
PSO-RBNN BASED CONTROL DESIGN FOR TRAJECTORY TRACKING 

 

NEHA KAPOOR  
National Institute of Technology, 

Kurukshetra, India. 
email: ernehakapoor@rediffmail.com                                  

                                                                              

JYOTI OHRI
 

National Institute of Technology, 

Kurukshetra, India. 
email:ohrijyoti@rediffmail.com

Abstract: Inspite of so universally accepted, control performance 

by NN depends on many of the varying factors such as output 

weights. To ensure the functional accuracy of the NN, it is 
required to have an defined value of these performance effecting 

factors. Control scheme proposed in this paper uses an emerging 
optimization technique naming, PSO to get the optimal value of 

the parameters, naming spread factor and weights of output layer 
in RBNN. Thus, this hybrid controller possesses the advantageous 

qualities of RBNN and PSO both. For the further improvement in 
the basic PSO algorithm, inertia weight factor of PSO is made 

adaptive.This projected controller has been verified by 
comparing it with a basic PSO and the basic RBNN controller for 

the trajectory tracking control of a 2-DOF remotely driven 
robotic manipulator. To check the robustness of the controller its 

performance has been checked by incorporating uncertainties 
naming payload masses and friction. Appropriate conclusions 

have been drawn in last. 

Keywords: Radial Bias Neural Network (RBNN), Particle Swarm 

Optimization (PSO), Evolutionary Neural Network (ENN), 
Hybrid Intelligent Controller, Remotely Driven Links 

Manipulator, Motion Control of Non-linear systems. 
 

I. Introduction 
With the increase in present applications of computers and its 

everyday increasing future prospects; areas of artificial 
intelligence based controllers have been expanded exponentially. 

Since the last few decades, because of highly non-linear mapping 
capabilities, neural network is one of the most widely used AI 

techniques [1]. There are a wide number of types of neural 
networks proposed in literature. Each one has its own advantages 

and disadvantages. In terms of time-taken, accuracy in results and 
non-linear mapping capabilities for non linear systems like 

motion control of robotic manipulator, RBNN (Radial Bias 
Neural Network) is found to superior when compared with back 

propagation neural network [2-8]. RBNN is given by Broomhead 
and Lowe [9], and its interpolation and generalization properties 

are thoroughly investigated in [10, 11]. As stated, although 
RBNN is one of the commonly used NN based control scheme for 

the non linear, time varying control system, yet the accuracy in 
performance of RBNN depends mainly upon the specific values 

of some of its parameters. A few of the important performance 

deciding RBNN factors are spread factor, (𝜎𝑗 ) and weights from 

hidden to output layer, (wjk). Most favorable value of these 

parameters can be chosen by either some expert’s experience or 
by trial and error (TAE) method. This limitation of RBNN 

restricts its use to an expert or by using time consuming, tedious 

and frustrating TAE method by an amateur. This limitation of 
RBNN restricts its use or deteriorates its performance. From the 

above discussions it can also be inferred that improvements in 

RBNN can be made by choosing its accurate parameters. One of 

the global optimization techniques like PSO can be very 
constructive to search out the optimized value of RBNN 

parameters. PSO, developed by Kennedy and Elbert, in 1995 [12] 
is based on the simulation of simplified animal social behavior 

such as fish schooling, bird flocking etc.. Stochastic based search 
algorithm PSO is a global searching technique with simplicity and 

practicability and has been widely used in recent years to get the 
optimal solutions [13]. 

Henceforth, in this paper, to develop the proposed hybrid 
controller two important techniques naming Particle Swarm 

Optimization (PSO) and the Neural Network (NN) have been 
combined. This type of control schemes, taking advantageous 

features of both the above mentioned PSO and NN intelligent 
techniques and is named as Evolutionary Neural Networks 

(ENN). By choosing PSO, auto adaptability quality is developed 
in the RBNN [14]. In [15-16] such adaptive hybrid controllers 

have been shown better control performance as compared to other 
prevailing controllers. ENN has been called as the next generation 

Neural Networks [17]. Moreover, some improvements in PSO 
further add on performance quality as, Cao et al. [18] and Shi et 

al. [19] used modified PSO to optimize RBNN and obtained 
effective results.  

