

PV PARAMETERS ESTIMATION USING DIFFERENT

EVOLUTIONARY ALGORITHMS

Mohamed AZAB
Faculty of Engineering

Benha University

Egypt

 Pe_bhit@yahoo.com

Fawzan SALEM
Electronics Research Institute,

Egypt

fawzan@lycos.com

M. I. MOSAAD
Department of Electrical Engineering

Higher Technological Institute HTI

Egypt

m_i_mosaad@hotmail.com

Abstract: In this paper, different evolutionary algorithms

have been employed to estimate the parameters of a real

PV module. The used algorithms are Particle Swarm

Bacterial Foraging, Simulated Annealing and Genetic

Algorithms. The results endorse the capability of

evolutionary computational approaches to determine

precisely the parameters of the PV module. However,

some differences have been observed in terms of required

number of iterations and accuracy. The Particle Swarm

and Bacterial Foraging showed noteworthy precision
compared to Genetic Algorithm and Simulated Annealing

in handling this problem. According to the carried out

studies, Evolutionary Algorithms provided several sets of

solutions to the estimation problem rather than a unique

solution.

Keywords: PV parameters estimation, particle swarm

optimization, bacterial foraging optimization, simulated

annealing optimization, genetic algorithms.

1. Introduction

In the last few decades, PV systems became

common in grid-connected applications. However,

unlike traditional power plants, cost and performance
of PV systems strongly depend on the electrical

properties (parameters) of the modules. Therefore,

PV system investment decisions and PV system
designing are not easy tasks. To overcome this

problem, several analytical methods [1-4] and

evolutionary computational algorithms [5-8] were

developed to estimate the PV system parameters.

Authors in [1] have demonstrated a step-by-step

methodology based on Gauss–Seidel numerical
method to estimate the lumped equivalent parameters

of a PV module from its datasheets provided by

manufacturers. Another analytical method is
presented in [2] to estimate the most important

parameters of a PV module using manufacturer's

datasheet. Authors in [3, 4] have introduced two

analytical methods based on Monte Carlo simulations
and it was found that the estimated parameters were

in agreement with the theoretical expression of the

uncertainty.

Authors in [5] have presented an approach for

improving the extracting accuracy of the PV module

parameters using a combination of an adaptive
Genetic Algorithm (GA) with a Least Squares

Gradient search. In [6], a new parameter extraction

method based on the Differential Evolution (DE)

technique was introduced. The performance of DE is
evaluated against GA using a synthetic and

experimental I-V data set. It is found that the DE

method fits the I–V curve better than GA, has a
lower fitness function value and faster execution

time. Authors in [7, 8] have demonstrated Swarm

Intelligence approach to extract equivalent circuit
parameters of PV modules. It has been confirmed

that the two approaches can obtain good parameter

precision under the variations of solar radiation and

environmental temperature.

In this paper, four different evolutionary

algorithms are introduced to estimate the parameters
of a PV module and comparisons between each of

them. The algorithms are Particle Swarm

Optimization (PSO), Bacterial Foraging
Optimization (BFO), Simulated Annealing

Optimization (SAO) and Genetic Algorithm (GA).

This paper is organized as follows: In section 2
the mathematical model of a PV module is presented.

Problem formulation is covered in section 3. Section

4 is assigned to present the four evolutionary

mailto:fawzan@lycos.com
mailto:m_i_mosaad@hotmail.com

computational algorithms used for parameter

estimation including their steps. Section 5

demonstrates and compares between the results
obtained using these four algorithms with the

experimental results. Finally, section 6 concludes the

entire paper.

2. PV Modeling

 The commonly used equivalent circuit of a PV

solar cell is shown in Fig. 1, where the model

consists of a light dependent current source in
parallel with an equivalent diode structure. The

output of the current source is directly proportional to

the light falling on the cell. The solar cell fails to

maintain a fixed current as the load resistance
increases. The output current reaches to zero when

the load resistance becomes very large.

Fig. (1). Solar cell equivalent circuit

The solar cell current is determined as [9]:

 

sh

scc
RIV

AKT

q

ophc
R

RIV
eIII

scc 



























1 (1)

Where Ic is the cell current, Iph is the light generated

current, oI is the reverse saturation current, q is the

electron charge (1.6x10
-19

C), A is the ideality factor,

K is the Boltzman constant (1.38x10
-23

Nm/
o
K), T is

the cell temperature (
o
K), Vc is the cell voltage, Rs is

the series resistance, and Rsh is the shunt resistance.

