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Abstract: This paper deals with the comparison between fuzzy 
sliding mode controller (FSMC) and novel approach of FSMC 
using a PDα sliding surface, for a trajectory tracking of a chaotic 
system. In order to alleviate the chattering phenomenon due to the 
discontinuity in the signum function, a Takagi-Sugeno fuzzy logic 
controller is used, and to ensure optimal performance in the closed 
loop system, the PSO algorithm is also used. 
Finally the effectiveness of the proposed approach of 
FPD

α
SMC-based PSO algorithm is demonstrated by 

simulation results. 
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1. Introduction 

Fractional-order calculus is an area of mathematics; it 

has 300 years of history that deals with derivatives and 

integrals from non-integer orders. In the last two 

decades, fractional calculus has been rediscovered by 

scientists and engineers. It has been applied in a many 

number of fields, namely in the area of control theory 

such as, A Fractional Order PID Tuning Algorithm for A 

Class of Fractional Order Plants [1], A novel fractional 

order fuzzy PID controller and its optimal time domain 

tuning based on integral performance indices [2], 

Observer Based Control of a Class of Nonlinear 

Fractional Order Systems using LMI [3], Optimized 

wave-absorbing control: Analytical and experimental 

results [4]. 

Besides, the SMC for example was largely proved its 

efficiency through the reported theoretical studies [5], 

[6]. 

The first step of SMC design is to select a sliding 

surface that models the desired closed-loop performance 

in state variable space. The second step is to design the 

equivalent and a hitting control law such as the system 

state trajectories forced toward the sliding surface and 

slides along it to the desired attitude. In the literature, 

several methods for selecting sliding surface have been 

reported. The approach in [7, 8, 9, 10] uses a 

proportional-derivative type sliding surface, where the 

order of derivation is an integer. In [11] a nonlinear 

sliding surface for the coupled tanks system is adopted 

and given best results. Due to the fact that the fractional 

order calculus plays an important role in various 

domains, a PDα sliding surface is proposed in [12] [29], 

and a novel fractional integral terminal sliding mode 

concepts for the output tracking problem of relative-

degree-one systems with uncertainty and disturbance is 

presented in [30]. Also authors in [31] have proposed a 

novel fractional-order integral type sliding surface for 

robust stabilization/ synchronization problem of a class 

of fractional-order chaotic systems in the presence of 

model uncertainties and external disturbances. 

Motivated by the above discussion this paper designs 

a sliding surface based on the fractional order 

proportional-derivative (PDα) [12], the best choice of the 

order of the sliding surface can results a small output 

response, improves settling time and stability of the 

system. 

Then, to make the developed surface globally 

attractive and invariant, the control law is designed. 

An advantage of these methods of control (SMC) is 

their robustness to parameter perturbations and bounded 

external disturbances. The robustness is attributed to the 

discontinuous term in the control input. However, this 

discontinuous term also causes an undesirable effect 

called chattering. 

Sometimes this discontinuous control action can even 

cause the system performance to be unstable. To reach a 

better compromise between small chattering and good 

tracking precision, various compensation strategies have 

been proposed. 

For example, integral sliding control [13, 14, 15], a 

fuzzy sliding mode control strategy [16]. Though 

introducing a fuzzy logic controller and taking off the 

sign function in the hitting control law of SMC may 

reduce the chatter amplitude. 

The selection of suitable parameters of fuzzy PDα 



 

 

sliding mode controller (FPDαSMC) is a significant 

problem, that it can be solved either by manually 

changing the values or to use some optimization methods 

[36],[37], in this paper we are interested by the particle 

swarm optimization algorithm (PSO). 

The rest of this article is organized as follows. Basic 
definitions of fractional calculus are described in Section 
2. The Fuzzy PDα sliding mode controller design, in 
Section 3. After that the PSO approach is described in 
Section 4. The optimization of FPDαSMC with PSO in 
Section 5. And finally the simulation results and 
conclusion are given in Sections 6 and 7, respectively.  
 

2. Basic definitions of fractional calculus 

The fractional differ-integral operators denoted by Da t
  

(Fractional calculus) are a generalization of integration 

and differentiation of the operators of a non integer 

order. In the literature we find different definitions of 

fractional differ-integral, but the commonly used are: 

The Riemann-Liouville (RL) definition: 
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The Caputo’s definition: 
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Where m−1<α<m and Γ(·) is the well-known Euler’s 

gamma function, and its definition is: 
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Where, x is the order of the integration. 