Robotic manipulator is a highly non-linear, time-varying and 
highly coupled system. For a manipulator, almost all kinds of 

control techniques naming classical PD, PID, SMC, NN, etc. have 
been compiled in literature [20, 21 and references there in]. But 

because of the presence of the various structured and unstructured 
uncertainties in the model dynamics; still the thrust for a perfect 

and accurate controller is there. 

In this paper, controller used is the hybrid of two model free 
control techniques naming, PSO and NN. PSO is used to get the 

finest possible performance deciding RBNN constants, naming 

spread factor (σj ) and weights of output layer (wjk). Thus, a 

successful attempt to make a controller with great control outputs 
for a manipulator has been made. For further improvement in the 

control scheme, inertia weight factor of PSO is made adaptive. 
For simulation purpose, a 2-DOF robotic manipulator having 

planar elbow with remotely driven links manipulator has been 
taken here. This type of model is with gear, linear, well 

understood as the non-linear coupling between the motors has 
been reduced. On the other hand, this gear introduces friction, 

compliance, backlash in the dynamics. It has been observed from 
the literature survey that a very few controllers has been 

implemented for trajectory tracking control of this planar elbow 
with remotely driven links manipulator. Performance of the 

controller with this manipulator has been checked in presence of 
payload mass changes and the unavoidable friction. 

mailto:ernehakapoor@rediffmail.com


Furthermore, the paper is organized as follows: Section II 

deals with manipulator dynamics and the fundamentals of the 
controllers; next, Section III contains the basic scheme of the 

proposed controller of the paper. Simulation example and results 
are given in Section IV. Finally, conclusions have been complied 

in Section V. 
  

II. Fundamentals 

This section of the paper contains a brief review of the 
manipulator dynamics and the intelligent techniques naming, 
RBNN and PSO.  

A. Manipulator Dynamics:  

The dynamics of revolute joint type of robot can be 

described by following nonlinear Lagrange equation (1) [22], 
  

M q q + V q, q  + G q = τ                                                       (1) 
 

with q є Rn  as the joint position variables, τ as vector of input 

torques, M (q)  is the symmetric and positive definite inertia 

matrix, V(q, q )  is the coriolis and centripetal matrix, G(q) 
includes the gravitational forces. Input torque given to the 

manipulator is of pivotal significance. 
Manipulator used in this work is a planar elbow manipulator 

with remotely driven link. Unlike planar elbow manipulator, in 
this type of manipulator both the joints are driven by motors 

mounted at the base. The first joint is turned directly by one of the 
motors, while other is turned via a gearing mechanism or a timing 

belt as in Fig 1. Here, the generalized coordinates taken are as in 

Fig. 2, as the angle 𝑝2 is determined by driving motor number 2 

and is not affected by the angle 𝑝1.  
 

B. Radial Bias Neural Network (RBNN) 
A typical RBNN consists of input layer, hidden layer and 

output layer as represented if Fig [3]. Input layer consists of input 
signals; hidden layer consists of radial bias functions (Gaussian 

function); output layer gives output by multiplying weights with 
the output of hidden layer. In this paper, input given to the RBNN 

is error and velocity error (e and e ) and output is obtained from 
NN is the input torque to be given to the manipulator for 

trajectory tracking control purpose.  
 

 
  

 
Fig. 1: Two link revolute joint arm with remotely driven link 

 

 
 

 
 

 

 
 

 
 

 
Fig. 2: Generalized coordinates for planar elbow manipulator with 

remotely driven links 
 

The excitation values of this Gaussian function are 
distributed between the input values. The output of the hidden 

layer is given by equation (2) as 
 

u =  wj exp  
− s−c j 

2

σ j
2  n

j=1                                                           (2) 

 
where j is the j

th
 neuron of the hidden layer, 

       cj is the central position of the neuron j, 

      σj is the spread factor of Gaussian function.   

 

In output layer, output vector is given by y = [τ1  τ2]T which 

vectorily can be written as the output of k
th

 neuron is given by 
equation (3) 

yk =  𝑤𝑗𝑘  ∗ uk

𝑛

𝑗 =1

,  

k  1,2… . number of hidden layer neurons                  (3) 
                     

where wjk  represents the linking weight of the neuron in the 

output layer. 

