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Abstract: Estimation of radiation-source parameters from 
near-field measurement data is considered. Case of 
distortion by additive and impulsive noises is 
investigated. Robust approach based on a concept of 
“minimal spatial extent” is suggested. The “spatial 
extent” is used two times, namely, in an original space 
(which is the space of solution or sources) and in a 
conjugate space (which is the space of equations 
discrepancy or measurements). The model of radiation 
sources is described by a set of ideal Hertzian dipoles. 
The case, when dipoles are located along a straight line, 
which is parallel to measurement line of electric field, and 
when their electric moments are perpendicular to the 
measurement plane, is considered. Algorithm, based on 
the conjugate gradient method, is proposed. Numerical 
simulations of direct and inverse problems are presented. 
 
Keywords: electric dipole, spatial extent, robust 
estimation, regularization. 
 
1. Introduction 
One of important problems of antenna theory is the 

estimation of spatial locations and amplitudes of 

radiation sources from near-field measurements [1-

3]. This problem belongs to a class of inverse 

problems and is incorrect. In [4-5] we have proposed 

approach for solving this problem in scalar case, 

where we have assumed that the radiation sources 

are the point sources of homogeneous spherical 

waves. In [6] we have considered the vector case, 

assuming that the radiation sources are dipoles. 

There we have described the radiating system by a 

finite set of electric dipoles, which are located along 

a straight line and have the same orientation of 

dipole moments. We have also supposed that in 

near-field of radiating system the components of 

electric field can be measured with negligible 

influence of the probe. In this paper we assume that 

the measured data are distorted by additive Gaussian 

noise, as well as by random impulses appeared due 

to equipment failures. 

Since the radiated field of dipole system is a 

superposition of individual fields of dipoles, it is 

natural to formulate the estimation problem as a 

problem of solving system of linear algebraic 

equations (SLAE). In general, the matrix of this 

SLAE is a rectangular matrix; its horizontal size is 

determined by a number of the "points of solution" 

(i.e. points, where the radiation sources can be 

located) and vertical size is determined by a number 

of the "points of measurement" (i.e. points, in which 

the measurements were performed). This kind of 

matrix leads to find a pseudosolution, e.g. the least 

squares solution with minimal Euclidean norm [7-8]. 

However, if SLAE is ill-conditioned, then such 

pseudosolution can not provide a good quality 

solution when the data are distorted by noise. In this 

case the commonly used method is the regularization 

[9]. Basic idea of regularization is to use a priori 

information about the solution properties and to 

involve it in a problem statement. 

Traditionally, this a priori information is 

formulated as requirement of minimal energy of 

solution (e.g., the power of antenna ohmic losses) 

and/or minimal energy of solution derivatives. But 

this approach usually gives a very smooth solution 

when real solution is not indeed smooth. To avoid 

this drawback we use the natural requirement of a 

minimal spatial extent of solution and assume that 

the radiation sources are located sparsely in 

unknown points of a given discrete grid. In addition, 

due to random impulses in data we have a SLAE, in 

which some part of its equations may have big rough 

errors. To avoid this shortcoming we use the 

requirement of a minimal spatial extent of 

discrepancy of solution. In aggregate, these both 

requirements allow building the robust estimation 

technique [10], which is required to estimate the 

radiation sources under additive and impulsive 

noises. 

 
2. Problem Statement 
There are many ways to describe the radiation 

sources by a set of electric dipoles. Further we 



consider an example, where one electric dipole 

corresponds to one radiation source. Also we use the 

concept of an ideal electric Hertzian dipole and 

study the case of a medium without absorption. Then 

the electromagnetic field, radiated by an ideal 

electric Hertzian dipole, is described by following 

expressions [11]: 
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where 
��

0r , 
���

0000θθθθ  and ϕ
���

0000  are unit vectors of spherical 

coordinate system; unit vector 
���

0
z  points to dipole 

orientation; 1−=i ; λπ /2=k  is wavenumber; λ  

is free space wavelength; ε  is permittivity; r  is a 

distance to an observation point; ω  is angular 

frequency; p=
�� ���

0
p z  is electric dipole moment; 

���

E ,
���

H  are complex amplitudes of electric (1) and 

magnetic (2) fields, respectively. 