On the other hand, Grunwald-Letnikov (GL) 

reformulated the definition of the fractional order 

derivative as follows: 
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Because the numerical simulation of a fractional 

differential equation is not simple as that of an ordinary 

differential equation, so the Laplace transform method is 

often used as being a tool for the resolution of the 

problems arising in engineering [17, 18]. 

In the following section, we give the Laplace 

transforms of the fractional order derivative given 

previously. 

The Laplace transform of RL definition is as follows 

[17],[32]:  
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Where s=jw denotes the Laplace operator. For zero initial 

conditions, the Laplace transform of fractional derivative 

of Riemann-Liouville, caputo and Grunwald-Letnikov 

reduce to (6) [32],[33]. 
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In this paper the fractional order element sα is 

approximated with Oustaloup’s filter [19].  The 

Oustaloup’s filter is based on the approximation of a 

function of the form: 
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By a rational function: 
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Where the parameters of this function (zeros, poles, and 

gain) can be determined by the following formulas: 
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(2N+1) is the order of the filter, wb and wh are 

respectively the low and high transient-frequencies. In 

this paper we consider the 5th order Oustaloup’s rational 

approximation for the FO element within the frequency 

range 2 2{10 ,10 }w   . 

3. Fuzzy PDα sliding mode controller design 

We consider the following stat-space representation of 

the second-order nonlinear system: 
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Where x =[x1 x2]T is the state vector, f(x) and b(x) are 

nonlinear functions, u is the control input designed to 

track a command x1d(t) closely. Without losing 



 

generality, assume b(x) > 0 for all x.  

For this kind of system, we find several control 

methods, such as, fuzzy control, PID control, sliding 

mode control,…etc. 

A. PDα sliding mod controller (PDαSMC) 

For the system presented in Eq. (10), firstly we use the 

following PDα sliding surface using Caputo’s definition 

as: 

 

( ) .t pS D e k e                         (11) 

 

Remark : it is clear that selecting α = 1, a classical PD 

sliding surface can be recovered.  

The fractional derivatives Caputo right hand 

definition (RHD) [34] of function f(t) gives, 

( )
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m
m
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d
D f t D f t

dt

 
 , where m is an integer greater 

than α. From this we can write the sliding surface S as 

follows: 
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Where e=x1-x1d , and kp is a positive constant. 

It is obvious from (11) that keeping system states on 

the sliding surface S(x,t), ∀ t >0 will guarantee that the 

tracking error vector asymptotically approach to zero. 

The corresponding sliding condition is: 
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The general control structure that satisfies the stability 

condition of the sliding motion can be written as: 
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Where ueq is called the equivalent control law that is 

derived by setting 0S  and Ks is a positive constant. 

We refer to [32] for more details. Differentiating both 

sides of Eq (12) to the order unity yields the equality in 

(15) 
1 1
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From Eq(15) one can conclude that: 
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By setting S =0, and substituting 1 2x x  , the equivalent 

control is obtained, and it has the flowing formula: 
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To verify the stability analysis, substituting Eq(14) into 

Eq(10) yields: 
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Eq(18) becomes 
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By using Eq (16), the Eq (19) can be rewritten as 

follows: 
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Differentiate (20) to the order (α −1). Since (α −1) ≺ 0 

this indeed corresponds to fractional order integration, 

corresponding to negative valued α in Caputo’s definition 

in (2), and taking into account the property of Caputo’s 

derivative 
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For t = 0, we have S =0 and for t ≻ 0 we have 

S   .(sgn( ))sK S   

Thus by using (13) we can obtain: 
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Lemma 1. [28] Consider the following autonomous 

linear fractional-order system: 
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In this case, the components of the state decay towards 

0 like t  . 



 

 

 
Fig. 1. Stable domain of fractional order system in sα 

plane 

 

Proof. When the sliding mode occurs, system (11) can 

be represented as follow: 

 

( ) . 0t pD e k e                          (25) 

 

Therefore, the sliding mode dynamics is obtained by 

the following equation: 
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It can be seen that arg( )pk   , so the sliding surface 

parameter kp is selected to be positive to satisfy the 

stability condition of Lemma 1. 

In summary the used PDα sliding surface can 

guarantee the stability in the sense of the Lyapunov 

theorem. 

However, a large control gain Ks often causes the 

chattering effect. In order to tackle this problem, a 

continuous fuzzy logic control term ∆u is used to 

approximate uh. 

