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Abstract - The power system models for transient stability 
studies are nonlinear and complex. And theirs parameters 
change with time, slowly due to environmental effects or 
rapidly due to faults. It is preferable that the control technique 
in this system possesses robustness for various fault conditions 
and disturbances. Many kinds of control techniques with using 
Advanced Super-conducting Magnetic Energy Storage 
(ASMES) to improve power system stability have been 
proposed. While fuzzy controller has proven its value in some 
applications, the researches applying fuzzy controller with 
ASMES actively reported. But it is sometimes difficult to 
specify the rule base for some plants, or the need could arise to 
tune the rule-base parameters if the plant changes. In order to 
solve such problems, the Fuzzy Model Reference Learning 
Controller (FMRLC) is proposed. This paper investigates multi-
inputs multi-outputs FMRLC for time-variant nonlinear system. 
This provides the motivation for adaptive fuzzy control, where 
the focus is on the automatic on-line synthesis and tuning of 
fuzzy controller parameters (i.e., the use of on-line data to 
continually learn the fuzzy controller which will ensure that the 
performance objectives are met). Simulation results show that 
the proposed robust controller is able to work with nonlinear 
power system (i.e., single machine connected at infinite bus), 
under various fault conditions and significant disturbances. 
Key words – Transient Power System Stability, ASMES, 
Current Source Inverter (CSI), MIMO Fuzzy Controllers, 
Reference Model, Learning Control.   
 

1.  Introduction : 
 

The power stability of electrical systems basically 
implies its capability of reaching and sustaining an 
operating point in a controllable way following a 
disturbance, and that the steady-state post-disturbance 
system voltages are acceptable. Furthermore, the term 
voltage instability denotes the absence of voltage stability 
and voltage collapse, the transition phase during which a 
power system progresses towards an unacceptable 
operating point due to voltage problems. The dynamics 
of voltage phenomena can be divided into the two main 
groups: short and long-term dynamics. Short-term 
phenomena act on a time scale of seconds or shorter and 
include, for example, the effect of generator excitation 
controls and FACTS devices. 

The relatively recent development and use of FACTS 
controllers in power transmission systems has led to 
many applications of these controllers to improve the 
power system stability [1,2]. Several distinct models have 
been proposed to represent FACTS (i.e., SVC, TCR, 
TCSC, STATCOM…) in static and dynamic analysis [3]. 
The STATCOM is structure, which is based on a PWM 
Voltage Source Inverter (VSI), it is a bi-directional 
converter whose characteristics enable it to absorb 
sinusoidal network currents and exchange only reactive 
power with the network to improve voltage stability [4]. 
Many studies have been carried out and reported in the 
literature on the use of the Super-conducting Magnetic 
Energy Storage (SMES) in a variety of voltage and angle 
stability applications, proposing diverse control schemes 
and location techniques for voltage and angle oscillation 
control [5,6].  

 
These studies showed that the use of the SMES makes 

it possible to improve the transitory stability of the 
systems compared to other structures of family FACTS. 
In many papers, this SMES is based on a conventional 
structure (Grætz Bridge) using thyristor firing angle 
control and requires the P-Q modulation for operating in 
the four quadrants, therefore this structure presents 
certain disadvantages such as: 

- The control of the delay angle is affected by the 
voltage drop. 

- The injection of the harmonic currents in the 
network, which requires passive filters. 

- The use of twelve thyristors to ensure operation in 
the four quadrants. 

 
In [8,9], a novel structure was proposed, its a new 

concept of bi-directional PWM Current Source Inverter 
(CSI), associated with super-conducting magnetic storage 
(SMES) unit. The idea behind of this concept called as 
Advanced-SMES (ASMES) consists in regarding the 
ASMES as a current source, with acceptable harmonic 
currents. The ASMES is controlled in amplitude and 
phase separately by the active and reactive powers 
regulators to improve voltage and angular speed stability. 
Details of the implementation of the ASMES model 
proposed that can be used for steady state and transient 



stability analyses of power systems are discussed in this 
paper. 

