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Abstract—In this paper, the speed control of a permanent 
magnet synchronous motor using an adaptive backstepping 
control design based on filed orientation is proposed. 
Firstly, the indirect field oriented control of permanent 
magnet synchronous motor (PMSM) is derived. Then, a 
novel adaptive backstepping control design technique is 
investigated to achieve a speed tracking objective under 
parameter uncertainties and disturbance of load torque. 
The effectiveness of the proposed control scheme is verified 
by numerical simulation. Simulation results clearly show 
that the proposed control scheme can track the speed 
reference signal generated by a reference model successfully 
under parameter uncertainties and load torque disturbance. 

Index Terms —Permanent magnet synchronous motor,  
vector control,  adaptive backstepping control, parameters 
uncertainties. 

I. INTRODUCTION 
Permanent magnet synchronous motors (PMSM) are 

frequently used in industrial applications. Especially their 
compact design, high efficiency, high power/weight and 
torque/inertia ratios can be shown as the most important 
advantages of PMSMs. On the other hand, the high cost 
and their time-varying magnetic characteristics are the 
disadvantages of PMSMs [1–3]. The dynamic model of a 
PMSM is highly nonlinear because of the coupling 
between the motor speed and the electrical quantities, 
such as the d–q axis currents. The model parameters such 
as the stator resistance and the friction coefficient may 
also not be exactly known. Even worse, the load torque is 
always unknown. All these factors make controller design 
for a PMSM difficult when high speed and high precision 
are required in the real application. 

The vector control technique (field-oriented control) is 
one of the most important closed loop techniques for AC 
machines in variable speed applications. Using this 
control technique, the torque and flux can be decoupled 
so each can be controlled separately. A PMSM under 
vector control has the dynamic performances capabilities 
of a separately excited dc machine while still retaining 
the advantages of ac over dc motors [1, 2, 4, 5]. However, 
the performance is sensitive to the variation of motor 
parameters, especially the rotor time-constant, which 
varies with the temperature and the saturation of the 
magnetizing inductance. Recently, much attention has 
been given to the possibility of identifying the changes in 
motor parameters of PMSM while the drive is in normal 

operation. This stimulated a significant research activity 
to develop PMSM vector control algorithms using 
nonlinear control theory in order to improve 
performances, achieving speed (or torque) and flux 
tracking, or to give a theoretical justification of the 
existing solutions [1, 2, 5]. 

Due to new developments in nonlinear control theory, 
several nonlinear control techniques have been 
introduced in the last two decades. One of the nonlinear 
control methods that have been applied to AC machines 
is the backstepping design [6, 7, 8]. Backstepping is a 
systematic and recursive design methodology for 
nonlinear feedback control. This approach is based upon 
a systematic procedure for the design of feedback control 
strategies suitable for the design of a large class of 
feedback linearisable nonlinear systems exhibiting 
constant uncertainty, and it guarantees global regulation 
and tracking for the class of nonlinear systems 
transformable into the parametric-strict feedback form. 
The backstepping design alleviates some limitations of 
other approaches [5, 6, 7, 8, 9, 10]. It offers a choice of 
design tools to accommodate uncertainties and 
nonlinearities and can avoid wasteful cancellations. The 
idea of backstepping design is to select recursively some 
appropriate functions of state variables as pseudo-control 
inputs for lower dimension subsystems of the overall 
system. Each backstepping stage results into a new 
pseudo-control design, expressed in terms of the pseudo-
control designs from the preceding design stages. When 
the procedure terminates, a feedback design for the true 
control input results and achieves the original design 
objective by virtue of a Lyapunov function, which is 
formed by summing up the Lyapunov functions 
associated with each individual design stage [5, 9, 10, 11, 
12]. 

In this paper, an adaptive backstepping control design 
based on field orientation for PMSM speed control is 
proposed. The proposed controller is adopted to derive 
the control scheme, which is robust to the parameter 
uncertainties and load torque disturbance. The rest of this 
paper is organized as follows. Section 2 reviews the 
principle of the indirect field-oriented control (IFOC) of 
permanent magnet synchronous motor. Section 3 shows 
the development of the adaptive backstepping controller 
design for PMSM speed control. Section 5 gives some 
simulation results. Finally, some conclusions are drawn 
in section 6. 