Let electric dipoles are located along a straight 

line (line of sources S) and have the same orientation 

of their dipole moments. Let a line of measurement 

M is parallel to S in some plane and electric 

moments of dipoles are perpendicular to this plane 

(Fig.1). 

 

 

 

Then the electric field of dipole has only component 
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Let use additional system of Cartesian 

coordinates, for which x-axis is aligned with S,        

z-axis is perpendicular to S and to M, and y-axis is 

parallel to vector 
���

0
z  of electric dipole moment. 

Then we have Ey = –Eθ. Using (3), the following 

SLAE can be written 
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where bj are values of Ey at the "points of 

measurements"; un are unknown values of field at 

the "points of solution"; ηj are noise samples; z is a 

distance between S and M; ( )s

nx  and ( )m

jx  are x-

coordinates of "points of solution" and “points of 

measurements,” respectively; N is a number of 

“points of solution”; J is a number of “measurement 

points”. Further we assume that dipoles are located 

at some “points of solution” and the number of 

dipoles is substantially smaller than N. 

In matrix presentation, SLAE (4) has a form of 

bAu = , where A is a complex-valued matrix, which 

elements are formed from the spatial model for a 

given system of dipoles, b is a complex-valued 

column vector of known data obtained by 

measuring; u is an unknown complex-valued column 

vector of source amplitudes. The estimation problem 

of radiation sources is to solve the SLAE (4). 

 It is necessary to note that the direct solving: 

bAu 1−=  is possible only for the case of square 

matrix A, when the number of “points of solution” N 

is equal to the number of “measurement points” J. 

But such solution has a major drawback, because 

matrix 1−A  is usually ill-conditioned, making the 

solution unstable. If the matrix A is a rectangular 

matrix, it is necessary to use the pseudosolution [7-

8], i.e., the Least-Squares Solution 

bAAAu HH 1)( −= , obtained from minimization 

problem 
u

bAu min||||
2→− , where HA  denotes the 

conjugate (Hermitian) transpose of the complex-
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Fig. 1.  Geometry of the problem. 



valued matrix A  and 2||...||  denotes the squared 

Euclidean norm. But this solution has the same 

drawback. We point here that in both cases 

mentioned above the condition number of SLAE 

matrix increases as the distance between the points 

of measurements decreases. Moreover, the solution 

bAIAAu HH 12 )( −+= ρ , obtained by standard 

Tikhonov regularization technique: 

u
ubAu min||||||||

222 →+− ρ , where 2ρ  is a 

parameter of Tikhonov regularization [9], also has 

the following shortcomings: 1) it produces a very 

smooth solution, when the true solution is not 

smooth; 2) if data are destroyed by spikes, the 

obtained solution would be bad. 

We propose to solve (4) on the basis of the 

Method of Minimum Duration [12]. Here we change 

the term “duration” by the term “spatial extent” [13] 

and use the concept of “spatial extent” two times, 

namely, in an original space (which is the space of 

solution or sources) and in a conjugate space (which 

is the space of equations discrepancy or 

measurements). Therefore we call this approach as a 

“Dual Method of Minimum Spatial Extent 

(DMMSE)” and formulate it as optimization 

problem 
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f u D Au b D uγ= − + → , (5) 

 

where f(u) is the objective function of u; term 

1[ ]D Au b−  denotes the measure of “spatial extent” 

of discrepancy Au b− ; term 2[ ]D u  denotes the 

measure of “spatial extent” of solution u [14]; 2γ  is 

a parameter of "external regularization" [4-6]. 
 

3. Dual Method Of Minimum Spatial Extent 

3.1. Implementation 

Idea of DMMSE, presented by (5), consists in the 

requirement to minimize the spatial extent of 

solution discrepancy as well as to minimize the 

spatial extent of solution. To implement the concept 

of “spatial extent” various approaches can be used 

[13-17]. Further we use a logarithmic approach to 

define the “spatial extent” in a form of myriad 

functional [15]. Then, using (5), for the discrete case 

we have 
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where 2

1 11 / ln[1 1/ ]c α= + ; 2

2 21 / ln[1 1 / ]c α= + ; jna  

is the element of matrix A; 1α  and 2α  are the 

parameters of “internal regularization.” 

Note, if 2 2

1

1

| |
N

jn n j

n

a u bα
=

>> −∑  for all j, then the 

first term of objective function (6) tends to the 

quadratic term, and, consequently, we have the 

problem [6], that for 2

1 1α >>  can be written as 
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This is a problem of least squares with non-quadratic 

regularization term. 