 

 

   

 

 

Fig. 3: RBNN architecture 

Significance of the RBNN parameters to be optimized: 
 

This section covers a brief discussion about the significance 

of the spread factor (𝜎𝑗 ) and the output weights (wjk) in RBNN, 

followed by a discussion on the proposed control scheme. 

 

a. Spread factor (𝜎𝑗 ) is the first parameter to be optimized 

using PSO. Spread factor (𝜎𝑗 ) is of vital significance in 

RBNN. Its too small value can result in a solution that 

does not generalize from the input/target vectors and 
with a large value of it, the radial basis neurons will 

output large values (near 1.0) for all the inputs used to 
design the network. If radial basis neurons always 

output 1, any information presented to the network as 
input becomes lost. Hence, it is required to choose 

spread factor larger than the distance between adjacent 

x 

y 

𝑝2  

𝑝1  



input vectors, so as to get good generalization, but 

smaller than the distance across the whole input space. It 
can be assumed that, it is crucial to have accurate results 

with the optimal value of this spread factor 
 

b. Another performance deciding factor of RBNN is the 
selection of output weights (wjk). Generally, these 

weights from hidden to output layer are decided by 
Least Square (LS) estimation [23]. In RBNN, these 

output weights could be affected by very commonly 
occurring noise and outliers in a nonlinear function. 

Hence, the approximation precision of RBNN could be 
consequently damaged with the presence of this external 

noise and outliers in the data set. Hence, it is always 
required to use some optimization technique to get the 

values of these weights for the improvements in the 
results and accuracy of NN based controllers. 

 

C. Particle Swarm Intelligence (PSO) 

In PSO starting with random population in search space, it 
results in the optimal solution. During each step every particle is 

accelerated towards its best neighboring position as well as in the 
direction of global best position. Calculation of new position of 

the swarm is given by equations (4) & (5) [12].  
 

vid = vid + c1 ∈1  pid − xid  + c2 ∈2 (pxd − xid )                     (4) 

xid = xid + vid                                                                              (5) 

 

where, in a D-dimensional space xi    = (xi1 , xi2 ,… xiD ) is a present 

position vector, pi    = (pi1 , pi2 ,… piD )  is a best position vector, 

vi    = (vi1, vi2 ,…viD ) is a velocity vector, , c1  and c2 are constant 

acceleration coefficients 2,  ∈1   and ∈2  are the random number 

generators. In [24, 25] it has been proved that PSO finds the 
global best solution. PSO is becoming popular due to its 

simplicity in implementation and ability to converge quickly to a 
reasonably good solution.  

 

Adaptive Weights in PSO  

Although PSO is a new efficient emerging algorithm to the 
family of evolutionary algorithms and proven to be better than 

many other classical evolutionary techniques available (like 
Genetic Algorithm (GA)), yet there lies a huge scope for multi 

dimensional improvement in the basic PSO algorithm. One such 
improvement is made by incorporating a weight parameter on the 

previous velocity of the particle. The resulting equations for the 
manipulation of the swarm are [26] given in equations (6) & (7) 

 

vid = w ∗ vid + c1 ∈1  pid − xid  + c2 ∈2 (pxd − xid )              (6) 

xid = xid + vid                                                                              (7) 
 

where w is the inertia weight which manipulates the effects of the 

previous velocities on the current velocity. It can be said that w 

resolves the tradeoff between the global and the local exploration 
ability of the swarm. Literature reveals that w should have greater 

value in starting and should decrease gradually with iterations. As 

suggested by Hou in 2008[27] w adjusted adaptively proves itself 

as given in equation (8).  
 

w =
a

b+[1g∗iter ]2
                                                                            (8) 

 

where a = 0.6, b = 1, iter is the current iteration.  
This proposed adaptive weight in PSO has been applied to 

the manipulator of a planar robot with remotely driven links for 
the first time. Here, in this work i.e. for trajectory tracking control 
of robotic manipulator, this adaptive PSO has proven itself. 
 

