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Abstract: This paper presents some experimental results
obtained for the diagnosis of rotor broken bars in three
squirrel cage induction motors by the analysis of current
signatures using parametric PSD methods, these signatures
are detected on line by using a sensing board designed on
our electrotechnical laboratory of research.
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1. Introduction

Three-phase squirrel cage induction motors are the
work horses of industry and are the most widelyduse
electrical machines. In an industrialized natidmgyt
can typically consume between 40 to 50% of all the
generated capacity of that country [1]. A condition
monitoring system which can predict and identifg th
fault condition is the need of the age to prevertdhs
unwanted breakdown time. The MCSA (Motor Current
Signature Analysis) technique is found one of thestim
frequently used technique to identify the faultdition
[2]. This paper focuses on experimental resulizrtve
that MCSA Technique can identify the good an
cracked rotor bar in three phase squirrel cageciimu
motors under load conditions.

Parametric methods are based on the
estimation of a linear time invariant system
from noise by autoregressive-moving-average
(ARMA) model, such as Yule-Walker, Burg,
Covariance, and modified Covariance. These
methods have improved performances
although they are affected by the signal-to-
noise ratio (SNR) level.

High-resolution methods include techniques
such as multiple signal classification (MUSIC)
and Eigenvector. These methods can detect
frequencies with low SNR and compute the
autocorrelation matrix, and its Eigen-values
can be separated into signal and noise spaces.
These methods define a Pseudo-spectrum
function with large peaks that are subspace
frequency estimates, and they are commonly
used in the communication area. They have
been recently introduced into the area of
induction machine diagnosis by the application
of the MUSIC method.

%. Parametric methods

Parametric methods can yield higher resolutions

Spectral estimation techniques are widely adopteédan nonparametric methods in cases when the signal
in machine diagnosis. Typically, three main sulsdas length is short. These methods use a differentoambr
can be defined: nonparametric methods, parametticspectral estimation; instead of trying to estirihne

methods, and high-resolution methods [3].

* Nonparametric methods include convention%l:e

Fourier analysis, optimal band pass filterin
analysis, Periodogram, and Welch. Thes

PSD directly from the data, they model the datéhes
tput of a linear system driven by white noised an
n attempt to estimate the parameters of thaatin

methods do not solve the Ilimits of the The most commonly used linear system model is
frequency resolution of the classical Fouriethe all-pole model, a filter with all of its zeroas the

analysis.

origin in the z-plane. The output of such a filfer

white noise input is an autoregressive (AR) process



For this reason, these methods are sometimes aéferr B o’ (7)
to as AR methods of spectral estimation. P(f)= 2

p .
1+ a,(k)e 2™
k=1

The AR methods tend to adequately describe
spectra of data that is "peaky," that is, data wHeSD
is Iarge at c_ertgin frequencies. The data in many, Burg method
practical applications (such as speech) tends e ha _
"peaky spectra” so that AR models are often uséiul. The Burg Method belongs to the class of parametric

addition, the AR models lead to a system of linedR€thods and it is based on an autoregressive (AR)
equations which is relatively simple to solve. model for the PSD estimation. The underlying system

is described by the following difference equation:

p
qn]=-> ax{n-k]+€gn] (8)
It is assumed that the dape0),x(1), . . . X(N-1)} _ k=1
are observed. In the Yule—-Walker method, or the wherexn] is the observed output of the system,
autocorrelation method as it is sometimes refetoed €[Nl is the unobserved input data and the are its
the AR parameters are estimated by minimizing aoefficients. The inpug[n] is considered as a zero

estimate of prediction error power. mean white noise process with unknown variaoce
_ 1 P 2 and p is the order of the system. This model is
Variance= p "N D x(m)+> ak)x(n=k)| (1)  commonly referred as AR(p).
n=—c k=1

The samples of the(n) process which are not The a, are determined minimizing the forward and
observed (i.e., those not in the range®< N — 1) are backward prediction errors in the least square esens
set equal to zero in Eq. (5). The estimated priedict The PDS estimation is obtained from the following
error power is minimized by differentiating Eq. (5)equation:
with respect to the real and imaginary parts of the E
a(k)'s. This may be done by using the complex P,(f)= P : ©)

: . o
gradient to yield [4,5]. 1+ Z ape—jank

k=1

2.1.Yule—walker method

00

© p
1 > (x(n) +> a(k)x(n- k)jx*(n -)=0 (2 where E_ is the total least-square error of orger
N k=1 The major advantages of the Burg Method are ith hig
with: | =12,....,p frequency resolution, the AR model is always stable
This set of equations in terms of autocorrelatioand is computationally very efficient. It exhibits,
function estimates becomes: however, several limitations: for high signal toiseo
r,+ Rpa=0 (3) ratios line splitting may appear in the PDS and

frequency shifting from the true frequency occurs

Where: 1 Nk especially for short data record [4,5].
rK)=1 N ZX*(n)x(n+k), k=01,...,p @ 2.3.Covariance method
- n=0 . .
r’(—k), k=(-p+1),(-p+2),...-1 The only difference between the covariance

method and the Yule-Walker method is the range of

_ summation in the prediction error power estimate. |
From Eq. (7) the AR parameter estimates are fosnd ahe covariance method all the data points needed to

a:—Rglr,, (5)compute the prediction error power estimate. No
The estimate of the white noise varian@ds zeroing of the data is necessary. The AR parameter
calculated as: estimates as the solution of the equations canriteemw
P [4,5]:
o’ =r(0)+ > a(k)r(-k) (6) c@0)] [ew) - cwpTa®] [o
k=1 : . .