 

B. Fuzzy PDα Sliding Mode Controller (FPDαSMC) 

The FPDαSMC is a hybrid controller; it can be 

regarded as a fuzzy regulator that controls the variable S 

approach to zero. 

The structure of a fuzzy controller design consists of: 1) 

the definition of input-output fuzzy variables; 2) 

decision-making related to fuzzy control rules; 3) fuzzy 

inference logic; and 4) defuzzification. 

For the proposed FPDαSMC we used the sliding 

surface S as the input at the fuzzy controller, and ∆u is 

the fuzzy controller output. The structure is shown in 

figure 2: 

Where: 
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Fig. 2. Structure of the Fuzzy controller 

 

Assuming that the input and output of the fuzzy 

controller has five level language variables, its 

membership function is shown in figure. 3. 

Where ϕ and K are used to expand or shrink the 

divisions of the membership functions along the 

universes of discourse, r is a coefficient to be used to 

adjust the width of the input membership function of the 

linguistic variable Zero [24]. 

Such linguistic expressions can be used to form the 

fuzzy control rules as below: 

Rule 1: IF S is NB, THEN ∆u is PB. 

  Rule 2: IF S is NM, THEN ∆u is PM. 

Rule 3: IF S is ZO, THEN ∆u is ZO. 

 Rule 4: IF S is PM, THEN ∆u is NM. 

           Rule 5: IF S is PB, THEN ∆u is NB. 

Where NB denotes ”Negative Big”, NM denotes 

”Negative Mid”, ZO denotes ”Zero”, PB denotes 

”Positive Big”, and PM denotes ”Positive Mid”.  

The FLC output (∆u) is determined using the weighted 

average method [11]. 

Fig. 3. Membership functions of input variable (S) and 

FLC output (∆u) for the FPDαSMC 

4. Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is an evolutionary 

computation technique developed by Kennedy and 

Eberhart in 1995 [20]. The inspiration underlying the 

development of this algorithm was the social behaviour 

of animals, such as the flocking of birds and the 



 

schooling of fish, and the swarm theory. It has been 

proven to be efficient in solving optimization problem 

especially for nonlinearity and non differentiability, 

multiple optimum, and high dimensionality [21, 22]. 

In PSO, the velocity of each particle is modified 

iteratively by its individual best position (pbest), and the 

global best position (gbest) found by particles in its 

neighborhood. As a result, each particle searches around 

a region defined by its individual best position (pbest) and 

the global best position (gbest) from its neighborhood. 

Henceforth we use Vi to denote the velocity of the ith 

particle in the swarm, pi denote its position. At each step 

(or iteration) n, by using the individual best position, 

(pbest), and global best position, (gbest), the velocity and 

position of each particle are updated by the following 

tow equations: 
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Where r1 and r2 are random numbers between 0 and 1; 

c1 and c2 are positive constant learning rates; W is called 

the constriction factor [23] and is defined by (30):         
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In each step n the position is confined within the range 

of [pmin; pmax]. If the position violates these limits, it is 

forced to its proper values [21]. 
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Changing position by this way enables the ith particle to 

search around its individual best position pbest, and 

global best position, gbest. 

The following shows the design step for implementing 

the PSO algorithm [21]. 

Step 1. Initialize particles with random position and 

velocity on dimension in the problem space. 

Step 2. If a prescribed number of iterations 

(generations) is achieved, and then stop the 

algorithm. 

Step 3. For each particle, evaluate the desired 

optimization fitness function, and record each 

particle’s best previous position (pbest), and 

global best position (gbest). 

Step 4. Change the velocity and position according to 

equations (28) and (29) respectively, for each 

particle 

Step 5.  Check each particle’s position using (31). 

Step 6.  Go back to Step 2. 

5. Optimization of FPDαSMC with PSO 

The design problem is defined as finding the optimum 

values of the fuzzy PDα sliding mode controller 

parameters in the closed-loop system. The Parameters 

vector composed by the positions of the membership 

functions (when the conclusions are fixed), the gain kp, 

and the fractional order α. 

Let pi = [ϕ, r, K, kp, α] the vector of selective 

parameters of FPDαSMC, the regions of the decision 

variables are mentioned as follows. 

 

0.1 < ϕ < 10 ,     0.1 < r < 1 ,      0.1 < K < 20 , 

0.01 < kp < 20 ,       0.1 < α < 0.98 

 

To converge toward the optimal solution, the PSO 

algorithm must be guided by the cost function. Hence, it 

should be properly defined before the PSO algorithm is 

executed. 

