
Vedic Multiplier Using Nikhilam Navatascaramam

Dasatah Sutra
ModernVLSI High Speed Multiplier

K.BHARATHA BABU1, REEBA KORAH2 , A. SWAMALATHA3

1Department of ECE, Research Scholar, Anna University, Chennai, Tamil Nadu, India,
2Alliance College of Engineering and Design, Alliance University, Bangalore-562106, Karnataka, India

3St. Joseph’s College of Engineering, Chennai-600119, Tamil Nadu, India
1kbharathababu@gmail.com

Abstract—In recent years, digital devices require arithmetic

units, particularly multipliers at high speed and efficiency due

to the growing complexity in performing arithmetic operations.

Conventional multipliers are unstable when operating on large

amount of data leading to errors and time delay. Vedic

mathematics can be used to satisfy these demands. The

proposed algorithm aims at improving the speed and reducing

the power consumption of the Vedic multiplier by modifying

the Nikhilam NavatascaramamDasatah Sutra based multiplier.

The Vedic multiplier is suitable for multiplying real and

floating point numbers. The algorithm is simulated using

Xilinx ISE and implemented in Virtex-V. The results when

compared to the conventional multipliers show a 15%

improvement in the speed and 10% improvement in power

reduction and 5 % improvement in area for 4, 8 and 16 bit

inputs.

Keywords—Vedic mathematics, Vedic Multiplier, Nikhilam

Navatascaramam Dasatah.

I. INTRODUCTION

The growth in digital communication devices and

application has increased the demand to process large

volume of data at high speed. Multiplier plays an important

role in making the digital devices efficient. Multipliers are

expensive and they tend to slow down while processing vast

amount of data. Speed is an important constraint during

multiplication. Higher speed can be achieved by reducing

the steps in the computational process. To improve the

efficiency, Vedic Mathematics is employed in the design

process. Vedic mathematics is an ancient system for

mathematical operations that was initially obtained from

Ancient Indian Sculptures and later presented as a book. It

comprises of the research work carried out by Swamiji Sri

BharathiKrisnaThirthaji Maharaja and Jagadguru Sri

Sankaracharya during AD 1885-1960. They formulated 16

principles for Vedic mathematics and were termed as Sutras.

These Sutras comprised of many algorithms that are

interesting and applicable for many fields of engineering

such as digital signal processing. Thus, designing a

multiplier using Vedic Mathematics will improve the speed

and efficiency of the multiplication operation.

The paper [1] provides a compressor based Vedic

multiplier architecture to generate the partial product. A

2bit, 4bit and 8bit multiplier was proposed in [2] a

multiplier constructed using sub multipliers to reduce the

propagation delay. Area is reduced in [3] utilizing a ripple

carry adder in designing the Vedic multiplier. The

complexity in [3] is reduced in [4] by employing carry save

adder and carry select adder that is better than ripple carry

based Vedic multiplier. Kogestone adder being the fastest

parallel prefix adder as suggested in [6] to reduce delay.

A modified Vedic multiplication algorithm proposed in

[7] is comparatively better than Wallace tree multiplier in

terms of delay. In [8], two main multiplication sutras

UrdhvaTiryagbhyam and NikhilamNavatascaramamDasatah

Sutra are proposed and compared to Array multiplier and

Booth multiplier in terms of combinational path delay.
 In this paper, an N-bit Vedic multiplier is proposed
which is based on Nikhilam Sutra. The proposed 4 bit, 8 bit
and 16 bit Vedic multiplier is compared with that of Urdhva
and Nikhilam Vedic multipliers. The proposed Vedic
multiplier has lesser delay than other multipliers.

II. VEDIC MULTILIER

A. Nikhilam Navatascaramam Dasatah

NikhilamNavatascaramamDasatah Sutra utilizes its

nearest base (a power of 10) to perform multiplication

operation. Hence, the complexity of the operation is reduced

irrespective of the size of the numbers to be multiplied. The

multiplier and multiplicand have their respective common

nearest base as a power of 10 [1].

The two numbers are written in two rows along with

their differences termed as Deviation as shown in Fig.1.

Column-1 represents the numbers that are to be multiplied

and the column-2 represents the deviation from their bases.

By cross-adding the values in the columns, we obtain the

respective left hand side value as 106. To obtain the right

hand side value as 08, we multiply the deviations together as

d1*d2.