The photoelectric current and reverse saturation

current of the solar cell can be calculated,

respectively, using the following formulas:

  riscph TTkI
G

I 
1000

 (2)

































TTAK

qE

r

oro
r

g

e
T

T
II

113

 (3)

Where G is the radiation (w/m
2
), Isc is the short

circuit current, Ki is the short circuit current

temperature coefficient (A/
o
C), Tr is the reference

temperature (298K), Io is reverse saturation current,

Ior is reverse saturation current at Tr, and Eg is band

gap for silicon (1.1 ev).

The PV module consists of series connected solar

cells (ns). Therefore, the current-voltage (I-V)

characteristic of the whole module can be derived by:

 

shs

scs
IRnV

AKTn

q

oph
Rn

RInV
eIII

ss
s































1 (4)

Where I is the module current and V is the module

voltage. Now, the module output power (P) can be

determined simply from

IVP . (5)

3. Problem Formulation

According to the PV model, the main target is to

determine the optimum parameters of the equivalent

circuit model which can satisfy both current-voltage

and power-voltage curves using different
evolutionary algorithms.

Therefore, the optimization problem is to estimate

the best values for the four PV parameters (sR , ,shR

,A and oI) such that the fitness function J = f(sR ,

,shR ,A oI) is minimized where ‘ sR ’ varies from ‘

sR min’ to ‘ sR max’, ‘ shR ’ varies from ‘ shR min’ to

‘ shR max’, ‘ A ’ varies from ‘ A min’ to ‘ A max’, and ‘ oI ’

varies from ‘ oI min’ to ‘ oI max’.

In all algorithms the unified fitness (objective)

function of equation (6) is selected to test the

estimated parameters. The fitness (objective)
function is to minimize J such that:

)(((__ estimatedaactuala IIabsSumJ  (6)

4. Evolutionary Algorithms

Several optimization techniques have been

developed during the last two decades. GA is a
commonly known evolutionary computational

method that is inspired from the Darwinian theory of

evolution in natural biology [10].

On the other hand, relying on the social behavior

of swarm of bees, fish and other animals, the concept
of the PSO has been developed [11].

Other modern algorithm, BFO is a heuristic

search technique that was developed based on

modeling of bacteria E. coli behavior present in
human intestine and it has been proven that it is

efficient for various engineering optimization

problems [12].

 SAO is a different algorithm based on the

analogy between the annealing process in metallurgy

where heating and controlled cooling of materials is
used to recrystallize metals by increasing the

temperature to the maximum values until the solids

almost melted then decreasing the temperature
slowly until the particles are arranged and the system

energy becomes minimal [13]. More details about the

above mentioned optimization algorithms are
presented in the following sections.

4.1 Genetic Algorithm (GA)

4.1.1 Overview of GA

GA is essentially a method to generate a new

population or generation from a given population. In

this process the selection, crossover, and mutation

operators are being used. Each member of the
population, called a chromosome, is a possible

solution for the problem under consideration, and is

represented as a binary chain. Members of each
generation are ranked according to a specific

criterion called fitness.

The choice operator gives those members a higher

fitness ranking a better chance of being present in the

next generation. The crossover and mutation
operators are applied to each chromosome with a

specific probability and cause new chromosomes to

be present in the new generation.

To solve the estimation problem using GA, all
possible solutions have to be coded in chromosomes;

that is the four parameters of the PV module. Series

binary coding is used in this paper. Next, to calculate

the fitness of a chromosome, the optimization
function has to be calculated using the information in

the chromosome.

Therefore, the GA begins, like any other

optimization algorithm, by defining the optimization
variables, the fitness function, and the fitness. It ends

like other optimization algorithms too, by testing for

convergence.

4.2.2 Steps of GA Algorithm

The general steps implemented when using GA are:

1. Generate a random initial population.

2. Create the new population by applying the
selection and reproduction operators to select

pairs of strings. The number of pairs will be the

population size divided by two, so the population

size will remain constant between generations.
3. Apply the crossover operator to the pairs of the

strings of the new population.

4. Apply the mutation operator to each string in the

new population.
5. Replace the old population with the newly created

population.