D. Friction Modeling 

Friction forces between two surfaces in contact arises as a 
consequence of the irregularities and asperities at microscopical 

level, and their effects depend on many factors, such as 

displacement and relative velocity of bodies, properties of the 
surface materials, presence of lubrication, temperature etc. The 

experimental observation of friction phenomenon has led to 
various, deeply different models, which capture the friction 

component in a more or less accurate way. Friction is very 
important for the control engineer. Friction should be as much as 

reduced by good hardware design. But, with the advancements in 
the computers, computer control has also shown the possibility to 

reduce the effects of friction.  This has been made possible using 
various mathematical friction modes. Interesting reviews of the 

main friction characteristics and classical models starting from 
the basic concept of friction as a force that opposes motion, 

captured by pure Coloumb model, up to complex static and 
dynamic models like LuGre friction model has been provided in 

literature. As opposed to classical static friction model, dynamic 
friction models attempt to incorporate a variety of other friction 

characteristics such as stiction, zero slip displacement, stribeck 
effect etc. Dynamic friction models also tend to capture 

effectively the changing friction characteristics that are caused 
primarily due to wear and aging. One of the most accurate 

dynamic frictions proposed is LuGre friction model. LuGre 
Fiction can be modeled mathematically as in equations (9)  

 

F = σoz + σ1z + σ2v 

 z = v −
 v 

g(v)
z                                                                         (9) 

g v = Fc +  Fs − Fc exp⁡(
v

vs
)2  

          

where z is average bristle deflection, σo  is stiffness of bristles, σ1 

is bristle damping coefficient, σ2  is viscous damping coefficient, 

v is relative velocity between moving parts, Fc  is coulomb 

coefficient, Fs  is static coefficient, vs  is striberk velocity. 

  

III. Proposed Controller  
Even input output mapping in NN can be made by one of the 
many possible mapping functions yet the key issue in RBNN is 

not the selection of non-linear function but the key factor is the 
selection of constant parameters of these non-linear functions. 

Improper selection of some of the factors of RBNN can lead to 

unsatisfactory control results from RBNN. Spread factor (σj) and 

the network output weights (wjk) are the few most performance 
deciding factors of RBNN. In other words, it can be said that 

proper selection of spread factor (σj ) and the network output 

weights (wjk) can be adjusted using one of the upcoming latest 

swarm intelligent technique naming PSO. 
 

 
 

 
 Iterations 

RBNN 

Controller 
Manipulator 

System 

PSO Fitness 

Function 

Adaptive 

Weight 

Actual 
Path 

Desired 

Path 

 

Optimized Parameters 

Inertia  

Weight 

Initialize 

Random 

Population 



 

 
 

 
 

 
 

 
 

 
Fig. 4: Working of the proposed control scheme 

 
In Fig. 4, it can be seen that PSO is used to obtain the 

optimized values of the RBNN parameters. PSO is initialized 
using a random population. Adaptive inertia weight in PSO has a 

different value for each iteration and hence, changes to adapt 
itself to the running PSO.  As fitness function is a part of the basic 

PSO algorithm hence, it is evaluated for each iteration. Output of 
this PSO (optimized spread factor and output weights) is provided 

to RBNN. 

Table 1: PSO Parameters 

 
This RBNN (with optimized constant parameters) is used to find 

the control input torque to be given to the manipulator for 
trajectory tracking. Tracking error and velocity tracking error are 

the inputs to the RBNN to have the control torque (given to the 
system to be controlled) as output.  To have the values of error 

and velocity error actual trajectory tracked is compared to the 
desired trajectory. Flowchart representing the working of the 

control system is given in Fig. 5. 
 

IV. Simulation Example and Results 
 

For the verification of the proposed controller, in this section a 
simulation study has been carried out. Control for a 2 DOF planar 

elbow with remotely driven links has been using the proposed 
controller has been implemented here. Dynamic model of the 

manipulator has been given in equations (10), (11) [22] 
 

 d 11 p1 + d 12 p2 + c221 p2
2 + ∅1 = τ1                                          (10) 

d 21 p1 + d 22 p2 + c112 p1
2 + ∅2 = τ2                                          (11) 

 

where 

d11 = m1lc1
2 + m2l1

2 + I1  

d12 = m2l1lc2 cos(p2 − p1) 

d21 = m2l1lc2 cos p2 − p1  
d22 = m2lc2

2 + I2 

c221 = −m2l1lc2 sin(p2 − p1) 

c112 = m2l1lc2 sin(p2 − p1) 

g1 = (m1lc1 + m2l1)g cos(p1) 

