important component of the 

mathematical model is the behavior of the servomotor 

which controls the pitch angle and also the limitations 

imposed for this angle (i.e. maximum value and 

variation speed of pitch angle) [11]. This component 

is described as follows: 

1

1ref T s







     Eq. 17 

Where: 

βref   is the pitch angle reference and  

Tβ   is the time constant which illustrates the  

 block constraints.  

 

The servomotor limitations were also considered. 

In order to move forward in the model design, the wind 

speed will be represented according to reference [10]: 

1
( ) ( )w w

v

v v t v t
T
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    Eq. 18 

Where: 

Tv is the time constant, calculated in [7], and  

v(t)  is the turbulent component of the wind speed.  

 

The last parameter used is the electric power 

generated by the turbine, one of the output vector 

components. The mathematical expression used to 

compute the power produced by the wind turbine is: 

el G emP C
      Eq. 19 

 

Based on the equations and the mathematical 

expressions defined so far, the state space 

representation of the wind turbine can be obtained.  

The command vector is represented by

( ) ( )emu t BC
, the state vector is represented by: 

( ) ( )T

m T G T T G T wX t           
  Eq. 20 

While the output vector is represented by:  

( ) ( )ely t P
.  

The system linear state space continuous-time 

model is illustrated in equation (16),  

. ( ) . ( ) . ( )

. ( ) . ( ) ( )

vx A x t B u t M m t

y C x t D u t w t

  

  
 Eq. 21 

 

4. LQG Controller Design  

In control theory, the linear-quadratic-Gaussian 

(LQG) control problem is one of the most fundamental 

optimal control problems. It concerns uncertain linear 

systems disturbed by additive white Gaussian noise, 

having incomplete state information (i.e. not all the 

state variables are measured and available for 

feedback) and undergoing control subject to quadratic 

costs. Moreover the solution is unique and constitutes 

a linear dynamic feedback control law that is easily 

computed and implemented. Finally the LQG 

controller is also fundamental to the optimal control of 

perturbed non-linear systems.  

The LQG controller itself is a dynamic system 

like the system it controls. Both systems have the same 

state dimension. Therefore implementing the LQG 

controller may be problematic if the dimension of the 

system state is large. The reduced-order LQG problem 

(fixed-order LQG problem) overcomes this by fixing 

a-priori the number of states of the LQG controller. 

This problem is more difficult to solve because it is no 

longer separable. Also the solution is no longer 

unique. Despite these facts numerical algorithms are 

available[2][3][4][5] to solve the associated optimal 

projection equations[6][7] which constitute necessary 

and sufficient conditions for a locally optimal reduced-

order LQG controller.  

The LQG controller is simply the combination of 

a Kalman filter i.e. a linear-quadratic estimator (LQE) 

with a linear-quadratic regulator (LQR). The 

separation principle guarantees that these can be 

designed and computed independently. LQG control 

applies to both linear time-invariant systems as well as 

linear time-varying systems. The application to linear 

time-invariant systems is well known. The application 

to linear time-varying systems enables the design of 

linear feedback controllers for non-linear uncertain 

systems. 

In traditional LQG Control, it is assumed that the 

plant dynamics are linear and known and that the 

measurement noise and disturbance signals (process 

noise) are stochastic with known statistical properties 

as shown in Figure 5.  

 
Figure 5, Block diagram of the optimal LQG-compensator. 
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That is, W and V are white noise processes with 

covariance  
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  0TE ww w 
, 

  0TE vv v 
 and 

  0TE wv 
, 

  0TE vw 
 

The problem is then to devise a feedback-control 

law which minimizes the ‘cost’  

  Eq. 23 

Where: 

,   0   and  0T Tz Nx Q Q R R      
The solution to the LQG problem is prescribed by 

the separation theorem, which states that the optimal 

result is achieved by adopting the following 

procedure: 

1st, Obtain an optimal estimate of the state x 

Optimal in the sense that: 

 ˆ ˆ( ) ( )TE x x x x 
  

2nd, Use this estimate as if it were an exact 

measurement of the state to solve the deterministic 

linear quadratic control problem.  
 

