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Abstract: A new control technique of an induction motor is 
undertaken through a robust approach tagged synergetic 
control. Like the sliding mode (SMC) approach the system 
state trajectories are forced to evolve on a designer cho-
sen manifold according to performance specifications. But 
unlike SMC, synergetic control relies on a continuous con-
trol law thus preventing unwanted chattering to occur. 
Fuzzy sets are used to approximate unknown system func-
tions and system stability conditions are derived.  
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I. INTRODUCTION 

    Sliding mode control has been extensively 
used in robust control approaches in many non linear 
applications ranging from inverted pendulum to 
power system stabilizers [1-5] and a large effort has 
been directed to address its main drawback: danger-
ous chattering ever present in SMC due to the dis-
continuous law component [2]. Many approaches 
have been proposed to reduce the latter but mostly at 
the expense of robustness performance [6-7]. Syner-
getic control like sliding mode is based on the basic 
idea that if we could force a system to a desired 
manifold with designer chosen dynamics using con-
tinuous control law, we should achieve similar per-
formance as SMC without its main inconvenient: 
chattering phenomenon. To achieve this goal one has 
to choose a pertinent macro-variable first and then 
elaborate a manifold which enables the desired per-
formance to be reached. Macro-variables can be a 
function of two or more system state variables [8]. 
Although similarities with sliding mode technique 
include system order reduction and decoupling, its 
chatter free operation makes it a sound and motivat-
ing approach easily implementable.  
 

II. SYNERGETIC CONTROL BASICS 

Introduced in the last decades, synergetic control 
[9-10] is rapidly gaining acceptance not only by the 
robust control community but also by the industrial 
partners as well as illustrated by its implementation 
in power electronics [11-13] and its industrial appli-
cation in battery charging [14].  
We briefly introduce the basics of synergetic control 
synthesis for an n-order non linear dynamic system 
described by (1) : 
 

( ) ( , , )=
dx t f x u t

dt
                                                       (1)  

 
where x  represents the system state space vector and 
u  its control. Although it could be easily extendable 
to multi-variable system, we will consider in this pa-
per a single input single output case for simplicity. 
Control synthesis begins by a suitable choice of per-
tinent macro-variable function of two or more state 
variables given by (2): 
 

                 ( , )= x tψ ψ                                     (2)                   
 
Where  ψ  and  ( , )x tψ  designate designer chosen 
macro-variable and a corresponding a state variables 
and time dependent function. Next a desirable mani-
fold (3) is chosen on which the system will be forced 
to remain even in presence of unwanted disturbances 
or parameters fluctuations just as on a sliding mode 
surface.  
 

                           0=ψ                                      (3)                    
 

                                                                                                                                                                                           
 



 

A large choice is available to the designer in select-
ing the macro-variables features accordingly with the 
control objectives and practical physical constraints.        

                                                                                                                                                                                           
 

The macro-variable, may be a simple linear combina-
tion, is forced to evolve accordingly to the designer 
imposed constraint of the general following equation: 
 

0+ =Tψ ψ ,                                                     (4)                     0>T  
 
Control parameter T dictates convergence rate to-
wards the selected manifold given by (3).    
The appropriate control law is obtained using 
straightforward mathematical following steps: 
 

( , ) ( , ) .=
d x t d x t dx

dt dx dt
ψ ψ                                               (5)                               

   
Using (1) and (2) in (4) leads to (6): 
 

( , ) ( , , ) ( , ) 0+
d x tT f x u t x t

dx
ψ ψ =                                  (6)              

 
Resolving (6) for u gives the control law as: 
 

( , ( , ), , )=u g x x t T tψ                                                  (7)                                
   

 As can be seen, control law u depends not only on 
system variables but on parameter T and macro-
variable ψ as well giving the designer latitude to 
choose controller features acting upon the full non 
linearized system model. 

An appropriate designer choice of the macro-
variables and judicious manifolds lead to closed-loop 
system global stability and invariance to parameter 
fluctuation [15-16] for when the system reaches the 
pre-specified manifold it remains on it.  