∅2 = m2lc2g cos(p2) 

subscripts 1 & 2 indicates the link 1 & link 2; pi is the angle with 

respect to horizontal axis; mi is the weight; Ii  is the inertia; li  is 

the total length; lci  is the distance from the joint to the centre of 

gravity; g is gravitational constant; τi is the torque input; where i 

is 1 & 2 for link 1 & link 2. Parameters for the manipulator taken 
for trajectory tracking are: 

 

m1 = 10 ; m2 = 5 ; I1 = 0.2 ; I2 = 0.2 ; lc1 = 0.25; lc2 = 0.5 ; 

g = 9.8. 
 

This manipulator is made to track the path for a two-link 
manipulator given by equation (12)  

 

q1 = sin(0.67t) + sin(0.3t)                                                  (12a) 

q2 = sin(0.39t) + sin(0.5t)                                                  (12b) 
 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Flowchart representing control scheme for the proposed 

controller 

In this simulation study, for the trajectory tracking problem 
of planar manipulator, various controllers discussed in this paper 

have been implemented and the results have been compared.  For 

payload changes (m2 + ∆m) is taken as 1.35 kg i.e. 35 % rise in 

Population size  20 

Number of Iterations 50 

Inertia Weight (w)  2 

Acceleration factors (c1,c2) 2 

Fitness function  Root mean square of tracking error 

(RMSE) 

Yes 

No 

Stop to get the 

optimized values 

of spread factor 

and output 

weights. 

 

Start 

Initialize spread factor (s) and 

output weights randomly. 

Trained RBNN. 

Evaluate Fitness Function. 

Compare particle’s fitness 

evaluation with pbest. 

Compare fitness evaluation with 

population’s overall previous best 
for finding global best. 

Calculate new updated velocity 

and position of the particles. 

Criterion met or 

max. no. of iter? 



the mass of joint 2 of the manipulator. Parameters for LuGre 

friction model are chosen as: 
 

σo = 0.6, σ1 = 0.009, σ2 = 0.6, Fs = 0.01, Fc = 10   
 

A. RBNN Controller 

For the implementation of the RBNN controller, given in 
Section II, the spread factor has been tuned manually between 0-

2. The performance of the RBNN has been found best with spread 
factor as 2.  

 

B. PSO Controller 

Parameters chosen for a basic PSO controller have been 
given in Table 1 and results have been compiled in Fig. [6-9]. 

 
C. Proposed Controller 

In proposed controller parameters for PSO are given in table 
1 except the weight factor w, which is the adaptive in nature and 
is given in (8). Search range for spread factor has been taken as 
(0-2) and range for output weight factors has been taken as (0-1). 
Results for the trajectory tracking by the manipulator have been 
presented Figs. [6-9]. Although the graphs in Figs. [6-7] presents 
that the trajectory tracked by the manipulator using different 
control schemes is very close to each other, but the control 
performance of controllers can be easily differentiated with the 
help of tracking error graphs plotted in Figs. [8-9]. These graphs 
clearly represent that the best tracking performance is given by 
the proposed controller. Tracking errors of various controllers are 
given in Figs. [8-9]. Table 2 contains the performance indices to 
evaluate the performance of the controllers with all the 
uncertainties in terms of mean and mean square error (mse). 
Other type of error measuring performance indices like 2-norm 
error, integral square error (ISE) can also be evaluated and are 
found to show the similar type of results. It has been observed 
from table 2 that the max and mean error in Joint 1 & 2 is about 
100 times lesser that the max and mean error of the other 
controllers. In joint 1, it can be observed that the mse is about 104 
times lesser than the mse in other two control schemes whereas in 
joint 2 mse in the proposed controller is about 103 times lesser 
than the mse in other two control schemes. Hence, along with the 
robustness in the proposed control scheme, there is a rise in the 
accuracy in the tracking performance of the system under study. 
 
Execution time (in seconds) for each control technique has been 

tabulated in table 3. It has been observed that RBNN is taking the 
maximum time for control execution. Proposed controller, along 

with less tracking error, is implementing the control action in 
lesser time when compared with RBNN.  
 

