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Abstract: An efficient distribution of the reactive power in 
an electric network aims generally to maintain voltages in 
acceptable limits and control transmission losses. This paper 
presents a comparative study of solving the optimal reactive 
power flow (ORPF) problem using several meta-heuristic 
techniques such as simulated annealing, genetic algorithms, 
evolutionary strategy, particle swarm optimization and Tabu 
search. Results application to a large electric network that is 
representative of the 114 bus Algerian electric system are 
reported. To show the contribution of these techniques, the 
results of simulation are compared with previous studies 
using the reduced gradient method technique. 
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1. Introduction 

Nowadays electric utilities are paying more and 
more attention to the voltage profile optimization both 
in daily scheduling and in VAR planning. Voltage 
scheduling and VAR planning are inherent to tightly 
correlated objectives even if they are relevant to 
different time horizons. In daily scheduling the 
optimization of voltage profiles is performed several 
hours in advance on loads forecast values by 
minimizing the real losses. 

This problem known as optimal reactive power 
dispatch (ORPD) is a particular case of the optimal 
power flow in which the means of active power control 
are fixed while those of reactive power are adjustable. 
The optimal power flow (OPF), nonlinear problem of 
optimization, was proposed by Carpentier at the 
beginning of the sixties based on the economical 
distpatch of the power [1]. 

Thus, ORPF is a complex combinatorial 
optimization problem involving non-linear functions 
having multiple local minima and non-linear 
discontinuous constraints. Conventional optimization 
methods used to solve this problem involved linear 
programming [2], nonlinear programming [3], 
decomposition method [4] and other techniques. 
However, these conventional methods can only be lead 
to a local minimum and most of them cannot deal with 
integer problem. In recent years, some artificial 
intelligence methods such as expert systems, neural 
networks [5], genetic algorithms [6], evolutionary 
strategies [6,7], simulated annealing [8], particle 
swarm optimization [9] and tabu search [10] have been 
used to solve reactive power optimization problem.  

 
The goal of this work is to give a synthesis of our 

modest experience on the use of several meta-heuristic 
techniques to the optimal reactive power flow [11-15]. 
A qualitative comparison between various meta- 
heuristic techniques and a conventional optimization 
using steepest gradient method is made. First, a 
mathematical problem formulation of the ORPF is 
given. Then, a short description of the basic concept of 
all meta-heuristics studied is presented. Simulations 
were first run on several networks of different size, 
then application on the Algerian network that contains 
114 nodes was made and results reported. The 
assumptions of the elaborated programs as well as the 
adjustment of the meta-heuristics control parameters 
will be summarized.  Conclusions and comments are 
also presented. 



  

2. Problem Formulation 
The main objectives of ORPF address three 

important aspects:  
• keeping the voltage profiles in an acceptable 

range, 
• minimizing the total transmission energy loss, 

and  
• avoiding excessive adjustment of transformer tap 

settings and discrete var sources switching. 
 

In a general form, the problem of the ORPF can be 
formulated as: 
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with  X, U  set of state  and control variables. 

The set of equality constraints represent the power 
flow equations. Upper and lower voltage limits and 
capacity restrictions in various reactive power sources, 
generators, shunt capacitor banks and transformer taps 
constitute the inequality constraints. 

 
In an explicit form, the problem is written as [7, 11]:   
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and a set of inequality constraints: 
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where 
N, Nl, NG  number of busbars, lines and generators,  

Nt , Ncap   number of transformers and shunt capacitors, 
Vi, Θi   voltage magnitude and angle at ith bus, 
                Θij = Θi – Θj, 
PGi,QGi     real and reactive power generation at ith  
                  bus, 
PDi,QDi       real and reactive power load at ith bus, 
Gij, Bij             mutual conductance and susceptance  
                  between i and j buses, 
QGimin, QGimax    reactive power limits of ith generator, 
QCimin, QCimax       reactive power limits of ith shunt  
                         capacitors, 
Vimin, Vimax     limits on voltage at ith bus 
Timin, Timax     limits on ith transformer taps. 

 
For the functional inequalities constraints, in our 

case the voltage limits at the load buses, we have used 
a penalty method in which the objective function is 
increased by penalties of violation on these constraints.  

 
Thus, the objective function f must be replaced by: 
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where the penalties factors ωj are introduced for each 
functional constraint violation. The used penalties 
functions are as follows: 
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Sj  is a scalar to be chosen correctly.  