Also note, if 2 2

2 | |nuα >>  for all n, then the second 

term of (6) tends to the quadratic term, corresponded 

to Tikhonov smoothing [9], that for 2

2 1α >>  can be 

written as 
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This is a nonlinear (non-quadratic) minimization 

problem with quadratic regularization term. 

If 2 2

1

1

| |
N

jn n j

n

a u bα
=

>> −∑  for all j and if 

2 2

2 | |nuα >>  for all n, then the first and the second 

terms of objective function (6) tend to the quadratic 

terms simultaneously. In this case we have the 

Tikhonov regularization method [9], which (for 
2

1 1α >>  and 2

2 1α >> ) can be written for the discrete 

case as a solving of minimization problem 
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The method derived by (9) can be also named as a 

“dual method of least squares,” because it states that 

the weighted (by 2γ ) sum of the squares of the 

solution discrepancy values and of the squares of the 

solution values should be a minimum. 

 

3.2. Solving Technique 

To solve (6) we use a numerical method, based on 

the conjugate gradient method given by the 

following calculation scheme: 

 
( 1) ( ) ( ) ( ) , 0t t t tu u h p t+ = + ≥ ; 
(0) (0) ; 0p g t= − = ;  
( ) ( ) ( 1) ( 1) , 1t t t tp g d p t− −= − + ≥ ; (10) 
( 1) ( ) 2 ( 1) 2|| || / || ||t t td g g− −= ; 
( ) ( ) ( )arg(min ( ))t t t

h
h u hp= +f , 

 

where t is a number of iteration; u
(t)

 is a solution at 

the t–th iteration; h
(t)

 is a step along the descent 

direction p
(t)

 at the t–th iteration; g
(t)

 is a gradient of 

functional f at the t–th iteration. Repeating basic 

steps of conjugate gradient method, proposed 

method has the following features: 1) calculation of 

functional gradient; 2) solving of one-dimensional 

minimization problem for choosing the step size 

along descent direction. 

For simplicity of calculations we transform the 

complex-valued SLAE (4) to the real-valued SLAE. 

To do this, we rewrite (4) in the form: 000 buA = , 

where 






 −
=

RI

IR

AA

AA
A0  is a purely real-valued 

block matrix, RA  and IA  are real and imaginary 

parts of complex-valued matrix A; TIR bbb ][0 =  

is a purely real-valued vector of measurement, 

which consists of real Rb  and imaginary Ib  parts of 

known complex-valued data; TIR uuu ][0 =  is a 

purely real-valued vector of solution, which consists 

of real Ru  and imaginary Iu  parts of complex-

valued solution. 

Further, we examine the gradient calculation and 

the solving of one-dimensional minimization 

problem for the particular case of dipole sources 

with real-valued amplitudes. 

If the solution u is a real-valued vector, we have 

SLAE: 01 buA = , where 







=

I

R

A

A
A1 ; Ruu = ; 



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I

R

b

b
b0 . From the necessary optimality condition 

of (6), for this particular case we have a system of N 

nonlinear equations 
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where jna  is an element of matrix 1A ; jb  is an 

element of vector 0b ; ku  is an element of real-

valued vector u . Note that the left side of (11) 

represents the gradient components of (6) for this 

particular case. 

If we start iteration process (10) with the (0) 0u =  

(i.e. with the zero initial samples of solution (0) 0ku =  

for all k), from (11) we have the initial gradient as 
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where vector w consists of the elements  
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where jb  is an element of vector 0b . It is interest to 

note that, if 2 2

1 jbα >> , from (12)-(13) we have 

 

 (0)

1 0( )Tg A b≈ − . (14) 

 

where the right side of (14) is the gradient for least 

squares technique. 

One-dimensional minimization problem 
( ) ( ) ( )arg(min ( ))t t th f u h p= +  consists in the 

choosing of step size h along the descent direction 

p
(t)

. We propose to solve this problem by using a 

finite set of “testing steps”. This set includes the 



steps which we call “steps to nullify the discrepancy 

of the solution,” “steps to nullify the solution,” and 

“step according to Newton method.” 