6. Copy the best-fitted individuals to the newly
created population to warrantee evolution.

7. If the number of iterations is less than the

maximum go to step two, else stop. Or, if the

fitness of the best result does not get better over
certain number of iterations, then stop.

4.2 Particle Swarm Optimization (PSO)

4.2.1 Overview of PSO

Particle swarm optimization (PSO) is an

optimization technique capable of finding global

optimal points by using the social interaction of
unsophisticated agents. In PSO, a population of

particles flies through a search space with velocity

updated by movement inertia, self cognition, and

social interaction. Initially, the particles are randomly
placed in a search space of a certain problem or

function. So, each particle in swarm represents a

solution to the problem. An objective function is
evaluated for each particle. For each particle, its

velocity and position is updated at each iteration by

the following equations:

 
 )()(

)()()()(

22

111

kk

kkkk

i

iiii

xGrc

xLrcvwv




 (7)

)()()(11   kkk iii vxx (8)

Where xi is the position of the i-th particle in the

search space, vi is the velocity of the i-th particle, w

is particle inertia, c1 is cognitive acceleration
constant, c2 is social acceleration constant, Li is

particle’s best known position, G is the best known

position found by all particles, and r1, r2 are random
number between 0 and 1.

According to equations (7) and (8), each particle

is updated by two best values, L and G. L is the local
best solution that the particle achieved so far. G is the

global best solution obtained so far by any particle

within the neighborhood. Large values of w favor
higher ability for global search, while low values of

w favor a higher ability for local search.

4.2.2 Steps of PSO Algorithm

The PSO algorithm is divided into the following

steps:

1. Initialization: In this step, the PSO parameters are

initialized randomly.
2. Evaluation of the initial position: where the cost

for all particles in the initial population are

evaluated according to the objective function.
3. Updating position and velocity: The velocity and

position of the particles are updated according to

equations (7) and (8).
4. Evaluation of the updated position: The updated

positions of particles are evaluated and the local

best L and global best G particles are updated.

5. Check if the terminal condition is satisfied: If the
terminal condition has not been satisfied, the

updating process will be repeated; otherwise, the

optimization process ends. The terminal condition
is a maximum number of iterations.

6. Output results: The best solution G is obtained

during the optimization.

4.3 Bacterial Foraging Optimization (BFO)

4.3.1 Overview of BFO

BFO is an algorithmic approximation technique

mimicking bacteria colony growth. BFO is a non
gradient optimization problem which is inspired by

the foraging strategy used by E. coli bacteria such

that it maximizes their energy intake (E) per unit
time (T) spent in foraging. The four principal

mechanisms observed in bacteria are chemotaxis,

swarming, reproduction, and elimination-dispersal

[14-15].

Chemotaxis

The movement of E. coli bacteria in the human

intestine in search of nutrient-rich location away

from noxious environment is accomplished with the

help of the locomotory organelles known as flagella
by chemotactic movement in either of the ways, that

is, swimming or tumbling.

Suppose θ
i
(j, k, l) represents the i

th
 bacterium at

j
th
 chemotactic, k

th
 reproductive, and l

th
 elimination-

dispersal step.

Then chemotactic movement of the bacterium

may be mathematically represented by equation (9).

In which, C(i) is the size of the unit step taken in the
random direction, and Δ(i) indicates a vector in the

arbitrary direction whose elements lie in the range

[−1,1] as follows:

𝜃𝑖 𝑗 + 1, 𝑘, 𝑙 = 𝜃𝑖 𝑗,𝑘, 𝑙 + 𝐶 𝑖
∆ 𝑖

 ∆𝑇 𝑖 ×∆ 𝑖
 (9)

 Swarming

This group behavior is seen in several motile

species of bacteria, where the cells, when stimulated

by a high level of succinate, release an attractant

aspertate. This helps them propagate collectively as
concentric patterns of swarms with high bacterial

density while moving up in the nutrient gradient. The

cell-to-cell signaling in bacterial swarm via attractant
and repellant may be modeled as per (10), where

Jcc(θ(i, j, k, l)) specifies the objective function value

to be added to the actual objective function that
needs to be optimized, to present a time varying

objective function, S indicates number of bacteria in

the population, p is the number of variables to be

optimized, and θ = [θ1, θ2, . . . , θp]
T
 is a point in the

p-dimensional search domain. The coefficients

dattractant, wattractant, hrepellant and wrepellant are the measure

of quantity and diffusion rate of the attractant signal
and the repellant effect magnitude, respectively,