In the present study, the used cost function (F1) is 

defined by the following formula: 
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In order to compare the performances of the different 

controllers, we define the flowing cost functions: 
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Where e(i) is the trajectory error of ith sample, u(i) is the 

control signal of ith sample and N is the number of 

samples. The weighting factors γ1 and γ2 are used to 

give more flexibility to the designer depending on the 

nature of application and relative importance of low error 

and control signal. 

6. Simulation results 

In this section, we shall demonstrate that the 

FPDαSMC tuned with PSO is applicable to the problem 

of trajectory tracking control of a non-linear chaotic 

system. Tuning process with PSO is also applied to the 

Fuzzy Sliding Mode Controller (FSMC) using PD sliding 

surface. 

For the robustness evaluation of the different 

controllers tuned by PSO algorithm, an external 

disturbances (d=0.2∗ sin(t)) is added to the system, and 



 

 

the parameters variation of the system is carried out, 

where the controllers’ parameters tuned by PSO are kept 

unchanged.  

The simulation is carried out using 

the”Matlab/Simulink” tools within 0.01 sample time. The 

population size of PSO algorithm is set to 20 particles. 

The parameters c1; c2 and W are set to 2.05, 2.05 and 

0.7298 respectively, and the maximum number of 

iteration n is set to 40 iterations. The weighting factors 

γ1 and γ2 are set to 3 and 0.1 respectively. The cost 

function (32) is minimized for each of the FSMC and the 

FPDαSMC controllers with the corresponding controller 

parameters reported in Table 1. 

Table 1 

Optimal parameters for FSMC and  FPD
α
SMC 

 

 

Performance 

index 

 

min(F1) 

min(F2) 

min(F3) 

FSMC               FPD
α
SMC 

113.9903              112.4680 

0.5793                     0.3064 

2.6400×10
3
       3.9092×10

3
 

 

 

Controller 

parameters 

ϕ  

r 

K 

k p 

α 

0.1881                      0.1000 

0.1000                      0.3513 

12.5932                    4.1112 

4.7645                    10.9677 

-                                0.9800 

 

A. Example (Chaotic system) 

In recent years, chaotic systems have attracted 

considerable interest and have been extensively 

investigated. An interesting subject in chaos theory is to 

eliminate the chaotic behavior by means of control 

systems [25], [26], [35], [38]. Consider a second-order 

chaotic system such as [27]. 
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Where u the control signal and d is an unknown external 

disturbance assumed to be bounded as follows: 

 

d D                             (36) 

 

Simulation result of tracking control of the state x1(t) 

with a desired reference wave is shown in figure. 4 

where q and wc are set to 2.1 and 1.8 respectively. 

Figure. 5 shows the simulation result with parameters 

variation and adding external disturbance. The expression 

of the desired reference (x1d) is given as follows: 
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Where the initial conditions (x1(0); x2(0)) are set to (0.3, 

0). 
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Fig. 4. Simulation result of the chaotic system. 
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Fig. 5. Simulation result of the chaotic system, with 

parameters variation (q=3.2; wc = 2.5) and adding external 

disturbance d. 

 

From the simulation results, the FPDαSMC performs 

better control specification such as fast response 

compared with FSMC, also it is evident that the 

FPDαSMC outperforms the FSMC for trajectory 

tracking task. 

However when compared with respect to small 

magnitude of control signal, the FSMC gives better 

results. 

After adding external disturbance and changing in 

parameters of the system we could obviously find that 

the disturbance rejection ability of different controllers 

tuned with PSO. 

7. Conclusion 

In this paper a Fuzzy PDα Sliding Mode Controller that 

combines the advantages in term of robustness of the 

fractional calculus, fuzzy logic for its ability to express 

the amount of ambiguity in human reasoning and sliding 

mod controller in term of robustness to parameters 



 

variation and external disturbances, is investigated for a 

chaotic system. 

Firstly, PDα surface sliding mode controller is used. 

The design yields an equivalent control term with an 

addition of fuzzy logic control to approximate the 

discontinuous control term and to alleviate the chattering 

phenomenon. 

Then the application of the PSO method can perform an 

efficient search for the optimal parameters of both 

FSMC and FPDαSMC, and achieve good accuracy. 

Finally, the simulation results show the effectiveness 

of the proposed controller algorithm for nonlinear 

chaotic systems. 
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