II. MATHEMATICAL MODEL OF THE PMSM 
The model of a typical surface-mounted PMSM can be 

described in the well known (d–q) frame through the Park 
transformation as follows: the stator d, q equations in the 
rotor frame are expressed as follows [1, 2, 5, 11, 12]: 
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Where 
ddd iL=φ  (2) 

fqqq iL φφ +=  (3) 

fφ  is the magnet flux linkage, 
Thus the dynamic model of a surface-mounted PMSM 
can be described as follows: 
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Where id and iq are the d–q axis currents, ud and uq are the 
d–q axis voltages, Rs is the stator resistance, Ld, Ld are d- 
and q- axes inductances, is the stator inductor, P is the 
pole pairs, J is the rotor moment of inertia, B is the 
viscous friction coefficient, TL is the load torque, ω  is 
the rotor angle speed in angle frequency, fφ  is the rotor 
magnetic flux linking the stator. 
According to the model given in (4), it can be seen that 
the speed control can be achieved by controlling voltage 

qu  of q-axis. As long as the d-axis current di  is 
maintained at zero, then the mathematical model of 
PMSM can be shown as 
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III. ADAPTIVE BACKSTEPPING CONTROLLER DESIGN 
The theory of backstepping design algorithm is a 
systematic approach to construct Lyapunov equation and 
unperturbed controller, so that the system is uniformly 
asymptotic stable at equilibrium point [5, 6, 11, 12]. In 
the design, constructing suitable function enables system 
design to achieve expected purpose. The objection to 
design this controller is to obtain the PMSM control 
voltages so as to achieve high-quality speed tracking 
performance. Based on Lyapunov stability principle and 
adaptive backstepping approach, with the corresponding 
Lyapunov function and virtual control function, we can 
get a satisfied controller. As there are various disturbed 
parameters in different combinations according to 
different situations, and then the adaptive update law can 
be designed correspondingly [11, 12]. 

In order to track the speed of PMSM, the design of the 
proposed controller involves the following steps. 
Step 1: define the speed tracking error as 

ωω −= *
1e  (6) 

Where *ω  is the desired reference trajectory of the rotor 
speed. And the speed error dynamic is given by 

ωω −= *
1e  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+−=

J
T

J
BiiLL

J
Pi

J
P

e L
qdqdq

f ω
φ

ω
2
3

2
3*

1  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ++−+−= ω

φ
ω FiiLL

J
Pi

J
P

qdqdq
f

2
3

2
3*  (7) 

Where, 
J
BF −=  and 

J
TL−=Γ .  

As the speed error needs to be reduced to zero, the d-q 
axes current component di  and qi  are identified as the 
virtual control elements to stabilize the motor speed. 
To determine the stabilizing function, the following 
Lyapunov function is defined as 
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We differentiate to get 
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Where, 1k  is the closed-loop feedback constant. The 
speed control tracking is achieved if one defines the 
following stabilizing functions: 
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0* =di  (11) 
*
di and *

qi  are the references currents. Substituting (10) 
and (11) back into (9) yields 

2
111 ekV −= , (12) 

Thus the virtual control is asymptotically stable. Since 
the parameters J , F  and Γ  are unknown we must use 
their estimate values ( Ĵ , F̂  and Γ̂ ) in (). Thus, let us 
define 
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Step 2: Now we go to next step and try to make the 
signals *

di  and *
qi  behave as desired. So we define again 

error signals involving the desired variables 
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Then the error equation (7) can be expressed as 
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Where JJJ −= ˆ~ , FFF −= ˆ~  and Γ−Γ=Γ ˆ~ are the 
parameter estimation errors. To stabilize the current 
components di  and qi , we define now the current error 
dynamics as 
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Now, since the actual control inputs du  and qu  have 
appeared in the above equations, we can go to the final 
step where both control and parameter updating laws are 
determined. 
Step 3: To design the control and parameter updating 
laws, we extend the Lyapunov function in (8) to include 
the state variables 2e , 3e  and the parameter estimation 

errors J~ , F~  and Γ~ as 
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Where 21,γγ and 3γ are positive design constants of 
adaptive gains. 
Now we differentiate the Lyapunov function V2 in (19) 
and substitute all error dynamics equations to get 
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If the following d-q axes control voltage are selected  
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Equation (21) results in the following expression: 
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From (24), the following update laws can be derived as: 
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Therefore, one can obtain the following expression for 
the derivative of the Lyapunov function (24) as 
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For sufficiently large 1k  and 2k , then proved that 
equation (28) guarantees asymptotic stability in the 
complete system. 