 
The power system models for transient stability 

studies are nonlinear and complex. And theirs parameters 
change with time, slowly due to environmental effects or 
rapidly due to faults. Thus it is necessary to update the 
control law with system changes. The design of adaptive 
controllers to improve the power system stability has 
been a topic of research for a long time. However, there 
are many practical experiences and heuristic decision 
rules that can be applied to particular parts to avoid 
system instability. These results have been caused by the 
use of non-mathematical algorithms, such as the fuzzy 
control method which seems to attractive for the transient 
stability control. In this case, the fuzzy control is used 
both the angular speed and terminal voltage control loops 
for computing an active and reactive power to be 
absorbed or released by ASMES unit. However, the 
fuzzy control methodology which have ever been 
reported are many problems, since structure of fuzzy rule, 
membership function and parameters in fuzzy controller 
are determined by trial and error depending on computer 
simulations and skilled person's intuition. In this paper, 
we introduce a learning controller that is developed by 
synthesizing several basic ideas from fuzzy set and 
control theory, self-organizing control, and conventional 
adaptive control. A learning control system is designed 
so that its “learning controller” has the ability to improve 
the performance of the closed-loop system by generating 
command inputs to the plant and utilizing feedback 
information from the plant. In the case, we utilize a 
learning mechanism, which observes the terminal voltage 
and adjusts the membership functions of the rules in a 
direct fuzzy controller so that the overall system behaves 
like a "reference model". The effectiveness of this Fuzzy 
Model Reference Learning Controller (FMRLC) is 
illustrated by showing that it can achieve high 
performance learning control for a nonlinear power 
system time-varying parameters control problem. 

 

2. Power System and ASMES equations 

 
The modeling and the control of this converter to 

enhance the transient stability of power system were 
studied. Figure 1 represents the general diagram of the 
ASMES unit. It is about a current source inverter (CSI) 
made up of six GTO. 

The ASMES unit is modeled according to dq axis by 
the derived equations in the AC side as follows: 
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Fig. 1. General diagram of the ASMES unit 

And those of the inverter output voltage by: 
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The inverter output currents ISd and ISq in dq axis are 
and given by: 
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Where Sd , Sq are switch orders in dq axis and ISmes is 
the current in super-conducting coil. 

The active and reactive powers of the ASMES unit are 
respectively expressed by: 
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In the DC side, the supra-conducting coil can be 
characterized by: 

CqqCddsmes V.SV.SV +=  (5) 

smessmessmes
smes

smes IRV
dt

dIL −=  (6) 

and Ismes(0) = Iref 
 

Where Iref indicates the initial current and Lsmes the 
inductance of the supra-conducting coil which is 
normally charged on an energy level Eref  and does not 
output any active power. The losses of connection are 
gathered in a resistance Rsmes which is in practice can be 
neglected.  

When the ASMES imposes a transaction of active 
power Psmes, the level on date of the current Ismes in the 
coil dictates a value of the continue voltage Vsmes. From a 
measurement of Ismes current, one can estimate the level 
of storage of the ASMES which is given by: 

     2

2
1

smessmessmes I.LE =                                                     (7) 



We consider a power system is consisting of the 
synchronous generator connected through two (02) 
parallel transmission tie-lines, to a very large network 
that can be approximated by an infinite bus whose on-
line diagram is as shown in figure 2. This synchronous 
generator is represented by one axis model [7]. The 
ASMES unit is located near the generator bus terminal to 
improve the dynamic performance of power system.  

 
Fig. 2   Online diagram of power system with ASMES unit 

 

The synchronous machine is represented by one axis 
model [7]: 
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Where ω , δ  are angular speed and power angle; Pm, 
Pe, Psmes are respectively the power input, electrical 
output and active power of the ASMES unit; E'q is 
electromotive force of the synchronous machine; M and 
D represent respectively the inertia constant and the 
damping coefficient. 

 
Using elementary circuit theory, it can be shown that 

the d, q axis, the line currents ILd and ILq are given by: 
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Where the parameters Cki (k = d, q and i = 1, 2, 3) in 

Eq. (11) are determined by the external impedance. Line 
fault simulation is done by changing the values of Ck 
according to the phase the fault sequence. 

 
Clearly, the power system associated with ASMES is a 
class of time-varying nonlinear model. In that follows, 
nonlinear adaptive control theory is used to design a 
nonlinear stabilizing controller for such a system. 
 
