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Abstract: The increased concern on ride comfort and 

handling characteristics of an automobile have led to 
extensive research on automobile suspension systems. The 

authors of this article propose an adaptive air suspension 

system with LQR control strategy. The LQR controller is 

tuned by a combination of PSO and manual tuning. A 

dynamic model of the air suspension system used in 

passenger vehicles is designed and simulated for both 

passive and adaptive systems using MATLAB/Simulink. Air 

suspension is a non-linear system and thus the authors have 

derived a stiffness equation for the same with minimal 

assumptions. A comparative analysis is performed with the 

widely used PID controller to compare the efficiency of the 
proposed controller. The results are obtained for bumps, pot 

holes and ISO standard random road conditions. The settling 

time, peak displacement and tuning strategies are compared 

and analyzed. The results show that the adaptive system can 

achieve better vibration isolation compared to passive 

system. On comparing the analysis parameters, it is seen that 

the LQR controller has better potential to improve ride 

comfort by reducing the maximum displacement amplitude of 

the vehicle by 89.88% and provide better handling 

characteristics by reducing the settling time of the system by 

85%. 

 

Keywords: air suspension, PID, LQR, PSO, adaptive 

suspension, ride comfort.  

1. INTRODUCTION 

The increase in demand for ride comfort calls for the use of 

active suspension systems in automobile. A good suspension 

system is expected to provide low suspension deflection 

transmissibility for handling and low vibration 

transmissibility for better ride comfort. The conflict between 

these two always exists in a passive suspension system which 

demands the use of an adaptive air suspension system whose 

stiffness can be manipulated with the air pressure inside the 

bellow based on load experienced. 

Ride comfort is directly related to the acceleration sensed by 

passengers when travelling on a rough road. Suspension 

travel refers to the relative displacement between the sprung 
and the unsprung masses [1]. A suspension system is 

basically a nonlinear system. For the ease of analysis, an 

equivalent linear system should be considered [2]. An Active 

suspension system can provide better ride comfort and 

handling compared to its passive counterpart. For evaluating 

their performances, metrics like ride comfort, ease of 

handling, suspension deflection, actuator saturation and 

controller constrained information should be considered [3].  

In passenger vehicles, especially while travelling on Indian 

roads, low frequency vibrations are experienced by the 

passengers. This is the same in case of farm vehicles too. 

Prolonged exposure of human body to these low frequency 

vibrations may have harmful and dangerous effects on human 
health. Thus, to attenuate prolonged low frequency 

vibrations, the authors propose an adaptive suspension 

system using an effective control strategy to provide a 

dynamic stiffness.  

A leaf spring or a coil spring can provide necessary 

suspension and ensure road – vehicle contact which is the 

primary function. But, while travelling over an irregular road, 

they cannot adjust their stiffness in order to provide necessary 

ride comfort to the passenger. An airspring is non-linear by 

nature. Various factors such as change in pressure, volume 

and height of the bellow influence the stiffness directly apart 

from the load experienced from the road and passengers. The 
change in volume, variation in air mass and effective area can 

have an impact on the stability of the system. Increase in 

fixed volume and area, and increase in air mass flow rate of 

air spring, has positive effects on its stability [4]. The authors 

in this article have derived an equation for the air spring 

stiffness considering these vital parameters thereby ensuring 

the accuracy of measurement. The same is given as an input 

in Matlab/Simulink simulation for accurate results.  

A PID controller is readily available in market whereas LQR 

control is a strategy and the controller can be designed and 

developed as per user specifications integrating the LQR 
algorithm. The LQR controller works on satisfying the 

Riccati equation with effective weighting functions. In this 

work, the LQR controller is tuned using a combination of 

Particle Swarm Optimization and manual tuning to obtain 

efficient weighting functions.  