V. Conclusion 
As said, it would be safe here to infer again that the most 

commonly and widely used neural networks (NN) are not 

flawless, rather they have various shortcomings of their own 
including the dependency on experts for tunings its parameters, 

such as spread factor and output weights for good accuracy in 
results. This need is fulfilled by the proposed controller which 

uses one of the most emerging optimization techniques named as 
particle swarm optimization (PSO) to get the optimized 

parameters of RBNN for enhanced performance. This PSO 
enhanced RBNN controller has proved itself with accuracy in 

trajectory tracking. This controller also converges itself in lesser 

time as compared to a simple RBNN controller. Hence, as the 

outcome of the paper, it can be said that with the proposed robust 
control scheme perfect trajectory tracking problem of robotic 

manipulator has been solved upto a mark.  
The study opens new vistas and futuristic avenues for 

further study, the more advanced and upgraded versions of PSO 
may be used for optimizing RBNN.   

   

References 

1. Lewis F. L., Jagannathan S.  , and Yesildirek A.: Neural 

Network Control of Robot Manipulators and Nonlinear 

Systems. In: Taylor & Francis, 1998. 

2. Benoudjit N., and Verleysen M.: On the kernel widths in 

radial basis function networks. In: Neural Processing Letters, 

Vol. 18 No. 2, 2003, pp.139-154. 

3. M. Bernard, “Applying radial basis functions,” IEEE Signal 

Processing Magazine, 13(2), 1996, pp. 50-65. 

4. C. Panchapakesan, M. Palaniswami, and D. Ralph, “Effects 

of moving the center's in an RBF network”, IEEE Trans. 

Neural Networks, 13(6), 2002, pp. 1299-1307. 

5. L. P. Wang, and X. J. Fu, “Data Mining with Computational 

Intelligence”, Springer, Berlin, 2005. 

6. S. M. Bohte, H. La Poutre, and J. N. Kok, “Unsupervised 

clustering with spiking neurons by sparse temporal coding 

and multilayer RBF networks”, IEEE Trans. Neural 

Networks, 13 (2), 2002, pp. 426-435. 

7. X. J. Fu, and L P Wang, “Data dimensionality reduction with 

application to simplifying RBF network structure and 

improving classification performance”, IEEE Trans. System, 

Man, Cybern, Part B-Cybernetics, 33(3), 2003, pp. 399-409. 

8. J. X. Peng, K. Li, and G W. Irwin, “A Novel Continuous 

Forward Algorithm for RBF Neural Modelling”, IEEE 

Trans. Automatic Control, 52(1), 2007, pp. 117-122. 

9. D.S. Broomhead, and D. Lowe, “Multivariable functional 

interpolation and adaptive networks”, Complex Systems 2, 

1988, pp. 321–355. 

10. D. Lowe, “Adaptive radial basis function nonlinearities, and 

the problem of generalization”, Proceedings of IEE 

International Conference on Artificial Neural Networks, 

1989, pp. 171–175. 

11. J.A.S. Freeman, and D. Saad, “Learning and generalization 

in radial basis function networks”, Neural Computation 9, 

1995, pp. 1601–1622. 

12. J. Kennedy and R. Eberhart,, “Particle Swarm Optimization”, 

in Pro. IEEE Int. Conf. Neural Networks,1995, pp. 1942-

1948. 

13. C. Sudheer, R. Maheswaran, B.K. Panigrahi, and Shashi 

Mathur, “A Hybrid SVM-PSO Model for Forecasting 

Monthly Streamflow”, Neural Comput. & Applic., Feb, 

2013. 

14. The Berkeley Institute in Soft Computing. [Online]. 

Available: http://www-bisc.cs.berkeley.edu. 

15. X. Yao, “Evolutionary Artificial Neural Networks”, Int. J. of 

Neural Systems, 4(3), 1993, pp. 539-567. 

http://www-bisc.cs.berkeley.edu/


16. H. Muhlenbein, “Limitations of Multi-Layer Preceptron 

Networks- Steps Towards Genetic Neural Networks”, 

Parallel Computing, vol. 14, 1990, pp. 249-260. 