 
3. Basic concepts of meta-heuristics 

Meta-heuristics means search algorithms for 
combinatorial optimization obtained by repeating a 
simple search process with some heuristics. They are 
inspired by biological information process, artificial 
life, physical process,...,etc. The meta-heuristic 
approaches aim at evaluating a globally optimal 
solution rather then locally optimal one. 

 
3.1 Genetic Algorithms [16, 17] 

Genetic algorithms search for an optimal solution 
using the principles of evolution and heredity. They 
operate on populations which consist of a number of 
individuals, each representing a particular selection of 
the values of the variables coded in binary form. The 



 

initial population of binary strings is randomly 
generated. Each individual is evaluated to obtain a 
measure of its fitness in terms of the objective function 
to be optimized; then a new population is formed by 
selecting the fitter individuals. Some members of the 
new population undergo transformations by genetic 
operators to form new solutions. Such operators 
include “crossover” and “mutation.” Crossover creates 
new individuals by combining substrings from the 
parent individuals and takes place according to a given 
probability value. Mutation creates a new individual by 
changing a randomly selected bit in its coding. The 
flow chart (Fig.1) shows the representation of a simple 
genetic algorithm. 

A genetic algorithm is governed by some 
parameters wich can be summarized thus: 

• Ngen       maximum number of generations,  
• Pc , Pm   crossover and mutation rates,  
• Tpop       population size, 
• Tcros       crossover type. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 Organization of a simple genetic algorithm. 

 
3.2 Evolutionary Strategy [17, 18] 

In Evolutionary Strategies ES, the components of a 
trial solution are viewed as behavioral features of an 
induvidual, not as genes along a chromosome. It is 
supposed a genetic source for these traits, but the 
nature of the linkage is not detailed. Thus, an 
individual is represented as a pair of float-valued 
vector i.e. a = (x,σ), were x represents a point in the 
search space. The second is the vector of standard 

deviations and provides instructions on how to mutate 
a and is itself subject to mutation. In other words, both 
components, x and σ, are submitted to evolution 
process by application of operators of mutation and 
also recombination. Thus, a suitable adjustment and 
diversity of parameter mutations should be provided 
under arbitrary circumstances. 

The approach used in our case is denoted by (µ+λ)-
ES. In the former, µ parents generate λ offspring and 
all solutions compete for survival with the best µ 
individuals being selected as parents of the next 
generation. The following pseudocode algorithm 
summarizes the components of a simple (µ+λ)- 
Evolutionary Strategy (SES). 

 
Input : µ, λ, Θs, Θm, Θr 
  t = 0 ; 
  P(t) = initialization (µ) ; 
 while termination criterion not fulfilled do 
  P’(t)    = Recombination (P(t), Θr) ;  
  P’’(t)   = Mutation (P’(t), Θm) ; 
  F(t)      = Evaluation (P(t),P’’(t), µ, λ) ; 
  P(t+1) = Selection (P(t),P’’(t), F(t), µ,Θs) ; 
  t           =  t +1 ; 
 end do 
 

The following list represents the most significant 
parameters to define in a (µ+λ)-ES algorithm:  

 Ngen maximum number of generations, 
 λ, µ number of offspring and parents in one  

            generation,  
 mut mutation operator (with Θm probability), 
 rec  recombination operator (with Θr probability). 

 
3.3 Particle Swarm Optimization [17, 19, 20] 

The particle Swarm Optimization (PSO) is an 
optimization algorithm where, one must have, at a 
given iteration, a set of solutions or alternatives called 
“particles”. From one iteration to the following, each 
particle Xi moves according to a rule that depends on 
three factors as follows. In order to understand this 
rule, one must also keep record of the best point bi 
found by the particle in its past life and the current 
global best point bg find by the swarm of particles in 
their past life. 

The movement rule states that 
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where Vi is called the ith particle velocity and is defined 
by: 
 

  (8)  
 

where the first term of the summation represents inertia 
or habit (the particle keeps moving in the direction it 
had previously moved), the second represents memory 
(the particle is attracted to the best point in its 
trajectory) and the third represents cooperation or 
information exchange (the particle is attracted to the 
best point found by all particles). 

The parameters wi1 and wi2 are weights fixed in the 
beginning of the process. Rndx are random numbers 
sampled from a uniform distribution in [0,1]. The 
following weighting function is usually used in 
determining wi0:  

max min
0 max
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i

w w
w w iter
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×

−
= −                      (9) 

where  
  wmax , wmin  initial and final weights, 

itermax       maximum number of iterations, 
iter          current iteration number. 
 

This function supports the speed of the first 
iterations.   

In addition to wmax, wmin, wi1, wi2 and itermax, the 
according parameters must be fixed:   

• N  number of variables in the function to be 
optimized, 

• Tpop   population size.  
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2.  Movement of a particle influenced by three terms. 
 