2. MATHEMATICAL MODELING 

The full vehicle is a nonlinear system by design. It is a 

complicated and complex process to evaluate the complete 

vehicle. In the past, the vehicle suspension system was 

simplified as a nonlinear system with multiple frequency 

excitations [5]. For studying the chaotic motions in the 

vehicle, a quarter car model was considered. On application 
of LQ regulators in 2D models with preview control, ride and 

handling could be improved [6]. A 2DOF quarter car is 

modelled as shown in Fig. (1a), as a sprung mass mounted on 

a spring and damper (suspension system), carried by an 

unsprung mass mounted on a tire which ensures road-vehicle 

contact. 
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 Fig.1 – 2DOF Quarter-car model: (a) Passive (b) Adaptive 

Table 1. Quarter-car parameters 

 
Mass 

m (kg) 

Stiffness 

k (N/m) 

Damping 
Coefficient 

c 

Sprung Mass 221 48873 657.275 

Unsprung Mass 32 125000 1447.213 

The quarter car is modelled in Matlab environment 

considering the passenger mass and vehicle body mass 

combined as sprung mass where the vehicle body mass is 

constant and passenger mass varies. The axle on which 

suspension is mounted is taken as unsprung mass. The 

suspension spring rate and damping co-efficient and tire 

stiffness and damping co-efficient are taken as given in Table 

1. A step input of 0.1m amplitude is given for studying the 

response of the passive system. 

Before evaluating, necessary assumptions are to be made. 

Pressure gradient in air spring is neglected. Air flow 

resistance in the orifice of air spring is neglected. For ease of 

analysis, pitch and role angles experienced by the system are 

assumed to be negligible. The input can be experienced from 

two sources; the road undulations and the passenger mass 

along with the vehicle mass. It is assumed that the system 

experiences a complete longitudinal acceleration only. 

2.1  System Description 

The quarter car model consists of a sprung mass of 221kg. 

The stiffness of the air spring is directly proportional to the 

air pressure inside the bellow. Thus the pressure of the 
system is adjusted based on the displacement due to load for 

static load and dynamic loading conditions. Initially the 

pressure of the system should be maintained at operating 

pressure. 

The system can be represented as, 
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The adaptive air spring consists of four parts: rubber bellows, 

on/off (solenoid) valve, an auxiliary reservoir and a 

compressor. The air spring is connected to a compressor 
through a solenoid valve which is controlled by the 

controller. No external reservoir is considered for this study. 

2.2  Non-Linear System  

The airspring is a non-linear system by nature. The behaviour 
of the system can be defined by its volume, effective area, 

pressure inside the bellow, height of the bellow and the mass 

acting on the bellow. The other influencing factors are 

temperature and environmental conditions. The temperature 

inside the bellow is assumed to be constant. 

The mass flow rate of air into airspring can be written as:  

dt

Vd
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      (3) 

Since density and volume are time dependent, differentiating 

(3) we get:  



 ssss VVm      (4) 

Assuming an isentropic process, the relationship between 

density and pressure at two different states are given as:  
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The gas is assumed as an ideal gas and ideal gas law for the 

density at equilibrium is applied. Differentiating the equation 

with respect to time and rearranging the terms, we get:  
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Substituting (6) in (4), we get a first order differential 

equation for pressure in the airspring:  
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2.3  Linearized Dynamics  

The above section proves that change in pressure inside the 
airspring can be expressed as a function of change in volume 

and the mass flow rate of the air. Thus to design an adaptive 

suspension system, we need to control the volume of air 



 

 

     

 

inside the airspring and its mass flow rate. The non-linear 

equations are linearized to gain useful insights into system 

dynamics and to develop and perform simple simulations. 

The equation (7) can be expanded using Taylor’s series.  

Applying Taylor’s series to (7) to obtain linearized equation, 

we get, 
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The subscript e indicates evaluation at equilibrium conditions 

where,  
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Thus, applying the condition,  
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The height of the airspring at a particular period can be 

expressed as a sum of relative displacement and height of the 

airspring at equilibrium.  
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Computing change in volume with respect to height using 

chain rule we get,  
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Where ϑ is specific volume of the system.  