 
 
 

3. Fuzzy Controllers 

The standard fuzzy control structure of ASMES to 
improve power system stability who was proposed and 
discussed in [8], shows that the fuzzy control gives good 
results compared to conventional control. This standard 
structure, given in Fig. 3, uses both the angular speed ω 
and terminal voltage Vt control loops. The error e=[e1 e2] 
and change in error c=[c1 c2] are the inputs of 
corresponding fuzzy controllers. These controllers use 
Min-Max operator (Mamdani implication) and Center Of 
Gravity (COG) defuzzification method. The output of 
Fuzzy Speed Controller (FSC) is u1, while u2 is the 
output of Fuzzy Voltage Controller (FVC) [8]-[9]. For 
both fuzzy controller designs, 5 fuzzy sets are defined for 
each controller input such that the membership functions 
are triangular shaped (with base width of 1) and evenly 
distributed on appropriate universes of discourse (the 
outer-most membership functions are trapezoidal). Also, 
the normalizing controller gains for the error, change in 
error, and the controller output are chosen to be     
ge=[1/2 1/4]T, gc=[1/5 1/5]T, and gu=[5 7/2]T, respectively. 
The fuzzy controllers sampling period was chosen to be   
T =1 milliseconds.  

 
The control rules are designed from an understanding 

of the desired effect of the controllers, for example, 
consider the rules: 
 

Rule (1):   IF e is NB AND c is NB THEN u is PB 
If the angular speed and terminal voltage exceed their 

references, then the ASMES is controlled in order to 
absorb the active and reactive powers so that the system 
finds its equilibrium point. 

 
Rule (13):   IF e is ZE AND c is ZE THEN u is ZE 
This situation corresponds to an equilibrium operating 

point, therefore no exchange of active and reactive 
powers between the network and the ASMES is 
necessary. 

 
Rule (25):   IF e is PB AND c is PB THEN u is NB 
This situation corresponds to the case where the 

angular speed and terminal voltage are small compared to 
their references, then the active and reactive powers 
generation by The ASMES is necessary to stabilize the 
system. 

 
These rules anticipate that the desired operating point 

will be reached soon and stabilization control is no longer 
needed. The complete set of control rules for both fuzzy 
controllers is shown in  

Table 1. Each of the 25 control rules represents a 
desired controller response to a particular situation. 



 
Fig.3 Standard Fuzzy Control of ASMES 

 

Table 1. The rule base matrix for both Fuzzy Controllers 

 
 
The control rules were designed to be symmetric under 
the assumption that, if necessary, any asymmetries could 
be best handled through scaling. In addition, adjacent 
regions in the rule table allow only nearest neighbour 
changes in the control output (NB to NS. NS to ZE and 
so on). This ensures that small changes in e and c result 
in small changes in u. 
 

4. Fuzzy Model Reference Learning Controllers 

In this Section, we present a new learning control 
technique that was developed by extending some of the 
linguistic self-organizing control concepts presented by 
Procyk and Mamdani in [10] and by utilizing ideas from 
conventional Model Reference Adaptive Control 
(MRAC). The learning control technique, which is shown 
in Fig. 4, uses a learning mechanism that:  

(i) observes data from a fuzzy control system, (ii) 
characterizes its current performance, and (iii) 
automatically synthesizes and/or adjusts the fuzzy control 
so that some pre-specified performance objectives are 
met. These performance objectives are characterized via 
the reference model shown in Fig. 4. In an analogous 
manner to conventional MRAC, the learning mechanism 
seeks to adjust the fuzzy controllers so that the closed-
loop system (the map from ωr to ω and Vtr to Vt ) acts like 
a pre-specified reference model (the map from ωr to ωm 
and Vtr to Vtm). This control is named fuzzy learning 
control. Its unique approach to remembering the 

adjustments it makes, and according to the prevailing 
definition of learning [9] [10]. 

4.1. Reference Model 

The reference model provides a capability for 
quantifying the desired performance of the process. 
Given that the reference model characterizes design 
criteria such as stability, rise time, overshoot, settling 
time, etc.. We would like the outputs ω and Vt to track 
desired reference values ωm and Vtm, respectively, which 
are obtained from the reference model vector. It is easily 
verified that this system has a vector relative degree of   
[3 2]T. We want the outputs of the system to track the 
reference vector: 
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the Laplace transform of temporal function  and s is 
the Laplace transform operator. 
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4.2. Learning Mechanism 

As previously mentioned, the learning mechanism 
performs the function of modifying the knowledge-base 
of a fuzzy controller so that the closed-loop system 
behaves like the reference model. These knowledge-base 
modifications are made based on observing data from the 
controlled process, the reference model, and the fuzzy 
controller. The learning mechanism consists of two parts: 
a fuzzy inverse model and a knowledge-base modifier. 