IV. SIMULATION RESULTS 
To prove the rightness and effectiveness of the proposed 
control scheme, digital simulations have been performed 
using Matlab/Simulink software. Numerous simulations 
were performed, and sample results are shown here.   
The machine parameters are given in table 1. The 
parameter used in simulation are chosen as 2001 =k , 

3002 =k , 3003 =k , 001.01 =γ , 3.02 =γ  and 
10303 =γ . 

The drive system is started at a constant load 0f 1.2N.m 
with speed reference set at 150 rad/s. a step change in 
load torque from 1.2Nm to 3.6Nm was applied at 1.5s. 
The actual speed converges with reference speed in very 
short time with a negligible overshoot and no steady state 
error.  The adaptive backstepping controller rejects the 
load disturbance rapidly and converges back to the 
reference speed. Figure 2 shows the corresponding d-q 
axes motor current along with the command q-axis 
current. The q-axis stator current swiftly reaches to its 
new value corresponding to the load torque applied. This 
shows the capability of the proposed controller in terms 
of disturbance rejection. Figure 3 shows the stator current 
ia which increases when the load disturbance is applied. 
A comparison between the proposed controller (adaptive 
backstepping) and the conventional backstepping (with 
no adaptive states and parameters) is shown in Fig. 4. In 
Figs. 4, it can be observed that the speed response of the 
adaptive backstepping controller present better tracking 
characteristics. Figure 6 and 7 shows a zoomed response 
of the speed under inertia moment variation for the 
proposed controller and the classical one. As shown in 
fig. 6 and 7, the actual speeds converge to the references. 
It is evident from these figures that the proposed 
controller can handle the parameter variation (inertia 
motor) without any deviation in sped. No noticeable 
variation in speed is present; therefore the controller is 
insensitive to parameter variation. Overall, the speed 
tracking performance of the complete drive system is 
found robust and is more robust than the conventional 
backstepping controller. 

 

 

 

 

 

 

 

Table 1 
Motor rated power 3-phase, 1hp 
Rated voltage 208V 
Rated current 3A 
Rated frequency 50Hz 
Pole pair number P 2 
d-axis inductance, Ld 42.44 mH 
q-axis inductance, Lq 79.57 mH 
Stator resistance, Rs 1.9Ω 
Motor inertia, J 0.003 kgm2

Friction coefficient, B 0.001Nm/rad/s 
Magnetic flux constant, fφ  0.311 Wb 

 
 

 
Fig. 1: simulated response of the rotor speed for the 

proposed controller. 

 
Fig. 2: simulated response of the stator current id, iq for 

the proposed controller.  

 
Fig. 3: simulated response of the stator current ia for the 

proposed controller. 



 
Fig. 4: Simulated results of the comparison between the 
classical and the adaptive backstepping design for PMSM speed 

 
Fig. 5: Zoomed responses of speed control obtained by classical 

and adaptive backstepping control for PMSM 

 
Fig. 6: Simulated results of the proposed adaptive 

backstepping controller for PMSM speed tracking with 
inertia motor variation 

 
Fig. 7: Simulated results of the classical backstepping 
controller for PMSM speed tracking with inertia motor 

variation 

V. CONCLUSION 
In this work, we have presented a nonlinear controller 
based on adaptive backstepping technique in order to 
offer a choice of design tools to accommodate 
uncertainties and nonlinearities. This study has 
successfully demonstrated the design of the adaptive 
backstepping control for the speed control of a permanent 
magnet synchronous motor and the nonlinear field 
orientation control design. The control laws were derived 
based on the motor model incorporating the parameters 
uncertainties and the external disturbances. By recursive 
manner, virtual control states of the PMSM drive have 
been identified and stabilizing laws are developed 
subsequently using Lyapunov stability theory. The 
performance of the proposed adaptive controller has been 
investigated in simulation using Matlab/Simulink 
software. The simulation results show its effectiveness 
and robustness at tracking a reference speed under 
parameters uncertainties especially inertia motor 
variation. 
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