Substituting (13) in (10), 
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We know that, pressure is expressed as force per unit area. 

The total internal force is differentiated to produce,  
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Substituting (14) in (15),  
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At static conditions, there is no flow of air inside of outside 

the bellow. Thus mass flow rate approaches zero. That is,  

0


m  

Therefore (16) can be rewritten as  
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The above equation relates the change in force to change in 
height which is force verses deflection relationship. 

Therefore we can conclude that,  



 hKF s      (18) 

where, Ks is defined as the static stiffness of airspring.  

The other additional assumptions include, the gas inside the 

bellow is perfect gas. The base area of the air bellow is 

assumed to be the same as the effective area of the spring. 

The simulation performed is for the system under closed 

valve condition. The other frictional characteristics are 

neglected. The air spring is considered as a hollow cylindrical 

structure. 

The generalized state space representation is given by two 

equations, a state equation and the output equation to observe 

the output (19). The advantage in the state space approach is, 

it can be analyzed for different initial conditions. The state 

and the output equation is given by, 

BuAxtx 
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where, 

x is State vector (order of equation n x 1) 

A is State matrix (n x n)  

B is Input matrix (n x p) 

u is Input vector (q x 1) 

C is Output matrix (1 x n) 
The state, input and output matrices are shown in 

(20). The assumed states are displacement and velocity 

of sprung mass, the matrices, and to observe the 

displacement of sprung mass, 
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Thus, to control the stiffness of the air spring effectively, we 

require effective and reliable control strategies. 

3. DESIGN OF CONTROLLERS 

The air spring suspension system is practically a nonlinear 

system. For handling the non-linearity and non-uniformity of 

the system, complex fuzzy adaptive sliding mode controllers 

were proposed in the past [7]. By tracking the sprung mass 
motion and obtaining a tracking error, a sliding surface can 

be defined to reduce the sprung mass acceleration. The 

authors of this article propose an equivalent linear system 

which is reduced from the nonlinear system by assuming the 

air bellow as a uniform cylinder and the air inside the bellow 

is a perfect gas. The system is simulated in MATLAB. For 

comparative study, two widely used control methods are 

considered – PID and LQR. Both the controllers are tuned 

manually to obtain optimum results. 

Two types of controller design approaches are commonly 

followed by designers. The conventional method (CM) does 

not take passenger acceleration into consideration but only 
considers suspension travel and performance index. 

Acceleration Dependent method (ADM) prioritizes passenger 

acceleration to performance index. It is observed that the 

whole body vibration exposure RMS acceleration values 

reduced to 50% by CM and 90% by ADM [8]. For our 

system, we follow ADM since it provides better results. A lot 

of other strategies such as back-stepping control, genetic 

algorithms were proposed by researchers in the past. At the 

same time, they are also time consuming and highly complex 

to implement in practical cases.  

3.1  PID Controller 

The Proportional Integral Derivative (PID) controller works 

on the Control Loop Feedback principle. Although it is 

practically feasible and effective, tuning a PID controller is 

the critical part of the process. Rajagopal et al have 

effectively tuned the PID parameters and have claimed that 

their controller efficiently reduces the vehicle body 

acceleration [9]. The most common Ziegler-Nichols tuning is 

effective for random road conditions. But the iterative 

learning algorithm works best for random road, sine input, 

bump-hole conditions [10]. On the other hand, a Particle 
Swarm Optimized (PSO) PID controller is effective while it 

provides user simplicity [11].  

For an electronically controlled air suspension system, the 

system is considered as a spring and damper combination. 

Researches show that a linear PID controller is efficient in 

providing better ride performance and reduces the vertical 

acceleration [12]. For a nonlinear system, the LQ based semi-

active system simulation proves that it is effective by 

reducing the braking distance and improved comfort index 

and can be used in practical cases [13]. 