4.1. Optimal State Feedback LQR 

The optimal control problem consists of solving 

for the feedback gain matrix, K, such that the scalar 

objective function, J(u), is minimized if all state 

variables can be measured [12], [13]. 

 
0

T T
rJ z Qz u Ru dt


 

    Eq. 24 

Where: 

,   0   and  0T Tz Mx Q Q R R      
The optimal solution for any initial state is  

( ) ( )ru t K x t 
      Eq. 25 

Where: 
1 T

rK R B P
      Eq. 26 

We shall write: 

( , , , , )rK LQR A B Q R N
    Eq. 27 

Where: 

P=PT ≥ 0  is the unique positive-semi-definite 

 solution of the Algebraic Riccati equation  
1 0T T TA P PA PBR B P N QN     Eq. 28 

 

Conditions for achieving a stable LQ system are as 

follows: 

R > 0, Q ≥ 0, (A, B) controllable (stabilizable). 

 

Choosing the weight matrices Q and R usually 

involves some kind of trial and error, and they are 

usually chosen as diagonal matrices, so that for a 

system with n states and m controls we have n+m 

parameters to choose.  
 

4.2. Kalman Filter 

The Kalman filter has the structure of an ordinary 

state-estimator or observer, as  

ˆ ˆ ˆ( )fx Ax Bu K y cx   
    Eq. 29 

We need to choose the matrices W, V, which 

appear in and obtain the Kalman-filter gain Kf. The 

optimal choice of fK
 which minimizes:  

    ˆ ˆ  is:
T

E x x x x 
 

Where 

1T
fK PC V 

 
P=PT ≥ 0 is the unique positive-semi-definite  

 solution of the algebraic Riccati equation  
1 0T T TA P PA PBR B P N QN     

 

We shall write Kalman filter as: 

( , , , , )fK LQE A B C W V
    Eq. 30 

 

It is generally advisable to start with simple 

choices of W, V, inspect L4. Then adjust W, V 

accordingly, and so gradually improve L4. One of the 

simplest possible choices is W=BT*B, V=C*CT, 

where L4 is the loop transfer function and it is equal 

to: 

 
1

4 ( ) fL s C sI A K


 
. 

 

In short, the optimal LQG compensator design 

process is the following [14], [15]: 

Design an optimal regulator for a linear plant 

using full-state feedback.  

Design a Kalman filter for the plant assuming a 

known control input, u(t), a measured output, y(t), and 

white noises, W & V, 

Combine the separately designed optimal 

regulator and Kalman filter into an optimal 

compensator LQG. 

LQG is more stabilizer than LQR is sensitive of 

fast damping and small setting time. 
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Figure 6, Block diagram of Combined LQR and Kalman 

Filter 

 

Referee to Figure 6 we can write the LQG 

controller as: 
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  Eq. 32 

 

5. Simulation Results And Discussions 

A. Nominal Values Results  

Figure 7 and Figure 8 presents the angular 

velocity of wind turbine (g) rotor and the output 

power at nominal value of wind speed 13m/s and pitch 

angle 450.  

The LQG controller affects the system to reach 

the nominal value of g that equal to 4rad/s while 

LQR reach only 2.4 rad/s. The power output is 

proportional to the value of g and multiplied by the 

factor Cem. Also, the LQG controller is better than 

LQR. 

 
Figure 7, output rotor speed at nominal wind speed 13m/s 

and pitch angle 450 

 

 
Figure 8, output power at nominal wind speed 13m/s and 

pitch angle 450 

Figure 9 and Figure 10 presents the flaps of the 

blades “”and movement of the tower “t” at nominal 

value of wind speed 13m/s and pitch angle 450. The 

results show that both LQR and LQG success to damp 

the transient oscillation and the LQG settling time is 

shorter than LQR. 

 
Figure 9, flaps of the blades at nominal wind speed 13m/s 

and pitch angle 450 

 
Figure 10, Movement of the tower at nominal wind speed 

13m/s and pitch angle 450 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

time in Sec.