Fig.1 Existing NikhilamNavatascaramamDasatah multiplication

 On concatenation of the resulting L.H.S and R.H.S
values, the product of the numbers 104 and 102 is obtained
to be 10608. The main advantage of this method is that,
there is a noticeable reduction in their complement obtained
when compared to their original numbers and steps are
reduced. This is the reason for Nikhilam Sutra to be efficient
but the serious drawback is that, the numbers to be
multiplied must have their base nearest to 10 or the power of
ten. This motivates for a modification in the existing
architecture that not only allows us to have base values
other than 10 (or power of ten) but also allows us to
multiply any type of number including floating point
numbers.

B. Urdhva Tiryagbhyam

Urdhva tiryagbhyam sutra refers to vertical and

crosswise [6]. The algorithm of urdhva sutra involves

producing summation and partial products. The

multiplication steps vary based on the digits. For

multiplying two 4 bit numbers, step-1 is initiated by

multiplying the right most bit of the two binary numbers. In

step 2, last and previous bit is cross multiplied. In step-3, 2nd

bit of A and 4th bit of B are multiplied, 4th bit of B and 2nd bit

of A are multiplied and 3rd bit of A&B are multiplied. In

Step-4, 1st bit of A is multiplied with 4th bit of B, 2nd bit of A

multiplied to 3rd bit of B, 3rd bit of A multiplied with 2nd bit

of B and finally the 4th bit of B is multiplied to 1st bit of B.

Step 5 is similar to step-3, the 1st bit of A is multiplied to 3rd

bit of B, 1st bit of B is multiplied to 3rd bit of A and 2nd bit of

A&B are multiplied. In step-6, 1st and 2nd bit of A&B are

cross multiplied. In step-7, the 1st bit of A&B are multiplied.

The steps are as shown below:

Fig.2. 4-bit multiplication Steps of Urdhva Tiryagbhyagam Sutra

 The figure.2 explains the line diagram steps 1-7. The
combined result will generate the final product of the two 4-
bit numbers.

C. Array Multiplier:

Figure.3 shows that array multiplier has a regular structure

and it is based on shift and add algorithm. The multiplier

and multiplicand together produce the partial product. Each

row of the partial product is shifted left and added. The

addition operation is performed through n-1 adders, where

“n” is the length of the multiplier [2].

Fig.3 4-bit Array Multiplication

Let m be the number of bits in the multiplicand then nxm

partial products are produced through an array of AND

gates. The bits are multiplied as x0y0 till xn-1yn-1

sequentially.

D. Booth Multiplier:

Booth Multiplier reduces number of iterations required

to perform the multiplication when compared to

conventional multipliers. The architecture is built using four

parts: 2’s Complement Generator, Carry Look-Ahead

Adder, Booth Encoder and Partial product generator as

shown in figure.4.

Fig.4. Architecture of Booth Multiplier

 Booth Multiplier can reduce the number of additions

that is required when compared to conventional multipliers,

where each bit of the multiplier and multiplicand is

multiplied and their respective partial products are arranged

and summed together. The number of additions depends

upon the data.

E. Wallace Tree :

The Wallace tree has a powerful and an efficient design

to multiply 2 integer values. In Wallace tree, the partial

product bits are added in parallel as shown in Fig.5. The

number of adders and critical paths are reduced in this

technique [7].

Fig.5 Wallace tree multiplication

 Multiplying the bits of an argument in a row with

the bits in the column yields an n2 result.

 The partial products produced are reduced by using

half and full adders.

 The results are added diagonally and the carry is

added to the neighboring bits.

 By concatenating the resultant values, the product

of A and B is generated.

III. PROPOSED WORK

Vedic sutra has been used to design the Vedic multiplier.

The approach to design the proposed multiplier is based on

NikhilamNatascaramamDasatah (NND) Sutra. The

algorithm of the NND sutra acts as a building block for the

proposed Vedic multiplier. The preliminary stages of the

work are based on NND algorithm. The modification to the

design is performed in the secondary stages which optimizes

the functionality. A standard architecture is presented for the

proposed technique. Each block aims at reducing the

complexity of the design flow when operating on a

considerable input. Optimization is achieved by raising the

speed and reducing the power consumption. At the initial

stages, a 4x4 bit Vedic multiplier is designed using the

proposed algorithm and its operation is evaluated using

MATLAB. Further, an 8x8 bit Vedic multiplier is designed

and tested. The results are perfectly content to design a

digital Vedic multiplier. A floating point multiplier is

designed using the following design.

Fig.6 Floating Point Multiplier Design

The figure.6 shows the multiplication operation between

multiplier and multiplicand consisting of n-input bits. The

input bits are processed and the 2n-outputs are obtained as

result. The algorithm of figure.6 is as follows:

A. Algorithm:

Notations

Ax = Base of A

Bx = Base of B

Ay = Deviation of A

By = Deviation of B

Cx = Partial product 1 (PP1)

Cy = Partial product 2 (PP2)

Lx = Summation of Cx & Cy.