The schematic of the PID controller is given Figure 2. The 
control parameter can be defined as in (21). The sensitivity of 

the PID controller is tuned manually by differing the 

proportionality gain, integral gain and the differential gains.  
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 Fig.2 - Principle of PID control system 

3.2  LQR Controller 

For much complex systems, the nonlinear model is linearized 

and reduced order for ease of analysis. LQ based control 
reduces unwanted acceleration and pitch [14]. The LQR 

control technique performs better for step and random inputs 

comparatively [15].  

The LQR controller on the other hand is tuned by selecting an 

appropriate weighting function that would provide the 

optimum result. The system can be best stabilized using LQR 

controller by changing the poles of the system to an optimal 

value for the given time response, steady state and overshoot. 

3.2.1 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population based 

optimization technique coined by [16]. It works on defining 
the dimensional search space, number of steps and number of 

particles (birds) in the swarm. The number of birds denotes 



 

 

     

 

the size of the swarm. Each bird moves with its own velocity 

and has its own position. The position and velocity are set by 

themselves by their own moving experience and with that of 

the other birds in the swarm. Each bird carries the 

information of the best solution obtained at a particular 

position and they are termed as local best solutions and 

positions. All birds finally move towards a global best 

solution, contributing to an optimal solution.  

This method is inspired by the social behavior of birds. The 

current velocity and position of each bird can be updated or 

measured using (22).  
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The process is continued till the satisfying result is obtained. 

The fitness function is given by (23). The fitness value and 

number of iterations decide the stopping condition. The local 

best positions and global best positions of each bird are 

evaluated and additionally considering their velocities of the 

birds, a new best position is obtained.  

J
F
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1000
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where J is the RMS of prediction error. 

3.2.2 LQR tuned by PSO and Manual Tuning  

The population for this evaluation is set as 100 since it is a 

simple quarter car model. Kothandaraman et al have 

effectively tuned their PID controller using PSO [17]. Even 

though it is effective, the PSO is a time consuming process. 

The size of the population decides the accuracy of the 

solution. A larger population while providing a better 

solution also consumes a lot of time in the process. A 

combination of PSO and manual tuning is preferred so that it 

saves time while we obtain best solution. The solution 
obtained from PSO is considered as the base from which 

manual tuning starts and it allows the users to arrive at a best 

solution much sooner by manual tuning.  

The Linear Quadratic Regulator (LQR) is another feedback 

loop based controller which works on Riccati equation (24) 

depending on a weighting function and a design function 

normally represented in matrix forms. The uniform 

stabilizing ability and detectability of finite systems were 

easier under strong conditions. These results can be used to 

analyze complex multiple input multiple output systems [18]. 

The performance of the LQR controller can be verified with a 

cost function J as given in (25). It can be minimized by 
designing the state feedback control K to attain stability of 

the system. The cost function consists of two parts. The first 

part represents the transient energy and the next represents 

control energy. Bryson’s Rule of tuning is used to tune the 

LQR controller as given in (26). The state weighing matrix Q 

and control weighting matrix R values are obtained by a 

combination of PSO and manual tuning techniques. 
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where, 

i = ε(1, 2, …l) 

j = ε(1, 2, …l) 

Since the air spring is kept in closed valve condition, the 

pressure of air inside the chamber is directly proportional to 

the stiffness of the air spring suspension system. Compared 

with the conventional suspension systems, the controllability 

of the pneumatic systems is simpler since variable stiffness 

can be achieved by varying the gas pressure inside the 

container and thus, the choice of air springs will provide us 

with preferable results. 

4. RESULTS AND DISCUSSION 

The air spring is nothing but a deformable container which 

consists of high pressure air inside. The application and 
withdrawal of load on the airspring not only influences the 

pressure but also the height, volume and area of the bellow. 