 

III. PROBLEM STATEMENT  

Considering the following n-order non linear 
SISO system: 

( ) ( ) ( )= +
=

nx f x g x u
y x

                                                   (8) 

,f g  Represent system unknown continuous func-
tions  are input and output system 
respectively. The system state vector is given as: 

∈ℜ ∈ℜu and y

( 1)
1 2x (  ... ) (  ... )−= =T n

nx x x x x x ∈ℜn   
The error vector e is defined as (9): 
 

( 1)[  ...... ]−= − = ∈n T n
me y x e e e R                                (9) 

In the error state – space, the macro-variable is de-
fined as: 

( 2) ( 1)
1 2 1( ) ..... = − −

−= + + +n n
ne c e c e c e e c eψ T             (10) 

 
Where 1 2 1[  ..... ]−= T

nc c c c  is chosen such that ( )h λ  is 
Hurwitz: 
 
 1 2

1 1( ) ...− −
−= + +n n

nh cλ λ λ +c   
 
In the trivial case where in (8)   f and g are known, 
the control law (11) is easily obtained:  
 

( ) ( )1 ( )
( )

⎡ ⎤= − + −⎣ ⎦
n n

mu f x y
g x

e                  (11) 

Using the synergetic approach, equation (4) can be 
expressed as:  

1 1 ( 1)

( )

1.....  1 ( )− −

⎡ ⎤
⎢ ⎥
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⎢ ⎥
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e

c c e
e T

e
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1

( ) ( )

1

1 ( )
−

=

⇒ = − −∑
n

n i
i

i

e c e
T
ψ e                   (12) 

    Making use of (12) in equation (11) lead to the 
synergetic control signal: 

1
( ) ( )

1

1 1[ ( ) ( )
( )

−

=

= − + + +∑
n

n i
m i

i

u f x y c e
g x T

ψ ]e                    (13) 

Asymptotic stability is obtained using the Lyapounov 

function candidate:  21 ( )
2

=V eψ  which leads, after 

differentiation, to: 
 

( ) ( )=V eψ ψ e  
21 ( ) 0= −V e

T
ψ ≤                                                    (14) 

 

IV.  FUZZY SYSTEMS SYNTHESIS  

Fuzzy systems with singleton fuzzification, cen-
ter average defuzzifier and inference product are 
functions f such that:    and can be 
expressed in the following form [18-20]: 

: nf U ⊂ℜ →ℜ

 

11

11

( )
( )

( )

=
=

=
=

⎛ ⎞
∏∑ ⎜ ⎟
⎝=

⎛ ⎞
∏∑ ⎜ ⎟
⎝ ⎠

M l n
i l iFl i

M n
i l iFl i

y x
y x

x

μ

μ

⎠                                    (15) 



 

                                                                                                                                                                                           
 

∈With 1( .... )= T
nx x x U is the input vector, y  

represent membership function centers, ( )
i iFl

xμ cor-

responds to the membership function of input 
i

x  for 
the fuzzy rule l, in which ‘AND’ is realized  by infe-
rence  product . Fuzzy system (15) can be expressed 
as: 

 
( ) ( )= Ty x θ ξ x                                        (16) 

 
In which 1( ... .. )= M Ty yθ  is a parameter vector and 

1( ) ( ( ). ... . ( ))= M Tx x xξ ξ ξ

( )l

 is a regressive vector where 
the regressor xξ represent the fuzzy basis func-
tion defined by [19]: 
 

1

11

( )
( )

( )

=

=
=

Π
=

⎛ ⎞
Π∑ ⎜ ⎟
⎝ ⎠

n
i l iFl i

M n
i l iFl i

x
x

x

μ
ξ

μ
                             (17) 

V. ADAPTIVE FUZZY SYNERGETIC CONTROL  

The result in (13) is realizable only while f (x) 
and g (x) are well known. However, f (x) and g (x) 
are generally unknown and the ideal controller (13) 
cannot be implemented. We replace f (x) and g (x) by 
the fuzzy logic system (16).Hence, the resulting con-
trol law is as follows: 
 

1
( ) ( )

1

1 1ˆ[ ( / ) ( )
ˆ ( / )

−

=
= − + + +∑

n
n i

f m ii
g

u f x y c e
g x T

θ ψ
θ

]e    (18) 

)()(ˆ xxf
T

ff ξθθ =                                 (19) 

g g
Tĝ( x ) ( x )θ = θ ξ                                (20)    