 
The fuzzy inverse model performs the function of 

mapping necessary changes in the process output, as 
expressed by Ye=[Ye1 Ye2]T, to the relative changes into 
process inputs (denoted by P=[P1 P2]T) necessary to 
achieve these process output changes. The knowledge-
base modifier performs the function of modifying the 
fuzzy controller’s knowledge-base to affect the needed 
changes in the process inputs.  

For this Fuzzy Model Reference Learning Control 
(FMRLC) design, two fuzzy inverse models are needed, 
one for each fuzzy controller. In general, both process 
inputs will affect both process outputs. However, for 
these fuzzy inverse models design we will assume that 
the cross-coupling between the inputs is negligible. As a 
result, the inputs to a given fuzzy inverse models 
includes the errors and change in errors between the 
associated reference model outputs and process outputs. 
Therefore, for the both fuzzy inverse model, the inputs 
are Ye=[Ye1 Ye2]T and Yc=[Yc1 Yc2]T respectively and the 
output is p=[p1 p2]T. For these inputs and outputs, 5 
fuzzy sets are defined with triangular shaped membership 
functions which are evenly distributed on the appropriate 
universe of discourse. 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4   Fuzzy Model Reference Control of ASMES 
 

The normalizing fuzzy system gains associated with 
Ye, Yc and P are chosen to be gYe=[1/2 1/2]T, gYc=[1 
1/2]T, and gP=[100 25]T, respectively. Consequently, the 
knowledge-base array, shown in Table 2, is used for both 
fuzzy inverse models. 

The fuzzy inverse model rule base matrix, shown in  
Table 1, was designed to take advantage of the 

damping feature described above. In considering the 
following rules: 

Rule (1):   IF Ye is NB AND Yc is NB THEN P is NB 
This rule corresponds to the case where the process 

output Y=[ω Vt]T is greater than the reference model 
output Ym=[ω m Vtm]T and Y continues to increase over 
Ym, then the fuzzy inverse models output P=[P1 P2]T 
characterizes that a negative increment should be added 
to the process input to insure that Y will not continue to 
increase. 

Rule (13):   IF Ye is ZE AND Yc is ZE THEN P is ZE 
In this situation, the fuzzy inverse models indicate that 

no change in the inputs process is required to force Y=Ym 
since this equality is already achieved. 

Table 2. The rule base matrix for both Fuzzy Inverse 
Models 

 
Similar statements hold for the remaining elements in 

Table 2. The knowledge-base modifier performs the 
function of modifying the fuzzy controller so that better 
performance is achieved. Given the information about the 
necessary changes in the inputs as expressed by the 
vector P=[P1 P2]T from the fuzzy inverse models, the 
knowledge- 

base modifier changes the knowledge-base of the fuzzy 
controllers so that the previously applied control action   
will be modified by the amount P. Therefore, consider 
the previously computed control action, which 
contributed to the present good/bad system performance. 
Note that e=[e1 e2]T and c=[c1 c2]T would have been the 
process errors and change in errors, respectively, at that 
time. Likewise, u=[u1 u2] T would have been the 
controller output at that time. The controller output which 
would have been desired, is expressed by [13]-[14]: 

ū(KT-T)=u(KT-T)+P(KT) (13) 

5. Simulation Results 

In order to evaluate the usefulness of the proposed 
ASMES structure with fuzzy learning control, we 
perform the computer simulation for a single machine 
infinite bus system. The critical fault time of the non-
compensated machine (i.e., without ASMES) is tcd=0.14 
sec. 

We suppose that the fault appearance time is 0.5 sec 
and the re-close interval is tf=1 sec (50 cycles). The 
power system stability can be judged by the fault 
duration, for that, two cases are considered in this 
simulation. 

The first fault time is td=0.32 sec and the second one 
corresponds to td=0.43 sec. Fig. 5 depicts the nonlinear 
behavior of terminal voltage Vt, angular speed ω and 
power angle δ , after a sudden three-phase fault applied at 
the terminal machine node. In Fig. 5, we can see that for 
a fault duration td=0.32 sec, when we introduce the 
ASMES unit with the Standard Fuzzy Control (SFC), the 
system finds its operating equilibrium point after fault 
elimination. In these same curves, we can notice the 
presence of a transient operating mode witch must be 
reduced in order to improve power system stability. 

The improvement of transient stability is increasingly 
significant, when the SFC is replaced by the Fuzzy 
Model Reference Learning Control (FMLC), we can 
notice that the transient mode is reduced, the system 
finds its equilibrium point exactly after fault elimination, 
the peak and the response time are significantly 
minimized. 