As discussed earlier, the stiffness equation for the bellow is 

derived by considering all these necessary parameters. For 

simulation, a step input of 0.1m amplitude is given. The 

response of the system, with and without the controller is 

plotted in MATLAB. 

 Fig.3 - Step Response of the system 

Table 2. Performance overview on 0.1m step input 

Load 

kg 

Displacement 

m 

Settling Time 

s 

Without 

Control 
PID LQR 

Without 

Control 
PID LQR 

221 0.145 0.125 0.103 4.48 1.315 1.169 

 



 

 

     

 

On observing the output from Figure 3, we can see an 

undesirable overshoot of the system. This is due to the 

constant stiffness of the system which is incapable of 

adjusting itself to the input conditions. On the other hand, a 

controlled suspension system shows better performance than 

a passive system. From Table 2, it is observed that, settling 

time of the system have decreased considerably after the 

application of the controller ensuring the stability of the 

system. Even though PID controller settles the system earlier, 

the LQR is also competitively efficient.  

From Table 3, comparing the peak amplitudes, no overshoot 

is observed with the controllers. It can be clearly seen that the 

displacement of the system is efficiently controlled by LQR 

thereby assuring maximum ride comfort to the passengers. 

Comparing the overall performance, the LQR provides 

commendable ride comfort compared with PID controller and 

ensures effective vehicle stability. 

4.1  Response on Bumps and Potholes  

For evaluation, the system is simulated for bumpy road 

conditions and random road conditions. 2 bumps and 2 pot 

holes are generated in MATLAB with peak amplitude of 
0.25m and the behaviour of the system with PID and LQR 

controllers on a bumps and pot holes as seen in Figures 4 and 

5 are also checked and plotted.  

Sinusoidal bumps and pot holes were generated for 10 

seconds. The performance evaluation of the passive and 

adaptive systems on bumps and pot holes will help us 

identify the control strategy that attenuates vibrations better.  

 Fig.4 - Sprung mass displacement on 0.25m bumps 

Table 3. Performance of the system on Bumps 

Load 

kg 

Displacement on Bumps 

m 

Improvement 

 

Without 
Control 

With 

PID 
Control 

With 

LQR 
Control 

With 

PID 
Control 

With 

LQR 
Control 

221 0.0896 0.0269 0.00466 69% 95% 

  

 Fig.5 - Sprung mass displacement on 0.25m Pot holes 

Table 4. Performance of the system on Pot Hole 

Load 

kg 

Displacement on Pot hole 

m 

Improvement 

 

Passive 
System 

With 

PID 
Control 

With 

LQR 
Control 

With 

PID 
Control 

With 

LQR 
Control 

221 0.254 0.104 0.0243 59% 90% 

On bumpy roads, comparatively the system controlled by LQ 

Control strategy performs better for the same load and road 
conditions than the PID control. The results as seen in Table 

4 show an improvement in reduction of peak amplitude upto 

95% using LQR. Thus, we can infer that, low frequency 

vibrations can be attenuated efficiently by the adaptive 

system using LQR. 

4.2  Response on Random Road Conditions 

The ISO 8608 road standards as shown in Table 5 are 

considered to model the random roads. The random roads 

considered for evaluation are generated in MATLAB as 

shown in Figure 6. These studies can be used to develop 

strategies and techniques useful to avoid the dynamic 

overloading consequences [19]. 

Table 5. ISO 8608 road classes 

Road 

class 
Gd(n0) (10−6 m3) Gd(Ω0) (10−6 m3) 

 
Lower 
limit 

Upper 
limit 

Lower 
limit 

Upper 
limit 

A − 32 − 2 

B 32 128 2 8 

C 128 512 8 32 

D 512 2048 32 128 

E 2048 8192 128 512 

F 8192 32768 512 2048 

G 32768 131072 2048 8192 



 

 

     

 

 n0=0.1 cycles/m Ω0 =1 rad/m 

 Fig.6 - Sprung mass displacement on 0.25m bumps 

The responses are obtained for the considered ISO road 

conditions before and after the application of control 

strategies are shown in Figures 7, 8 and 9. 