Ly = Partial product 3 (PP3)

Px= Partial product 4 (PP4)

The Floating point number multiplication is carried

out using the proposed technique. The case 1 is to be

satisfied for the numbers to be accepted by the multiplier.

Floating point numbers are transformed when case 2 is

satisfied.

Case 1:

For a real number “A”, n > A > 0 value of the multiplier

ranges from 0 to infinity. For a real number “B”, n > B >0

value of the multiplicand ranges from 0 to infinity. The

product of the real numbers is obtained through the

proposed Vedic multiplier without any transformation of the

given bits.

Case 2: For a floating point number “n.n”, n.n> A > 0.0

value of the multiplicand ranges from 0 to infinity with bits

on either sides of the decimal point. For an n.n> B >

0.0value of the multiplicand ranges from 0 to infinity with

bits on either sides of the decimal point. The floating point

input value is converted into sign, exponent and mantissa

bits. Based on the given input the conversion takes place in

three different IEEE-standards: Single Precision Floating

Point (32 bit), Double Precision Floating Point (64 bit),

Quadruple Precision Floating Point (128 bit).

B. Proposed Algorithm:

// Consider A as multiplier and B as multiplicand

//A0 & B0 are the last digits of A & B and are obtained from

sub algorithm

if (A0>=5)

 p1 = 10 – A0;

 Base1 = A + p1;

 //Ax is obtained from sub algorithm with Base1

&10

 Ay = A - Base1;

else

 Base1 = A-A0;

 //Ax is obtained from sub algorithm with Base1

&10

 Ay = A - Base1;

end

if (B0>=5)

 p2 = 10 – B0;

 Base2 = Num2 + p2;

 //Bxis obtained from sub algorithm with Base2 &10

 By = B - Base2;

else

 Base2 = B – B0;

 //Bxis obtained from sub algorithm with Base2 &10

 By = B - Base2;

end

C. Sub algorithm:

//Division algorithm

//N is the Numerator and a is the denominator

if a==0

 then error

end

// initialize remainder and quotient to zero

Q == 0

R == 0

//n is the number of bits in N

for i = n-1..0

do

//left shifting R by 1

 R == R << 1

//Setting the least significant bit of R equal to bit i of the

numerator

 R (0) == N (i)

 if R >= a

 R == R – a

 Q (i) == 1

 end

end

D. Algorithm explanation:

1. Corresponding base values and their deviations are

stored in individual registers.

2. The left and right side values are obtained using the

values stored in the previous registers.

3. Cx is given as the multiple of multiplier A and deviation

of multiplicand B.(Cx= A.Bx)

4. Cy is given as the multiple of Base of A and deviation

of B. (Cy= By.Ax)

5. Left side value is given as the summation of Cx and Cy.

(LHS = Cx+ Cy)

6. Right side value is given as the multiple of the values

stored in the deviation registers of multiplier A and

multiplicand B. (RHS= Ay.By)

7. On concatenation of the left and right side values, the

product of the multiplier and multiplicand is obtained.

(PRODUCT = (LHS) || (RHS))

E. Floating point multiplier:

Fig.7Modern Multiplier Design

The above figure.7 shows the working of the proposed

modern multiplier. The Algorithm is as follows:

1. The multiplier A and multiplicand B are given as the

input to the multiplier.

2. The input bits are converted into sign, exponent and

mantissa.

3. The Sign bit of multiplier A and multiplicand B is given

to an XOR block.

4. The Exponent bits of A and B are given to an adder.

5. The Mantissa bits are given as an input to the Vedic

Multiplier.

The resultant sign, exponent and mantissa values are
normalized and the product of A and B is obtained.

IV. ILLUSTRATION

A. Algorithm Analysis using MATLAB

The proposed design shown in Fig.7 is evaluated using

MATLAB.

To study the potential of the architecture, the

exploration is advanced by employing 2 different digits. The

architecture is now evaluated for a multiplier with a 3 digit

multiplier and a 5 digit multiplicand, result as shown in

figure-11.

Fig.8Multiplying a 3 & 5 digit number

Finally, the architecture is tested for multiplying

floating point numbers. Consider the multiplication of a

multiplier 324.777777 and a multiplicand 2938.933333,

result as shown in fig.

Fig.9Multiplying a 3 & 5 digit floating point number

 The study exhibit that the method proposed is suitable
for multiplying n x n bit real and floating point numbers.
This assures the speed and efficiency of the multiplier to be
designed.