. . N E S : :|=]:]@0
From the estimates of the autoregressive parameters (10)
power spectral density estimation is given as: c(pO)] [c(pD) - c(p.p)jalp)] [O



Where: L > [c. (k) +c (m=-k,m=D)]a, (k) (19)
C(i,k):N—_pzx*(N—i)X(n—k) (11) “t=c, 1.0)+c, (mm-1)]
n=p _
From Eq. (11) the AR parameter estimates are found \yhere ¢ (1,k) = Nzlx(n ~K)X'(n=1) and known as
as:

n=m
a= —C;lcp (12) autocorrelation coefficients, which dependent omty
the absolute value of the difference betweandk, i.e.

) b c,(I,k)=c,(l k). However the autocorrelation
o’ =do0]+ Za[k]C[O, K] (13)  matrix is not Toeplitz but it is symmetric [6].

From the estimates Of the AR parameters, PSP poior proken bars related frequencies
estimation is formed as

The white noise variance is estimated as

(f)= o’ (14) The frequencies related to broken bar defects are
Feo P - 2 well known from the literature. They are given hg t
L+ Z:lak(k)e following expression [7,8]:

fop, = @£ 29) 1, (20)
2.4. Modified Covariance method
S - rotor slip

To derive the estimator, suppose that we are glveP fundamental frequency (H2)

the datax(n), n=0,1,., N-1, and let us consider the
forward and backward linear prediction estimates of, , - broken bar related frequency (Hz)
orderm, as

m The lower frequency sideband is linked to the
x(n) = —Zam(k)x(n - k) (15) broken bar fault, while the upper sideband frequesic

k=1 linked to the speed oscillation caused by the rotor
. mo, defect. In [9] and [10] was demonstrated that bnoke
K(n-m)=-> a,(K)x(n+k-m) (16) pq frequencies are actually contained in the sideb

and the corresponding forward and backward errofrrsequenaes given by:

f.(n) and g,(n) as f,(n)=x(n)-X(n) and fo, = (@£ 2ks) f, (21)
g,,(n) =x(n—=m)—-X(n—m), The least square erroryyith k=1,23...
is

N In the present paper attention is given to the firs
2 2 i :
£ = Zh fm(n)| +|gm(n)| ] (17) two current components given by eq. (18) viittl. In '
= general, the magnitudes of the remaining frequencie
To find the prediction coefficients that minimizg, , decays very fast and are more difficult to detect.
o ' . Expressions (17) and (18) show also that the fault
the derivative ofég,, with respect toa, (I). equal to related frequencies are very sensitive to the rslipr
zero forl = 1,2,....m. Hence For light load condition (small values for the ¥lthey
are very close to fundamental frequency. Even with
d[fm(n)] +[ ] 09,,(n) high resolution methods their discrimination frohet
6 (|) _r;] (M =500y da. (1) ) da.(I) fundamental poses additional difficulties.
N
:Z[fm(n)x (n-1)+[g,,(n)] x(n—m+|)]:
n=m

4. Experimental results

4.1. Sensors board design
(18)
Substituting equation (15) to (17) into equatio)(1  We have designed our sensors board by using three
and simplifying we find that the normal equatiormr focurrent sensors LA-55P for detect the stator ctsreh
the MC method are given by



motor and three voltage sensors LV-25M as shown the The results showed that none of the methods
following figure: described so far was able to detect rotor defentien

o o T ; » load conditions. In all these cases the motors are
coupled to a DC generator which acts as a loadjrand
other side this generator is coupled to the tachgme
for detect rotor speeds as shown figure 2.

4.3. Time-domain results

Fig. 3 show the results of stator currents obtained
healthy, one broken bar, and two broken bars imoluct
motors under load conditions.

Fig. 1. Sensors board

Each measured signal is simultaneously sampled Loading motors
through channels of a 16 bit, 200 kHz PCIl data £ T Healthy motor
acquisition (DAQ) board and stored directly into a 20 -~ bommmdooo- SEERE one proken bar_
desktop computer. We have processed and analyzed K

this data by using Matlab software with sampling
frequency 10 KHz.

