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Abstract: This paper presents some experimental results 
obtained for the diagnosis of rotor broken bars in three 
squirrel cage induction motors by the analysis of current 
signatures using parametric PSD methods, these signatures 
are detected on line by using a sensing board designed on 
our electrotechnical laboratory of research. 
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1. Introduction  

Three-phase squirrel cage induction motors are the 
work horses of industry and are the most widely used 
electrical machines. In an industrialized nation, they 
can typically consume between 40 to 50% of all the 
generated capacity of that country [1]. A condition 
monitoring system which can predict and identify the 
fault condition is the need of the age to prevent such 
unwanted breakdown time. The MCSA (Motor Current 
Signature Analysis) technique is found one of the most 
frequently used technique to identify the fault condition 
[2]. This paper focuses on experimental results to prove 
that MCSA Technique can identify the good and 
cracked rotor bar in three phase squirrel cage induction 
motors under load conditions. 

Spectral estimation techniques are widely adopted 
in machine diagnosis. Typically, three main subclasses 
can be defined: nonparametric methods, parametric 
methods, and high-resolution methods [3]. 

• Nonparametric methods include conventional 
Fourier analysis, optimal band pass filtering 
analysis, Periodogram, and Welch. These 
methods do not solve the limits of the 
frequency resolution of the classical Fourier 
analysis. 

• Parametric methods are based on the 
estimation of a linear time invariant system 
from noise by autoregressive-moving-average 
(ARMA) model, such as Yule–Walker, Burg, 
Covariance, and modified Covariance. These 
methods have improved performances 
although they are affected by the signal-to-
noise ratio (SNR) level. 

• High-resolution methods include techniques 
such as multiple signal classification (MUSIC) 
and Eigenvector. These methods can detect 
frequencies with low SNR and compute the 
autocorrelation matrix, and its Eigen-values 
can be separated into signal and noise spaces. 
These methods define a Pseudo-spectrum 
function with large peaks that are subspace 
frequency estimates, and they are commonly 
used in the communication area. They have 
been recently introduced into the area of 
induction machine diagnosis by the application 
of the MUSIC method. 

2. Parametric methods 

Parametric methods can yield higher resolutions 
than nonparametric methods in cases when the signal 
length is short. These methods use a different approach 
to spectral estimation; instead of trying to estimate the 
PSD directly from the data, they model the data as the 
output of a linear system driven by white noise, and 
then attempt to estimate the parameters of that linear 
system. 

The most commonly used linear system model is 
the all-pole model, a filter with all of its zeroes at the 
origin in the z-plane. The output of such a filter for 
white noise input is an autoregressive (AR) process. 



 
 

For this reason, these methods are sometimes referred 
to as AR methods of spectral estimation.  

The AR methods tend to adequately describe 
spectra of data that is "peaky," that is, data whose PSD 
is large at certain frequencies. The data in many 
practical applications (such as speech) tends to have 
"peaky spectra" so that AR models are often useful. In 
addition, the AR models lead to a system of linear 
equations which is relatively simple to solve. 

2.1. Yule–walker method 

It is assumed that the data {x(0),x(1), . . . ,x(N−1)} 
are observed. In the Yule–Walker method, or the 
autocorrelation method as it is sometimes referred to, 
the AR parameters are estimated by minimizing an 
estimate of prediction error power. 
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The samples of the x(n) process which are not 
observed (i.e., those not in the range 0 ≤ n ≤ N − 1) are 
set equal to zero in Eq. (5). The estimated prediction 
error power is minimized by differentiating Eq. (5) 
with respect to the real and imaginary parts of the 
a(k)’s. This may be done by using the complex 
gradient to yield [4,5]. 
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With: pl ,....,2,1=  
This set of equations in terms of autocorrelation 
function estimates becomes: 
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From Eq. (7) the AR parameter estimates are found as: 

pp rRa 1−−=                                           (5) 

The estimate of the white noise variance σ2 is 
calculated as: 
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From the estimates of the autoregressive parameters, 
power spectral density estimation is given as: 
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2.2. Burg method 

The Burg Method belongs to the class of parametric 
methods and it is based on an autoregressive (AR) 
model for the PSD estimation. The underlying system 
is described by the following difference equation: 
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where x[n] is the observed output of the system, 
e[n] is the unobserved input data and the ka  are its 

coefficients. The input e[n] is considered as a zero 

mean white noise process with unknown variance 2σ , 
and p is the order of the system. This model is 
commonly referred as AR(p). 

The ka  are determined minimizing the forward and 

backward prediction errors in the least square sense. 
The PDS estimation is obtained from the following 
equation: 
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where pE  is the total least-square error of order p. 

The major advantages of the Burg Method are its high 
frequency resolution, the AR model is always stable, 
and is computationally very efficient. It exhibits, 
however, several limitations: for high signal to noise 
ratios line splitting may appear in the PDS and 
frequency shifting from the true frequency occurs 
especially for short data record [4,5]. 