“Steps to nullify the discrepancy of the solution” 

are used to nullify the some sample of the 

discrepancy and are defined by 
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In total, there are J such steps at the t-th iteration. 

“Steps to nullify the solution” are used to nullify 

the some sample of solution. These steps are defined 

by 

 ( ) ( ) ; 1,...,s t t

n n nh u p n N= − = . (16) 

 

In total, there are N such steps at the t-th iteration. 

Steps (15) and (16) decrease f according to (6). 

“Step according to Newton method” is used to 

minimize (6) under condition that the solution is in 

the neighborhood of some local minimum of (6). 

This step is defined by 
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is a N N×  diagonal matrix depended on 2

2
α  and on 

the solution values ( )t

nu  at the t-th iteration. In total, 

there is only one such step at the t-th iteration. 

Here is an algorithm for the use of testing steps. 

We substitute each of these steps, calculated by (15)-

(17), into the one-dimensional minimization 

problem and choose as h
(t)

 such value of step, for 

which the functional (6) has a minimal value. If d

jh  

or s

nh  has the best value, we regenerate the descent 

direction as ( ) ( )t tp g= − . If h  has the best value N 

times in succession, we regenerate the descent 

direction also. If the best value of step is equal to 

zero, we stop the iterations. 

 

4. Numerical Simulation 

Fig. 2 and Fig. 3 show results of numerical 

simulation of direct and inverse problems for the 

case of electric dipoles array, when dipoles are 

located along a straight line, which is parallel to the 

measurement line of electric field, and when their 

electric moments are perpendicular to the 

measurement plane (as in Fig.1). 

To simulate the direct problem, we used (4) with 

the following parameters:  N=J=200;  ∆x
(s)

 = ∆x
(m)

 

=∆x; ∆x/λ=0.1; z/λ =1, amplitudes un=1 for n=40, 

70, 100, 130, 160 and un=0 for other n (Fig.2,a). 

Complex values bj were distorted by additive 

Gaussian noise as well as by random impulses. 

Standard deviation of Gaussian noise was about 5% 

of the maximum of absolute value for the real 

(Fig.2,b) and for the imaginary (Fig.2,c) parts of 

electric field component, respectively. The 

amplitudes of impulses were uniformly distributed 

in [-1,1], and the probability of their appearance is 

equal to 0.1 . This means that almost ten percent of 

the data samples are completely destroyed, and we 

do not know a priori what data samples are 

incorrect. 

Solution of inverse problem by Tikhonov 

regularization (9) with the optimal value 2 1γ =  is 

presented in Fig.2,d. This solution does not allow to 

estimate locations and amplitudes of radiation 

sources correctly. 

Solutions of inverse problem by DMMSE with 
(0) 0u =  for various values of regularization 

parameters are presented in Fig.3.  

Fig.3,a shows solution, obtained with the 1 1α = , 

2 1α = , 2 0.1γ = , when 1α  and 2α  have big values, 

for which the first and the second terms of functional 

(6) are close to the quadratic terms.  We can see that 

this solution is similar to the Tikhonov’s solution (9) 

depicted in Fig.2,d and it does not allow correctly 

estimating the locations and amplitudes of sources. 

Fig.3,b shows solution, obtained with the 

1 0.1α = , 2 1α = , 2 0.1γ = , when 2α  has a big value, 

for which the second term of functional (6) is close 

to the quadratic term and, therefore, when we 

approximately have the problem (8). Here we see 

that this solution allows avoiding the drawbacks 

caused due to impulses, but it does not satisfy the 

requirement of a minimal spatial extent of solution. 

Therefore, in this case we have to use some 

additional a priori information about a source 

waveform that allows estimating the locations and 

amplitudes of sources.  



 

 

 

 

 

Fig.3,c shows solution, obtained with the 1 1α = , 

2 0.1α = , 2 0.1γ = , when 1α  has a big value, for 

which the first term of functional (6) is close to the 

quadratic term and, therefore, when we 

approximately have the problem (7). As expected, 

the impulsive noise destroys the solution and leads 

to the wrong results of estimation.  

Finally, the solution by DMMSE with the quasi-

optimal values of parameters 1 0.1α = , 2 0.1α = , 
2 0.1γ = , obtained after 144 iterations, is presented 

in Fig.3,d. In this case the graphics of the obtained 

(Fig.3,d) and the true (Fig.2,a) solutions were almost 

identical. Note that obtained solution allows to make 

the correct estimation of the locations and 

amplitudes of radiation sources using samples which 

absolute amplitude values are greater than the value 

of 2α . 