B. Algorithm analysis using XILINX ISE:

The proposed technique is used to design a Vedic

multiplier using Xilinx. A 4x4, 8x8 and 16x16 bit multiplier

is constructed in Verilog. Analysis and synthesis is

performed in Xilinx ISE 14.1.

 4x4 bit Proposed Vedic Multiplier:

Let “N” be the multiplier and “M” be the multiplicand

representing 4-bit number, N= n3 n2 n1 n0 and M= m3 m2 m1

m0. The output bits are represented by “Y”, Y= y7 y6 y5 y4 y3

y2 y1 y0.

(a) RTL Schematic

(b)Design Summary

Fig.10 4x4 bit Proposed Vedic Multiplier

A 4x4 bit multiplier device utilization summary is

shown in figure.10 and the input 4-bit numbers are

multiplied to yield an 8-bit product. The 4x4 bit multiplier

consumes small amount of hardware resources.

 8x8 bit Proposed Vedic Multiplier:

Let “N” be the multiplier and “M” be the multiplicand

representing 4-bit number, N= n7 n6 n5 n4 n3 n2 n1 n0 and M=

m7 m6 m5 m4 m3 m2 m1 m0. The output bits are represented

by “Y”, Y= y15 y14…y2 y1 y0.

(a) RTL Schematic

(b)Design Summary

Fig.11 8x8 bit Proposed Vedic Multiplier

An 8x8 bit multiplier device utilization summary is

shown in figure.11 and the input 8-bit numbers are

multiplied to yield a 16-bit product. Comparing with 4 bit

multiplier hardware resources consumed by 8 bit multiplier

is slightly larger.

 16x16 bit Proposed Vedic Multiplier:

Let “N” be the multiplier and “M” be the multiplicand

representing 4-bit number, N= n15 n14…n2 n1 n0 and M= m15

m14…m2 m1 m0. The output bits are represented by “Y”, Y=

y31 y30…y2 y1 y0.

(a)RTL Schematic

(b) Design Summary

Fig.12 16x16 bit Proposed Vedic Multiplier

A 16x16 bit multiplier example is shown in figure.12 and

the input 16-bit numbers are multiplied to yield a 32-bit

product. As the number of bits increases hardware resources

consumed also increases.

V. SIMULATION AND IMPLEMENTATION RESULTS

A. 4x4 Vedic multiplication:

(a)Testing 4-bit Multiplication

(b) Output

Fig.13Testing 4x4 bit multiplication

B. 8x8 Vedic Multiplication:

(a) Testing 8-bit Multiplication

(b) Output

Fig.14Testing 8x8 bit multiplication

C. 16x16 Vedic Multiplication:

(a) Testing 16 bit Multiplication

(b) Output

Fig.15Testing 16x16 bit multiplication

The table below shows that the propagation delay

of the proposed multiplier is better when compared to

existing multipliers [7, 8]. The algorithm reduces the

complexity of the process.

TABLE I. COMPARISON WITH EXISTING MULTIPLIERS

Multiplier Bits Propagation

Delay

Power

(mW)

Area

Wallace Tree 4 16.104ns 221.93 4%

8 36.904ns 315.02 7%

16 64.408ns 402.38 12%

Urdhva

Tiryagbhyagam

4 15.025ns 192.37 3%

8 25.236ns 287.90 5%

16 60.327ns 330.63 11%

Booth 4 20.322ns 225.15 4%

8 46.740ns 318.31 8%

16 63.435ns 337.92 14%

Array 4 22.741ns 230.26 5%

8 45.917ns 329.11 8%

16 68.868ns 412.23 15%

Proposed 4 13.028ns 150.45 3%

8 25.281ns 225.36 5%

16 35.354ns 303.21 8%

Graphical Representation:

The proposed multiplier is compared with the conventional

multipliers such as Array, Booth, Wallace tree and

UrdhvaTiryagbhyam based multiplier on the parameters of

speed, area utilization and power consumption.

Fig.16 Comparison chart for Propagation Delay

From the comparison of the proposed multiplier with

the existing multipliers, the minimum propagation delayis

achieved by the proposed multiplier at 13.028ns for 4 bit,

25.281ns for 8 bit and 35.354nsfor 16 bit. The proposed

multiplier is faster as there is less number of steps involved

in the algorithm.

Fig.17 Comparison Chart for Power

On comparing the proposed multiplier with the

conventional multipliers, minimum power is achieved on

the proposed multiplier design of 150.45mW for 4 bit,

225.36mW for 8 bit and 303.21mW for 16 bit multiplier.

Low power consumption is achieved using the compact

design.

Fig.18 Comparison Chart for Area

On comparing the area utilization of the proposed

multiplier with the conventional multiplier, proposed vedic

multiplier occupies a negligibly low area when compared to

Urdhva Tiryagbhyam.