 
 

3.4 Simulated Annealing [17, 21] 
The simulated annealing (SA) is a powerful general 

purpose approach employed for solving combinatorial 
optimization problems. It is a randomisation algorithm 
and can asymptotically search for global optimal 
solution with probability of one. This approach exploits 
the resemblance between a minimization process and 
cooling of a molten metal. The energy of a metal 
becomes minimal when the annealing process is 
finished. An equivalence is then obtained, i.e. the cost 
is minimal as the SA approach is applied. A parameter 
T called temperature is defined in this algorithm. The 
algorithm of SA can be described as below: 

 
Step 1   Randomly choose an initial condition 

(solution). 
Step 2   Generate a feasible point neighbour of the 

current point from the solution space. 
Step 3   Evaluate the increase in the cost ∆C. 
Step 4   If ∆C ≤ 0 then accept the new solution 

point and go to step 6. 
Step 5   A random number r uniformly distributed 

in the interval [0,1] is chosen.                    
If   exp(-∆C/T)>r then  accept a new point, 
otherwise the new point is discarded. 

Step 6   If the moves are not finished, go to step 2. 
Step 7   Cooling down Temperature, T= RT*T. 
Step 8   If T>Tmin , go  to step 2.  
Step 9   Output global optimal solution. 
 

Parameters characterizing the simulated annealing 
program can be summarized below: 
• N      Number of variables in the function to be 

optimized, 
• T0        Initial temperature, 
• RT        Temperature reduction factor, 
• EPS      Error tolerance for termination, 
• NS      Number of cycles. After NS*N function 

evaluations, each element of VM (step 
length vector) is adjusted so that 
approximately half of all function 
evaluations are accepted, 

• NT    Number of iterations before temperature 
reduction. After NT*NS*N function  
evaluations, temperature T is changed by 
the factor RT, 

• NEPS Number of final function values used to 
decide upon termination. 
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3.5 Tabu Search [17, 22] 
Tabu search (TS) is based on the use of prohibition-

based techniques and basic heuristic algorithms like 
local search. Therefore the main advantage of TS with 
respect to conventional GA and SA lies in the 
intelligent use of the past history of the search to affect 
its future search procedures. Since the method utilizes 
a tabu list for storing the past history of the search, the 
efficient structure of the tabu list is important for fast 
computation. The procedure of TS can be expressed as 
follows: 

 
• Step 1) Initialization: 
Give the initial state, searching point and put the 
current state into the tabu list. 
• Step 2) Generation and evaluation of neighbouring  
states:  
Generate all of possible neighbouring states and 
check whether the states neighbours are tabu or not. 
• Step 3) Generation of the next state: 
Move the current state to the next state that is not 
tabu and have the lowest objective function value. 
Repeat step 2 and 3 until the convergence criterion is 
satisfied. 

 
The basic parameters characterizing the algorithm 

of the tabu search are, namely:  
 
• Ndiv   maximum number of diversifications, 
• L      tabu list size, 
• Imax   maximum number of iterations,  
• M    number of moves allowed in neighbouring 

region.  
 

4. Simulations and results 

4.1 Programs assumptions  
For all above outlined procedures, FORTRAN 90 

standard codes have been entirely elaborated to run 
with Power Station MSDEV FORTRAN compiler. All 
programs have been successfully applied to IEEE 57 
bus network [11] and several other networks of 
different sizes. In this paper, only the simulation results 
to the main 220/60 kV Algerian Transmission Network 
are presented.  

A fast decoupled load flow (FDL) was used, with 
tolerances 0.0001 per unit for both real and reactive 
power mismatches. Any divergence is detectable by the 

programs themselves. Upper and lower voltage limits 
at all buses must be given and also limits on all 
transformers taps. After many tests, it was noticed that 
the best values of Sj, weighting factor of functional 
constraint violations, range between 5 and 10. In this 
study, a choice of Sj = 10 was made. 

 
4.2 Meta-heuristics control parameters  

In each of the above meta-heuristic methods, 
several parameters must be adjusted in order to find the 
optimal solution. For a good analysis of the simulation 
results, we carried out multiple tests while varying 
through the execution on simple functions, the basic 
control parameters of the algorithms. As a 
consequence, choosing suitably control parameters, 
leaded to obtain the best optimization results  

 
For the case of the Algerian network, the control 

parameters of all methods are summarized in Table 1. 
These parameters were obtained with a suitable 
adjustment and after several tests. In the SGA, each 
gene (in a chromosome) is presented by 10 bits in 
binary code. 