17. S. Baluja, “Evolution of Artificial Neural Network Based 

Autonomous Land Vehicle Controller”, IEEE Trans. on 
SMC, vol. 26, 1996, pp.450-463.  

18.  C. Longhan, L. Xiaoli, and G. Xiaodong, “The Application 
of Rought Set and Improved QPSO-RBF Algorithm to Fault 

Diagnosis for Diesel Engine Valve”, Information and 
Control, 40 (4), 2011, pp. 570-576. 

19. S. Xian, Z. Wen-guang, and Z. Yan, “Application of RBF 
Neural Network Based on PSO Algorithm in Fault Diagnosis 

of Actuation System,” Journal of Naval Aeronautical and 
Astronautically University, 26 (2), 2011, pp. 131-135. 

20. N. Kapoor, and J. Ohri, “A Neural Network Based Novel 
Approach for Error Optimization in Path Tracking Control of 

a Robotic Manipulator”, National Conference, AEMDS-
2013, at TERII, Kurukshetra, 2013, pp. 98-103. 

21. N. Kapoor, and J. Ohri, “Fuzzy Sliding Mode Controller 
(FSMC) with Global Stabilization and     Saturation Function 

for Tracking Control of a Robotic Manipulator”, Journal of 
Control and Systems Engineering, Vol. 1 Iss. 2, Sept. 2013, 

pp. 50-56. 
22. M. W. Spong, and M. Vidyasagar, “Robot Dynamics and 

Control. Wiley-India Edition”, New York. 
23. J. Park, and I.W. Sandberg, “Universal approximation using 

radial-basis-function networks”, Neural Computation 3, 
1991, pp. 246–257. 

24. M. Clerc, “The Swarm and the Queen: Toward a 

Deterministic and Adaptive Particle Swarm 

Optimization”, Proc. IEEE Int. Congr. Evolutionary 

Computation, vol. 3, 1999, p. 1957. 

25. M. Clerc, and J. Kennedy, “The Particle Swarm- 

Explosion, Stability and Convergence in a Multi-

Dimensional Complex Space”, IEEE Trans. Evol. 

Comput., vol. 6, Feb. 2002, pp. 58-73. 

26. J. Kennedy and R. Eberhart, Swarm Intelligence, 

Mergan Kaufmann Publishers, 2001. 

27. X. Hou, “Wiener model identification based on adaptive 

particle swarm optimization”, IEEE Proceedings of 

Seventh  International Conference Machine Learning  

and  Cybernatics, Kumming 12–15th July, 2008,pp. 

1041–1045. 

 

 

 

 

 

 

 

 

Table 2: Tracking Errors: Joint 1 & 2 

Uncertainties 
Control 
Scheme 

Joint 1 Joint 2 

max. 
abs. error 

Mean 
error mse 

max. 
abs. error 

Mean 
error mse 

 
Payload 

changes 

RBNN 0.0494 0.0326 0.0013 0.0686 0.0337 0.0014 

PSO 0.0613 2.15e-02 7.51e-04 0.0545 2.24e-02 7.00e-04 

Proposed 0.002 0.0018 3.32e-06 4.13e-04 2.56e-04 6.69e-08 

 
LuGre Friction 

RBNN 0.116 0.0318 0.002 1.03e-01 0.0306 0.0018 

PSO 0.0697 0.0199 7.57e-04 0.0587 0.0173 5.70e-04 

Proposed 2.53e-04 7.80e-05 1.75e-08 2.92e-04 1.77e-04 3.44e-08 

 
Both 

RBNN 0.0587 0.0257 9.18e-04 0.0618 0.0248 9.15e-04 

PSO 0.0637 0.0236 8.35e-04 0.0505 0.0197 5.72e-04 

Proposed 4.31e-04 2.55e-04 7.58e-08 4.52e-04 3.81e-04 1.47e-07 

 

 

 

Table 3: Control execution time (in seconds) 
 

Controllers RBNN PSO Proposed 

Controller 

time 101.99 28.77 48.34 



 

 
Fig. 6: Trajectory tracking response by Joint 1 

 
Fig. 7: Trajectory tracking response by Joint 2 

 
Fig. 8: Tracking error for Joint 1 

 
Fig. 9: Tracking error for Joint 2 