VI. CONCLUSION

A 4x4, 8x8 and 16x16 high speed multiplier is design

using Vedic mathematics which is efficient. The

architecture of the multiplier is based on

NikhilamNavatascaramamDasatah sutra of Vedic

mathematics. The proposed design proves to be efficient in

terms of power as the number of bits increases when

compared to the existing conventional multipliers such as

Wallace Tree, UrdhvaTiryagbhyam, Booth and Array

multiplier.

As a future enhancement, better adders can be used.

As a modification, the design can be made for choosing

different base for each value. This will result further in the

reduction of time and space.

References
[1] G.Murugesan and S.Lavanya, “Design and Implementation of High

Speed multiplier using vedic mathematics”, ARPN, VOL.10, NO.16,
2015, 6758-6764.

[2] Annam Aravind Kumar and SK.Mastan Basha, “Design and
Implementation of high speed 8bit vedic multiplier on
FPGA”,IJCERT, VOL.2, Issue12, 2015, pp.1062-1069.

[3] Pranita Soni, Swapnil Kandam, Harish Dhurape and Nikhil Gulavani,
“Implementation of 16x16 Bit multiplication algorithm by using
vedic mathematics over booth algorithm”, IJRET, VOL.4, Issue:5,
2015, 371-376.

[4] M.Vengadapathiraj, V.Rajendhiran, M.Gururaj, A.Vinoth Kannan
and R.Gomathi, “Design of high speed 128x128 bit vedic multiplier
using high speed adder”, IJSERT, VOL.4, Issue:3, 2015,615-619.

[5] B.Keerthi Priya and R.Manoj Kumar, “A novel low power vedic
multiplier using modified GDI technique in 45nm technology”,
IJIRCCE, VOL.3, Issue:11, 2015, 11721-11728.

[6] Parul Agrawal and Rahul Sinha, “Comparative analysis and FPGA
implementation of Vedic multiplier for various bit lengths using
different adders”, IJIRCCE, VOL.3, Issue:10, 2015, 9844-9850.

[7] Shazeeda and D.Monika Sharma, “Design and Implementation of an
N-bit vedic multiplier using DCT”, IJEAT, VOL.5, Issue:2, 2015, 34-
41.

[8] Harish Kumar and A.R.Hemanth Kumar, “Design and
Implementation of vedic multiplier using compressor”, IJERT,
VOL.4, Issue:06, 2015.

[9] Sudhir Dakey and Avinash Nandigama, “Design, Implementation and
performance analysis of 8bit vedic multiplier”, IJMTER, VOL.2,
Issue:06, 2015.

[10] Abilasha and K.M.Sudharshan, A review of an efficient 8bit vedic
multiplier using reversible logic, IJRD, VOL.2, Issue:05, 2015.

[11] Amruta Ingle and Shruti Oza, “FPGA implementation of novel high
speed vedic multiplier”, IJAREEIE, VOL.4, Issue:06, 2015.

[12] Design approach of high performance 32bit multiplier based on vedic
mathematics using pipelining”, IJARCCE, Vol.04, Issue:09, 2015.

[13] V.B.Baru and Deepak Kurmi, “High Speed 16 bit digital multiplier
architect using urdhva tiryagbhyam and compressors”, IJAREEIE,
VOL04,Issue:3, 2015.

[14] G.Vasudeva and P.Cyril Prasanna Raj , “Study of 8 bit fast
multipliers for low power applications”, IJSCE, VOL.5, Issue:1,
2015.

[15] Harsh Yadav and Ankit Jain, “Verilog Implementation of an efficient
multiplier using vedic mathematics”, IJERA, VOL.5, Issue:7,
2015,pp.113-116.

	K.BHARATHA BABU1, Reeba Korah2 , A. Swamalatha3
	I. Introduction
	II. Vedic Multilier
	A. Nikhilam Navatascaramam Dasatah
	B. Urdhva Tiryagbhyam
	C. Array Multiplier:
	D. Booth Multiplier:
	E. Wallace Tree :

	III. Proposed Work
	A. Algorithm:
	B. Proposed Algorithm:
	C. Sub algorithm:
	D. Algorithm explanation:
	E. Floating point multiplier:

	IV. Illustration
	A. Algorithm Analysis using MATLAB
	B. Algorithm analysis using XILINX ISE:
	 4x4 bit Proposed Vedic Multiplier:

	V. Simulation and Implementation Results
	A. 4x4 Vedic multiplication:
	B. 8x8 Vedic Multiplication:
	C. 16x16 Vedic Multiplication:

	VI. Conclusion
	References