A. Parameters Adaptation 
 
First f̂ et ĝ are replaced by their corresponding  
fuzzy system estimate as in (16) and adaptation laws 
developed from classical Lyapounov synthesis pro-
cedure to ensure closed loop stability as well as rapid 
parameter convergence. 
Defining: 

   * ˆarg min sup ( / ) ( )
∈Ω ∈

⎡= ⎢⎣ n
f f

f
x R

⎤− ⎥⎦f
f x f x

θ
θ θ                  (21)                                                                

* ˆarg min sup ( / ) ( )
∈Ω ∈

⎡= ⎢⎣ n
g g

g
x R

⎤− ⎥⎦g
g x g x

θ
θ θ                    (22)                                 

 Ω Ωf gand  Represent constraint sets for f gandθ θ  

respectively, based on expert information, defined 

by:  

{ }:Ω = ≤f f Mθ θ f                           (23)                    

{ }:Ω = ≤g g g gMθ θ                          (24) 

In which  are positive constants.  f
M and M

g

Let us introduce the minimum approximation error 

as:        

       * *ˆ ˆ( ( / ) ( )) ( ( / ) ( ))= − + −f gw f x f x g x g x uθ θ c              (25) 

Using (24) macro-variable (10) can be re-written as: 
1 ( ) ( )

1
( ) ( , ) ( , )

−

=
= − − +∑

n i n
i mi

e c e f x t g x t u yψ                     (26) 
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1
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1
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∧−

=
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=
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+ − − −∑
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e c e f x f x t
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T

ψ θ

θ ψ e

ˆ ˆ( ) ( , ) ( , )
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∗

∗

⎡ ⎤= − +⎢ ⎥⎣ ⎦

⎡ ⎤− − +⎢ ⎥⎣ ⎦

f
f

g
g

e f x f x

g x g x u e w
T

ψ θ θ

θ θ ψ
         

 

1( ) ( ) ( ) ( )           
∗ ∗⎛ ⎞ ⎛ ⎞= − + − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
T T T T

f f g g
e x x u e w

T
ψ θ θ ξ θ θ ξ ψ   (27) 

where 
∗

= −f f fφ θ θ , 
∗

= − gg gφ θ θ  

          1( ) ( ) ( ) ( )= + −T T
f ge x x u e

T
ψ φ ξ φ ξ ψ +w           (28)       

Let’s consider the Lyapounov function candidate V: 

 

  2

1 2

1 1 1( )
2 2 2

= + +T T
f f gV e gψ φ φ φ φ

γ γ
                      (29) 

Where  1 and 2γ γ  are positive constants. 

Differentiating V with respect to time gives:     
.

1
.

2

2

1( ) ( ) ( ) ( )

1 1                    ( ) ( )

= + +

+ − +

T T T
f f f g

T
g g

V e x e x

e e
T

ψ φ ξ φ φ ψ φ ξ
δ

φ φ ψ ψ
δ

u

w
 



 

in which we make use of :    = =f f gand gφ θ φ θ , to 

obtain:  
 

.
2

1
1

.

2
2

1 1( ( ) ( ) ) ( )

1                     ( ( ) ( ) ) ( )

= + −

+ +

T
f f

T
g g

V e x e
T

e x e w

φ δ ψ ξ θ ψ
δ

φ δ ψ ξ θ ψ
δ

+
     (30)                     

Choosing the following adaptation laws:                          

                                         (31)           

    

           

.

1

.

2

( ) ( )

( ) ( )

= −

= −

f

g

e x

e x u

θ δ ψ ξ

θ δ ψ ξ

Equations (30) and (31) bring about the following 

result:  

            21 ( ) ( )≤ − +V e
T
ψ ψ e w                                 (32) 

The term ( )e wψ  is very small due to the minimum in 
the approximation error introduced in (24). Fuzzy 
systems are known as universal approximators and 
therefore they can approximate f and g by their esti-
mates f̂  and ĝ  to any arbitrary accuracy [19]. 
Hence an adequate number of fuzzy rules in the esti-
mation of f̂ and ĝ  permit a very small value, lead-
ing to (33)  

             
.