The effectiveness of the FMLC proposed in this paper 
is more validated through the simulation results presented 
in Fig. 6. When the fault time is increased (e.g., td=0.43 
sec), the Fig. 6 shows that the compensated machine with 
SFC loses completely its stability, this is due to the 
nonlinear nature of the power system whose parameters 
are variable during great disturbances. But the application 
of the FMLC allowed the system to find its equilibrium 
operating point.  
This application clearly illustrates the effectiveness of the 
fuzzy learning algorithm for controlling a nonlinear time 
varying process. Once again the fuzzy learning control 
provide good system tracking with respect to the 
reference model. As a result, the system exhibits good 
steady state and transient response.  
 
 



 
 
 

 

 
(a) Terminal Voltage Vt (pu) 

 
(b) Power Angle δ (rd) 

 
(c) Angular Speed ω (pu) 

 
(d) Angular Speed-Power Angle characteristic 

 
Fig.5   Simulation results for three-phase fault 

of duration td=0.32 s 
 
 
 

 
 
 
 

 
(a) Terminal Voltage Vt (pu) 

 
(b) Power Angle δ (rd) 

 
(c) Angular Speed ω (pu) 

 
(d) Angular Speed-Power Angle characteristic 

 
Fig.6   Simulation results for three-phase fault 

 of duration td=0.43 s 
 
 



The fuzzy inverse models outputs (P1, P2) for fault 
time td=0.32 sec, are illustrated by Fig. 7. The nonzero 
values of P1 or P2 indicate the knowledge-base adaptation 
for fuzzy controllers. 

 
Fig. 7 The signals outputs for both fuzzy inverse model 

 
The control surface provides a 3-dimensional view of 

the relationship between two inputs and output variables 
of the fuzzy controller. The Fig. 8 checks the output 
behavior across the entire range of possible inputs 
combinations using the knowledge-base array illustrated 
by Table 1. 

 
Before learning control, this knowledge-base is fixed and 
the control surface, shown in Fig. 8, for both controllers 
is linear without bumps. 

 

 
Fig.8 The control surfaces before learning for both 

controllers. 

 
When the fault occurs, the power system parameters 

change rapidly, for that the angular speed ω and the 
terminal voltage Vt escape from their desired reference 
model values. In this case the learning mechanism seeks 
to adjust the fuzzy rules of the controllers (i.e., 
knowledge-base modifications). 

During the fault phase, figures 9-10 show the control 
surfaces for both Fuzzy Controllers, exactly at 0,57 sec. 
At this time, the angular speed ω increases over the 
desired speed reference model output ωm, while the 
terminal voltage Vt decreases below Vtm. For that, the 
fuzzy inverse model output P1 must be negative so that 
the membership functions are shifted leftward (i.e., the 
modification of knowledge-base), to insure that ω 
reaches ωm. For this reason, the control surface of Fuzzy 

Speed Controller, shown in Fig. 9, is moved downward. 
The control surface of Fuzzy Voltage Controller, 
illustrated in Fig. 10, is shifted upward, this is due to P2 
which was assigned a positive value so that Vtm attracts 
Vt. 

 
For both controllers, these control surfaces which are 

initially linear form (Fig. 8), have more bumps. This 
allows the controllers to have a nonlinear characteristic 
and consequently they get large changes in outputs when 
there are small changes in inputs, in order to improve the 
rapidness and robustness of the system response and 
drive rapidly the system outputs to their desired ones. 

 
Fig.9 Control surface of Fuzzy Speed Controller 

 
Fig.10 Control surface of Fuzzy Voltage Controller 

The knowledge-base modifications for both controllers 
are not similar. This is due to the fact that each fuzzy 
controller improve its performance by interaction with its 
environment which depends on reference model 
parameters (i.e., rise time, overshoot, settling time, etc..) 
 

6. Conclusion 

This paper proposes a non-linear control method 
applied on ASMES to improve transient stability of a 
single machine-infinite bus system. The ASMES is 
placed at the point where the fault intervenes (i.e. with 
the node of the machine). This concept allows to 
accurately and reliably carry out transient stability study 
of power system and its controllers for voltage and speed 
stability analyses. It considerably increase the power 
transfer level via the improvement of the transient 
stability limit. 



The computer simulation results have proved the 
efficiency of the Fuzzy Model Reference Learning 
Control, showing stable system responses almost 
insensitive to large parameter variations. This learning 
control possesses the capability to improve its 
performance over time by interaction with its 
environment. 
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