  
Table 1: Meta-heuristics control parameters. 

 
Meta-

heuristics Control Parameters 

SGA Ngen =300,  Pc = 0.5, Pm =0.02 
Tpop = 30,  Tcros :uniform 

SES(µ+λ) 
Ngen=100, λ=100,  µ=20 
mut : self adaption,   rec :  

intermediary 

PSO Tpop =150,  wmax=0.9,wmin =0.4,   
wi1 = wi2=1.5,  itermax =150 

SA T0=0.4,  RT=0.5,  EPS=10-6,, 
NS=2,NT=5,  NEPS=4 

TS Ndiv = 11,  L = 10 
Imax = 20,  M = 10 

 
 

4.3 Simulation on the Algerian Electrical Power 
System 

The 220/60 kV Algerian electric system studied 
contains respectively 114 buses, 159 lines, 16 tap ratio 
transformers, 15 generation buses (Fig.3). 

 
 
 



  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Algerian Electrical Network Map 
 

The size of optimization problem is characterized 
by 31 control variables, with their upper and lower 
variables, and 226 equality constraints on the 
dependent variables. Tests are made for the following 
limits on voltages (in p.u) and tap transformers: 

 
0.9 ≤ VL ≤ 1.1;    0.9 ≤ VG ≤ 1.1;     0.9 ≤  T  ≤ 1.1 
 
The results of simulation were compared with those 

in previous works [23] obtained by a traditional method 
(Reduced Gradient). 

Figures 4, 5 and 6 (identical color legend) 
represent simultaneously active losses, voltages 
magnitudes at controlled buses and transformers ratios 
before and after optimization for all techniques.  

 
 

 
 

 
 
 
 
 
 
 
 

 
Fig. 4. Active Losses before and after optimization. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5. Voltage magnitudes at controlled buses before and 
after optimization. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 6. Transformer ratios before and after optimization. 

 
Figure 7 represents a sample of bus load voltage 

magnitudes (for space reason). The choice of only few 
buses is however very representative as the worst 
values are shown. We can easily see that even these 
voltages do not overcome permissible limits. 

As a first observation, we can say that all meta-
heuristics give clearly better results than traditional 
techniques (such as reduced gradient) especially that 
the latter are not able to escape from a local minimum. 
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Fig. 7. Sample of load buses voltage magnitudes after 
optimization. 

 
The second observation is that the simulated 

annealing and tabu search techniques attain the best 
results but with a larger computing time for the tabu 
search (see figure 8). It should be noted that the tabu 
search method is better familiarized with integer 
optimization problems, this is why when it is applied to 
a continuous optimization problem the computation 
time is much greater.  

The obtained results show that the comparison 
between the meta-heuristic methods and the 
conventional methods (reduced gradient) should be 
rather based on the aspect of losses minimization with 
a full respect of the acceptable limits of the dependent 
variables, which is clearly demonstrated.   

However in terms of computing time, it is obvious 
that the conventional methods are much faster. But our 
problem is not involved in real time computation.  This 
is explained by the frequency of execution of the 
ORPF program at the dispatching centres. This 
frequency can vary from several minutes to hours. This 
fact depends on some important factors, such as the 
load profile variation, the constraint violations, the 
importance of power loss reduction and/or maintaining 
an appropriate voltage profile, and the exploitation 
philosophy dictated by the utility company. It is also 
possible that different control variables can be adjusted 
at different frequencies. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Computing time in seconds for all the techniques. 

 
 In this work, we must also note that the 

comparative synthesis study applied to the ORPF was 
limited to the basic meta-heuristic methods. It is still 
possible to improve all the found results through a 
better prospection of each one of the above cited 
techniques, through other alternatives, combinations or 
hybridization methods. 

 
5. Conclusion 
This paper has presented a comparative study of the 

use of various meta-heuristic techniques to the optimal 
reactive power flow (ORPF). The elaborated programs 
were first validated and applied on several networks 
(such as IEEE 57 bus system and other networks of 
different sizes). The presented results concern the 
application simulations on the main Algerian 
Transmission Network (114 buses).  

The analysis of the results show that meta-heuristics 
give quantitatively satisfactory results compared to 
those obtained with classical methods (reduced 
gradient) in terms of active power losses minimization 
and a good respect of the dependent variables  (load 
buses voltages) to the allowed limits. It is remarked 
that from all presented techniques, the simulated 
annealing technique shows to be an excellent method 
because it is not only simple to use but it obtained the 
best results in minimizing power systems active losses 
with a comparatively acceptable time consuming. 
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