We study also the behavior of maximal value of 

Relative Mean Square Error (RMSE) of solution. 

Table 1 contains results obtained over 100 

realizations of the mixture of Gaussian additive 

noise and uniformly distributed impulsive noise for 

the different values of internal and external 

regularization parameters. The value of RMSE was 

calculated with the following formula: 

%100/)(

1

2

1

2 ×−= ∑∑
==

N

n

n

N

n

nn uuuδ , where nu  

denotes a sample of obtained solution, and nu  

denotes a sample of true solution. The maximal 

value of RMSE was calculated by use of the 

maximization operation to the RMSE values 

obtained over 100 realizations of the mixture of 

noises for given values of regularization parameters. 

 

 

 

(a)      (b) 

 

(c)      (d) 

 Fig. 2. Spatial distribution of electric field: (a) true real-valued spatial distribution; (b) real and (c) imaginary 

parts of electric field, distorted by additive and impulsive noises; (d) solution of inverse problem after 

use of Tikhonov regularization with the optimal value γ2
=1. 



 

 
Table 1 shows that for the case depicted in Fig.3,d 

maximal value of RMSE equals to 12.68%. It also 

shows that there exist values of the regularization 

parameters, for which a smaller value (of RMSE 

maximal value) is achieved. 

 

 

 
We can see that the minimum of maximal values 

of RMSE is approximately equal to the percentage 

of Gaussian noise in the input data (about 5%). 

Thus, Table 1 shows the stability degree of obtained 

solutions and indicates the existence of the optimum 

values of the regularization parameters. 

Note that the large values of RMSE were caused 

by different reasons. The large values of RMSE for 

the small values of 21 ,αα  were obtained due to 

violation of the algorithm convergence. But the large 

values of RMSE for the large values of 21 ,αα  were 

obtained due to the shifting of the global minimum 

with respect to the true solution. This is due to the 

fact that for small values of 21 ,αα  the location of 

the global minimum is close to the true value, but 

there are many local minimums. The number of 

local minimums becomes greater, the values of 

 

  

(a)      (b) 

 

(c)      (d) 

Fig. 3. Spatial distribution after use of DMMSE: (a) with 
1

1α = , 
2

1α = , 2 0.1γ = , when 
1

α  and 
2

α  are very 

big; (b) with 
1

0.1α = , 
2

1α = , 2 0.1γ = , when 
2

α  is very big; (c) with 
1

1α = , 
2

0.1α = , 2 0.1γ = , 

when 
1

α  is very big; and (d) with 
1

0.1α = , 
2

0.1α = , 2 0.1γ = , which are close to the optimal values. 

Table 1.  Maximal value of RMSE (%) obtained 

over 100 realizations of the mixture of 

additive and impulsive noises. 

)(log 2
10 γ  

2
2

2
1 αα =  

-2 -1.5 -1 -0.5 0 

0.1 328.56 189.13 100.44 91.17 94.77 

0.01 123.69 16.30 12.68 12.27 101.46 

0.001 95.05 7.46 5.05 4.50 78.41 

0.0001 145.00 117.10 57.47 56.98 141.18 



21 ,αα  become the smaller. Therefore, the process 

of convergence to a global minimum is violated, and 

the convergence to a local minimum gives incorrect 

results. 

 

 

5. Conclusion 

DMMSE is the generalization of least squares 

technique with Tikhonov regularization. It allows 

estimating the location and amplitude of radiation 

sources from the near-field measurements. DMMSE 

is stable to additive and impulse noise, and it allows 

to solve the estimation problem under conditions 

when locations of sources are unknown a priori. It is 

shown that there are optimal values of the 

regularization parameters, for which obtained 

solution practically coincides with the desired 

solution. Numerical simulation confirmed an 

advantage of the proposed method compared to the 

traditional method of least squares using quadratic 

Tikhonov regularization. Proposed implementation 

of the method based on the conjugate gradient 

method and original algorithm for solving of one-

dimensional optimization problem allows us to 

achieve a high speed of data processing with the 

ability to perform it real-time. Our further research is 

focused on an adaptive approach to select the 

regularization parameters. 
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