Table 6. Performance of system on ISO Standard Roads 

Road 
Standard 

Input Peak 
Amplitude 

mm 

Peak 

Amplitude 
Without 

Control 

mm 

Controlled 

Peak 
Amplitude 

mm 

PID LQR 

A-B 4.75 4.95 4.5 3.4 

D-E 38.7 39.6 36.4 27.5 

E-F 78.86 79.7 72.8 55.2 

 Fig.7 - Sprung mass displacement on 0.25m bumps 

 Fig.8 - Sprung mass displacement on 0.25m bumps 

 

Fig.9 - Sprung mass displacement on 0.25m bumps 

The Class A-B roads are considered to be good roads and 

Class E-F are considered to be poor roads. Since, class F-G 

and above are highly rare to occur, they are neglected and 

only the practical road classes are considered for evaluation. 

The responses of the system are shown in Table 6. The 

results clearly show enormous control in vehicle peak 

amplitude on the random roads with the adaptive system 

using LQR. 

These results show that, for any load and road conditions, the 

system adapts itself to provide the same level of comfort to 

the passengers and the driver. Thus, from these results, we 
can infer that, even in extreme conditions, an adaptive system 

can perform efficiently and provide better ride comfort and 

creditable handling using LQ control strategy. 

 

5. CONCLUSIONS 

A quarter car model was considered to analyse the 

performance of a suspension system under user defined 

bumps, pot holes and random road conditions with and 

without control strategies. Unlike the previous air suspension 

systems that solely ensure the level of the vehicle with 

respect to ground, with no explicit concentration on stiffness 



 

 

     

 

of the system, our system solely concentrates on providing 

necessary dynamic stiffness based on the load experienced. A 

static stiffness equation was derived for the air suspension 

system which is a function of pressure, relative height and 

volume. These considerations improve the accuracy of the 

results. The simulation results show that, the system 

experiences undesirable overshoot and undergoes transient 

vibration due to incapability of adapting itself to the road. 

When the control strategies are introduced, the system adapts 

itself to the road conditions and performs efficiently 
providing better ride comfort and handling characteristics. 

The system controlled with LQR control strategy effectively 

tuned by a combination of PSO and manual tuning reduces 

the overshoot from 44.6% to a negligible 3.17% and thereby 

provides better ride comfort. The system settling time is also 

reduced by 85%. For better handling the settling time of the 

system should be maintained as low as possible.  

The effectively tuned LQR controller provides excellent ride 

comfort while not compromising the handling. The LQR 

settles the system 4 times as fast as the passive system. 

Overall performance shows that the LQR controller performs 

commendably while reducing the complexity in control.  

Thus the proposed system bridges the gap between the soft 

and hard springs providing the precise required stiffness for 

the suspension system ensuring both ride comfort and 

vehicle-road contact. 
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APPENDIX 

ms : Sprung mass 

mc : Mass of Car 

tmp : Total mass of passengers 

Cs : Damping Coefficient of suspension 



 

 

     

 

Cus : Damping Coefficient of tire 

Ks : Stiffness of the spring  

Kus : Stiffness of the tire  

FD : Controller Force 

ζ : Damping Ratio 

Xs : Sprung mass displacement 

Xd : Road disturbance 

Fs : Force of the spring 

n : Quantity of matter 

R : Gas constant 
Ts : Temperature of the spring 

Pa : Atmospheric pressure 

A : Area of cross-section 

zB : Length of spring 

FRS : Friction force 

Kp : Proportionality coefficient  

Ki : Integral constant 

Kd : Differential constant 

e(t) : Error 

x  : State Vector 

u : Input Vector 
Qii, Rjj : Positive definite real symmetric matrices 

Aeff : Effective area 

Ps : Pressure inside airspring 

Vs : Volume of airspring 