W
g
 d

e
v
. 

in
 r

a
d
/s

 Wg at: WS= 13m/s & BE= 45 deg

 

 

LQR-CONTROL

LQG

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

time in Sec.

P
e
le

c
. 

in
 W

a
tt

Pelec. at: WS= 13m/s & BE= 45 deg

 

 

LQR- CONTROL

LQG- CONTROL

0 1 2 3 4 5 6 7 8 9 10
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

time in Sec.

Z
e
ta

 d
e
v
. 

in
 m

m

 Zeta at: WS= 13m/s & BE= 45 deg

 

 

W/O-CONTROL

LQR-CONTROL

LQG

0 1 2 3 4 5 6 7 8 9 10
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

time in Sec.

Y
t 

d
e
v
. 

in
 m

m

 Yt at: WS= 13m/s & BE= 45 deg

 

 

W/O-CONTROL

LQR-CONTROL

LQG



B. Change of Wind Speed and Pitch Angle Values 

Results 

Figure 11, Figure 12 and Figure 13 present the system 

response at 5m/s wind speed and 00 Pitch angle.  

 
Figure 11, flaps of the blades at wind speed 5m/s and pitch 

angle 00 

 

 
Figure 12, Movement of the tower at wind speed 5m/s and 

pitch angle 00 
 

 
Figure 13, output power at wind speed 5m/s and pitch 

angle 00 

 

The controller acts to maintain the power at rated 

value while the wind speed is reduced by controlling 

the pitch angle to be minimum value. It should be 

noted also that the values of the flaps of the blades and 

movement of the tower is a little bit higher than the 

nominal value results because the minimum value of 

pitch angle that reflects maximum resistivity for the 

wind and hence higher resultant force. Figure 14, 

Figure 15 and Figure 16 show the system response at 

5m/s wind speed and 300 Pitch angle. The output 

power is reduced from nominal value to be 350kW 

because of increasing the pitch angle to 300. Also the 

values of the flaps of the blades and movement of the 

tower is reduced compared to the previous case 

because the lower resistivity for the wind and hence 

lower resultant force.  The most important factor that 

is the LQG controller success to damp the system 

oscillation to reach zero whatever the values are in 

nominal or offnominal conditions. 
 

 
Figure 14, flaps of the blades at wind speed 5m/s and pitch 

angle 300 
 

 
Figure 15, Movement of the tower at wind speed 5m/s and 

pitch angle 300 
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The next figures from 17-22 illustrate the 

dynamics of the wind turbine system at different 

operating condition.  

 
Figure 16, output power at wind speed 5m/s and pitch 

angle 300 

 

 
Figure 17, flaps of the blades at wind speed 14m/s and 

pitch angle 150 
 

 
Figure 18, Movement of the tower at wind speed 14m/s 

and pitch angle 150 
 

 
Figure 19, output power at wind speed 14m/s and pitch 

angle 150 
 

In last three curves 23-25, the output power is 

zero watt because the wind speed exceeds the cut-out 

value 25m/s and controller acts to protect the system. 

 
Figure 20, flaps of the blades at wind speed 23m/s and 

pitch angle 00 

 
 

 
Figure 21, Movement of the tower at wind speed 23m/s 

and pitch angle 00 
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Figure 22, output power at wind speed 23m/s and pitch 

angle 00 
 

 

 
Figure 23, flaps of the blades at wind speed 32m/s and 

pitch angle 150 

 
 

 
Figure 24, Movement of the tower at wind speed 32m/s 

and pitch angle 150 

 

 
Figure 25, output power at wind speed 32m/s and pitch 

angle 150 
 

 

6. Conclusions 

LQG compensated system is more robust with 

respect to measurement noise than the full state 

feedback system of the same LQR controller. The 

optimal control technique is presented for designing 

linear regulators for multi input plants that minimized 

a quadratic objective function. 

Kalman filter is used as an optimal observer for 

multioutput plants in the presence of process and 

measurement noise. The results show that LQG 

controller is more robust than LQR in sense of small 

settling time, lower over/under shots and minimum 

steady state error.  
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