2.3. Covariance method 

The only difference between the covariance 
method and the Yule–Walker method is the range of 
summation in the prediction error power estimate. In 
the covariance method all the data points needed to 
compute the prediction error power estimate. No 
zeroing of the data is necessary. The AR parameter 
estimates as the solution of the equations can be written 
[4,5]: 
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From Eq. (11) the AR parameter estimates are found 
as: 

pp cCa 1−−=     (12) 

The white noise variance is estimated as: 
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From the estimates of the AR parameters, PSD 
estimation is formed as: 
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2.4. Modified Covariance method 

To derive the estimator, suppose that we are given 
the data x(n), n=0,1,., N-1, and let us consider the 
forward and backward linear prediction estimates of 
order m , as 
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and the corresponding forward and backward errors 
)(nfm  and )(ngm  as )(ˆ)()( nxnxnfm −=  and 
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To find the prediction coefficients that minimize mε , 

the derivative of mε  with respect to )(* lam . equal to 

zero for l = 1,2,...,m. Hence 
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Substituting equation (15) to (17) into equation (18) 
and simplifying we find that the normal equation for 
the MC method are given by 
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autocorrelation coefficients, which dependent only on 
the absolute value of the difference between l and k, i.e. 

)(),( klcklc xx −= . However the autocorrelation 

matrix is not Toeplitz but it is symmetric [6]. 

3. Rotor broken bars related frequencies 

The frequencies related to broken bar defects are 
well known from the literature. They are given by the 
following expression [7,8]: 

sbb fsf )21( ±=   (20) 

s  - rotor slip 

sf - fundamental frequency (Hz) 

bbf  - broken bar related frequency (Hz) 

The lower frequency sideband is linked to the 
broken bar fault, while the upper sideband frequency is 
linked to the speed oscillation caused by the rotor 
defect. In [9] and [10] was demonstrated that broken 
bar frequencies are actually contained in the sideband 
frequencies given by: 

sbb fksf )21( ±=   (21) 

With   k=1,2,3.... 

In the present paper attention is given to the first 
two current components given by eq. (18) with k=1. In 
general, the magnitudes of the remaining frequencies 
decays very fast and are more difficult to detect. 
Expressions (17) and (18) show also that the fault 
related frequencies are very sensitive to the rotor slip. 
For light load condition (small values for the slip) they 
are very close to fundamental frequency. Even with 
high resolution methods their discrimination from the 
fundamental poses additional difficulties. 

4. Experimental results 

4.1. Sensors board design 

We have designed our sensors board by using three 
current sensors LA-55P for detect the stator currents of 



 
 

motor and three voltage sensors LV-25M as shown the 
following figure: 

 
Fig. 1. Sensors board 

Each measured signal is simultaneously sampled 
through channels of a 16 bit, 200 kHz PCI data 
acquisition (DAQ) board and stored directly into a 
desktop computer. We have processed and analyzed 
this data by using Matlab software with sampling 
frequency 10 KHz. 

4.2. Test Bench 

In order to evaluate the methods described in 
section 2 for the case of rotor cage broken bars, several 
measurements of the stator current of a prototype 
machine were performed. The prototype machine used 
has the following rated values: 4kW, 50-Hz, 4-poles, 
delta connection three-phase squirrel cage industrial 
induction motors, the first is health, the second with 
one broken bar, and the third with two broken bars. All 
the spectra shown have been obtained using built-in 
functions from the MATLAB DSP Toolbox. 

 
a/ 

 
b/   c/ 

Fig. 2. a/ Experimental bench of induction motors 
b/ Rotor with one broken bar 
c/ Rotor with two broken bars 

The results showed that none of the methods 
described so far was able to detect rotor defects under 
load conditions. In all these cases the motors are 
coupled to a DC generator which acts as a load, and in 
other side this generator is coupled to the tachymeter 
for detect rotor speeds as shown figure 2. 

4.3. Time-domain results 

Fig. 3 show the results of stator currents obtained in 
healthy, one broken bar, and two broken bars induction 
motors under load conditions.  
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Fig. 3. Time domain results: a/ motors stator currents, b/ 
motors speeds. 

Fig. 3 presents the results of rotor speeds obtained in 
three cases of motor, in addition the comparison 
between these speeds. 

From the last Fig. 3 b/, it can be seen that speed of 
rotor with two broken bars is far oscillated than other 
rotor speeds, this experimental result shows that the 



 
 

oscillation speed is proportional with the number of 
broken bars. 

4.4. PSD estimation results 

The parametric methods as Yule walker, Burg, 
covariance, and Modified Covariance were applied to 
stator current signatures illustrate in Fig. 3 a/ in the 
same conditions of full load for our three motors. The 
spectral diagrams that are obtained by using proposed 
four methods are given in following figures. 
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Fig. 4. Yule-Walker PSD results 

The Yule-Walker AR method (autocorrelation 
method) applies window to current signal data and 
minimizes the forward prediction error in the least 
squares sense, also it performs as well as other methods 
for large data records and always produces a stable 
model. Its disadvantages, it performs relatively poorly 
for short data records and there are frequency bias for 
estimates of sinusoids in noise. Because this biased 
estimate, the autocorrelation matrix is guaranteed to 
positive-definite, hence nonsingular. For this method, 
the order of an autoregressive (AR) prediction model 
used for the signal is 90,000 with data length used 
(90,001 samples).  