21 ( ) 0≤ − ≤V e
T
ψ                                 (33) 

since w it the minimum approximation error (33) is 
the best result that we can obtain. Therefore, all sig-
nals in the system are bounded. Obviously, if  is 
bounded, then e(t) is also bounded for all t. Since the 
reference signal is bounded, then the system 
states x are bounded as well. To complete the proof 
and establish asymptotic convergence of the tracking 
error, we need proving that: 

)0(e

my

  asψ → 0 ∞→t . Assume that αψ ≤ , then (33) 
can be rewritten as: 

       w
T

V αψα +−≤
1                                  (34) 

Integrating both sides of (34), we have 

( ) ∫∫ ++≤
ττ

τ
α

τψ
00

)()0( dwTtVVTd                (35) 

Then we have 1L∈ψ . Form (35), we know that w is 

bounded and every term in (27) is bounded, hence, 

∞∈ Lψψ ,

0)( →t

,  by use of Barbalat’s lemma [20], we 

have: 

 ψ as ∞→t  , the system is therefore stable and 

the error will asymptotically converge to zero. 

VI. SIMULATION RESULTS 

In this section, we introduce a brief description of 
the induction motor used in simulation followed by 
presentation of results principally a good tracking 
and a continuous control law therefore easy to im-
plement. 

In order to assess our approach we used a three 
phase star-connected four-pole 600W, 60Hz, induc-
tion servomotor drive described by (15) [17]: 

 

EL TT =BJ ++ θθ                                               (15) 
Where J   is the moment of inertia, B is the damp-

ing coefficient, TE represents the electric torque and 
TL denotes the external load disturbance. The electric 
torque can be written as [17]:  

 

                                           (16)  ∗= qsTE iKT

        ∗= ds
r

mp
T i

L

LN
K ..

2

3 2

                    (17) 

Where KT  is the electric torque constant,  and 

 are respectively the torque current , and the flux 
current control, Np is the number of pole pairs, Lm is 
the magnetizing inductance per phase and Lr is  the 
rotor inductance per phase. Then the description of 
the dynamic structure of the control induction motor 
can be represented in the following form: 

∗
qsi

∗
dsi

  

[ ]∗+−=
qsT

iKB
J

θθ
1                        (18) 

Define   to be the rotor angle of the induc-
tion motor and   the motor angular velocity. 
The dynamic equation of system (15) can be written 
as (19): 

θ=
x

1x

x
x
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001

2
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Where 

                                                                                                                                                                                           
 



 

JBa −= , JKb
T

= Jc 1−= ,  and is 

the control signal. The control objective is to design a 
control law so that the rotor position tracks the de-
sired trajectory. Assume that the parameters of the 
induction motor system are unknown.  

LTd = ∗=
qs

iu

For simulation purpose we use the following in-
duction motor parameters [17]: 

 

 
;

T L

J . Nm / s B . Nms /

K . Nm / A;T . Nm

− −= × = ×

= =

3 2 34 78 10 5 34 10

0 4851 0 5

rad
 

It is desired for the rotor angle to track a sine-wave 

trajectory )sin(
30

tx dd
π

θ ==  and to assess robust-

ness we apply an external load disturbance TL at  
t=7sec. 

We start by choosing the synergetic macro-variable      
eece += 1)(ψ   

 The membership functions for system states  
xi ,  i =1,2 are selected as follows: 
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 25 rules are used to approximate the system un-

known functions. The initial consequent parameters 
of fuzzy rules are chosen randomly in the interval 
[0.5, 2].  

With learning rate and and 81 =δ 12 =δ [ ]Tx 0,0=0  

We observe in figure 1 that we have good tracking 
despite an external disturbance applied at t=7secs for 
it is perfectly handled by the continuous law shown 
in figure 2 which shows rapid suppression of the ef-

fect of the disturbance without showing any undesir-
able chattering. 

 

 
Figure 1   System output  

 
Figure 2  Control signal 

 

VII. CONCLUSION 

A new robust indirect adaptive fuzzy synergetic 
controller has been presented with the development 
of a continuous control law easy to implement. Sta-
bility study and design details were given and a sim-
ple induction motor tracking a sine wave reference 
was used in simulation proving the soundness of the 
proposed approach.  
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