4.2. Test Bench

Stator currents (A)

In order to evaluate the methods described in
section 2 for the case of rotor cage broken bassral
measurements of the stator current of a prototype
machine were performed. The prototype machine used

has the following rated values: 4kW, 50-Hz, 4-pples Time (sec)
delta connection three-phase squirrel cage in@ddistri
induction motors, the first is health, the seconthw al

one broken bar, and the third with two broken bAtfks.
the spectra shown have been obtained using built-in

Loading motors
T

functions from the MATLAB DSP Toolbox. e . Healthy motor 7
| | | One broken bar
b T TS, WL YE 1500,,,,,%,,,,,\ ,,,,, :,,,, : TWDbr‘okenbarsf
|
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Fig. 3. Time domain results: a/ motors stator ausgb/
motors speeds.

Fig. 3 presents the results of rotor speeds olatame
three cases of motor, in addition the comparison
b/ between these speeds.

Fig. 2. a/ Experimeqtal bench of induction motors From the last Fig. 3 b/, it can be seen that spéed
b// gottor vy;tr]htonebbr?(kenbbar rotor with two broken bars is far oscillated thahes
¢/ Rotor with two broken bars rotor speeds, this experimental result shows that t



oscillation speed is proportional with the numbér o Burg PSD method
broken bars.
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4.4.PSD estimation results

The parametric methods as Yule walker, Burg,
covariance, and Modified Covariance were applied to
stator current signatures illustrate in Fig. 3 ra/the
same conditions of full load for our three motoree
spectral diagrams that are obtained by using pempos
four methods are given in following figures.

Power/frequency (dB/Hz)

Yule-Walker PSD method
T T

! Healthy motor -
,,,,, - - - One broken bar Frequency (Hz)
Two broken bars

Fig. 5. Burg PSD results
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A number of different combinations for these two

parameters have been tried and a model order 802,8
proved to be appropriate for the data length uSetD(
samples).
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Fig. 4. Yule-Walker PSD results

The Yule-Walker AR method (autocorrelation
method) applies window to current signal data and
minimizes the forward prediction error in the least
squares sense, also it performs as well as othitrooe
for large data records and always produces a stable
model. Its disadvantages, it performs relativelpnbo
for short data records and there are frequencyfbias &0
estimates of sinusoids in noise. Because this diase 4 45 Frequ:fcy - 55 60
estimate, the autocorrelation matrix is guaranteed
positive-definite, hence nonsingular. For this meth
the order of an autoregressive (AR) prediction mode The Covariance Method does not apply window to
used for the signal is 90,000 with data length useéthta, minimizes the forward prediction error in kbast
(90,001 samples). squares sense, better resolution than Y-W for staiet
, é(ﬂecords (more accurate estimates), able to extract
L L equencies from data consisting pfor more pure
mINIMIzes the forward and backward prediction g.rorsin%soids. Its disadvantages, n%ag produce Fl)JnstabIe
in the least squares sense, with the AR CoefrISIer'lInodeIs and frequency bias for estimates of singsoid

constra_uned to satisfy the L-D recursion, hlgr?1oise. Model order must be less than or equal lfatie
resolution for short data records, and always preda ut frame size. The main parameters are the model

: i
stable model, being the segment length and the Imoégéer 2,200 proved to be appropriate for the dzigth
order its main parameters. Its disadvantages, p%d (6’ 001 samples)

locations highly dependent on initial phase, mafesu

(4]
N
(o]
s

Power/frequency (dB/Hz)

Fig. 6. Covariance PSD results

spectral line-splitting for sinusoids in noise, when The Modified Covariance Method does not apply
order is very large, and frequency bias for estamatf window to data, minimizes the forward and backward
sinusoids in noise. prediction errors in the least squares sense, high

resolution for short data records, able to extract



related to rotor broken bar defects
fo, = (L 2ks) f, mentioned in section 3 as shown in

figures 4 to 71t can be finally observed that for the

; Healthy motor case of two broken bars, the fault components of
} } One broken bar second order, obtained wilkx2 in eq. (21), appear in

S . T R R A 1 the yule walker and clearly in the covariance PDS
‘ ! methods at the frequencies 44.7 and 55.3 Hz.

frequencies from data consisting pfor more pure frequencies
sinusoids, does not suffer spectral line-splitting.

Modified Covariance PSD method
40 T T T

0F--—-7-—-—

1 T B e e I

5. Conclusion

- For the power quality assessment, it is important t
— know what the disturbances are in current waveforms
In this paper, four spectral estimation methodsctvhi
can simultaneously detect all types of harmoniocsha
been presented. It is possible to say that proposed
56 methods will be more effective and successful in
filtration applications of all harmonics. It is akable to
analyze and detect the all type harmonics (intégeat
and sub) at same cases together. We have demedstrat
Its disadvantages, may produce unstable modetlsat parametric PSD methods could be instrumental i
peak locations slightly dependent on initial phasehallenging harmonic detection problems in thiglgtu
minor frequency bias for estimates of sinusoids @ur results indicate that the use of covarianceyanel
noise. Model order must be less than or equal3dt® walker methods provide relatively better perforneanc
input frame size. The main parameters are the modeldetecting harmonics. Next best performer isBheg
order 2,200 proved to be appropriate for the daigth and modified covariance method.
used (6,001 samples).
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Fig. 7. Modified Covariance PSD results
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