The Burg method does not use data windowing, 
minimizes the forward and backward prediction errors 
in the least squares sense, with the AR coefficients 
constrained to satisfy the L-D recursion, high 
resolution for short data records, and always produces a 
stable model, being the segment length and the model 
order its main parameters. Its disadvantages, peak 
locations highly dependent on initial phase, may suffer 
spectral line-splitting for sinusoids in noise, or when 
order is very large, and frequency bias for estimates of 
sinusoids in noise. 

44 46 48 50 52 54 56
-60

-50

-40

-30

-20

-10

0

10

20

30
Burg PSD method

Frequency (Hz)

P
ow

er
/f

re
qu

en
cy

 (
dB

/H
z)

 

 
Healthy motor
One broken bar
Two broken bars

 
Fig. 5. Burg PSD results 

A number of different combinations for these two 
parameters have been tried and a model order of 2,800 
proved to be appropriate for the data length used (5,701 
samples). 
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Fig. 6. Covariance PSD results 

The Covariance Method does not apply window to 
data, minimizes the forward prediction error in the least 
squares sense, better resolution than Y-W for short data 
records (more accurate estimates), able to extract 
frequencies from data consisting of p or more pure 
sinusoids. Its disadvantages, may produce unstable 
models and frequency bias for estimates of sinusoids in 
noise. Model order must be less than or equal to half the 
input frame size. The main parameters are the model 
order 2,200 proved to be appropriate for the data length 
used (6,001 samples). 

The Modified Covariance Method does not apply 
window to data, minimizes the forward and backward 
prediction errors in the least squares sense, high 
resolution for short data records, able to extract 



 
 

frequencies from data consisting of p or more pure 
sinusoids, does not suffer spectral line-splitting. 

44 46 48 50 52 54 56
-60

-50

-40

-30

-20

-10

0

10

20

30

40
Modified Covariance PSD method

Frequency (Hz)

P
ow

er
/f

re
qu

en
cy

 (
dB

/H
z)

 

 
Healthy motor
One broken bar
Two broken bars

 
Fig. 7. Modified Covariance PSD results 

Its disadvantages, may produce unstable models, 
peak locations slightly dependent on initial phase, 
minor frequency bias for estimates of sinusoids in 
noise. Model order must be less than or equal to 2/3 the 
input frame size. The main parameters are the model 
order 2,200 proved to be appropriate for the data length 
used (6,001 samples). 

For all these methods it is possible to determine the 
model order according to criteria for minimizing the 
noise influence. However, none of these criteria have 
been applied to the present case, being the model order 
determined based on a practical trial and error 
approach. It was observed that the rotor fault 
frequencies can be only detected for high model orders. 
For the cases considered, no fault frequencies appear in 
the range 44-56 Hz if  considered model order under 
2,000. The most important issue for the practical use of 
this method is the correct choice of the model order, 
which is also influenced by the machine load condition 
and noise. For use in automated fault detection systems 
this fact imposes severe difficulties for the adjustment 
of the parameters set. For load conditions the fault 
components can be clearly recognized with model 
order above 2000. The results shown refer to a model 
order of 2,300. In addition, for load conditions the two 
main fault components, left (47.4 Hz) and right (52.6 
Hz) from the fundamental, have strong peaks and the 
detection of fault condition is very easy with the 
correct model order. For both conditions the amplitude 
of the fault related frequencies increase with increasing 
load. Finally, from the practical measurements it can be 
concluded that the performance of the parametric PSD 
methods are better to confirm the expression of 

frequencies related to rotor broken bar defects 

sbb fksf )21( ±=  mentioned in section 3 as shown in 

figures 4 to 7. It can be finally observed that for the 
case of two broken bars, the fault components of 
second order, obtained with k=2 in eq. (21), appear in 
the yule walker and clearly in the covariance PDS 
methods at the frequencies 44.7 and 55.3 Hz. 

5. Conclusion 

For the power quality assessment, it is important to 
know what the disturbances are in current waveforms. 
In this paper, four spectral estimation methods which 
can simultaneously detect all types of harmonics have 
been presented. It is possible to say that proposed 
methods will be more effective and successful in 
filtration applications of all harmonics. It is available to 
analyze and detect the all type harmonics (integer, inter 
and sub) at same cases together. We have demonstrated 
that parametric PSD methods could be instrumental in 
challenging harmonic detection problems in this study. 
Our results indicate that the use of covariance and yule 
walker methods provide relatively better performance 
in detecting harmonics. Next best performer is the Burg 
and modified covariance method. 
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