𝐽𝑐𝑐 𝜃 𝑖, 𝑗, 𝑘, 𝑙 = 𝐽𝑐𝑐 𝜃, 𝜃𝑖 𝑖, 𝑗, 𝑘, 𝑙 =𝑆
𝑖=1

 (−𝑑𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑎𝑛𝑡 𝑒𝑥𝑝(−𝑤𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑎𝑛𝑡 𝜃𝑚 −𝑃
𝑚=1

𝑆
𝑖=0

𝜃𝑚
𝑖 2))+ (ℎ𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑒𝑥𝑝(−𝑤𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝜃𝑚 −𝑃

𝑚=1
𝑆
𝑖=1

𝜃𝑚
𝑖 2)) (10)

Reproduction and Elimination-Dispersal

The fitness value for i
th
 bacterium after travelling Nc

chemotactic steps can be evaluated by the following
equation:

𝐽ℎ𝑒𝑎𝑙𝑡 ℎ
𝑖 = 𝐽𝑖

𝑁𝑐+1
𝑗=1 (𝑗,𝑘, 𝑙) (11)

Here 𝐽ℎ𝑒𝑎𝑙𝑡 ℎ
𝑖 represents the health of i

th
 bacterium.

The least healthy bacteria constituting half of the

bacterial population are eventually eliminated while

each of the healthier bacteria asexually split into two,
which are then placed in the same location. Hence,

ultimately the population remains constant.

4.3.2 Steps of BFO Algorithm

The BFO algorithm is divided into the following

steps:

1. Initialize the parameters

a. Initialize the counters that is, chemotactic loop
counter (j), reproduction loop counter (k),

elimination dispersal loop counter (l), swim

counter (m) to zero and set bacterium index i =

0

2. Elimination–dispersal loop l=l+1
3. Reproduction loop k=k+1

4. Chemotaxis loop j=j+1

a. For i=1,2,3,…,S take a chemotactic step for

bacterium i as follows

b. Compute value of objective function 𝐽𝑐𝑐 .

c. Tumble: Generate a random vector with each

element a random number in the range [−1, 1]
as per (9),

5. Calculate the health of each bacterium.

a. Discard Sr number of bacteria with least health

6. Compute and update 𝐽𝑐𝑐 as per (10).
7. Calculate the new objective function J(i, j + 1, k,

l)

8. Swim
a. Let m=0 (counter for swim length)

b. While m < Ns (if have not climbed down too

long)

c. Let m = m+1
d. If J(i, j + 1, k, l) < Jlast (if doing better), set

Jlast = J(i, j + 1, k, l)

e. Else m < Ns Go to next bacterium (i + 1).
9. If J < NC, go to step 4. In this case, continue

chemotaxis since the life of the bacteria is not

over.
10. Reproduction

For the given k and l, and for each, let i=1, 2,

3,….S update equation (3).

11. If we have not reached the number of specified
reproduction steps, so start the next generation of

the chemotactic loop and perform Elimination-

Dispersal For with probability, eliminates and
disperses each bacterium (this keeps the number

of bacteria in the population constant) To do this,

if a bacterium is eliminated, simply disperse
another one to a random location on the

optimization domain or search space.

 If l < Nd , then go to step 1; otherwise end.

4.4 Simulated Annealing Optimization (SAO)

4.4.1 Overview of SAO

Annealing is the process of heating the solid body

to a high temperature and allowed it to cool slowly
causing the particles of the solid material to reach the

minimum energy state. The mathematical

equivalence of the thermodynamic annealing as
described above is called simulated annealing.

The energy of the particle in thermodynamic

annealing process is corresponding to the cost

function to be minimized in optimization problems.

Initially the values assigned to the variables are
randomly selected from a wide range of values. The

cost function corresponding to the selected values are

treated as the energy of the current state.

Searching the values from the wide range of the

values can be compared with the particles flowing in

the solid body when it is kept in high temperature.

The next energy state of the particles is obtained

when the solid body is slowly cooled. This is

equivalent to randomly selecting next set of the
values. When the solid body is slowly cooled, the

particles of the body try to reach the lower energy

state. However, as the temperature is high, random
flow of the particles still continues and hence there

may be chance for the particles to reach higher

energy state during this transition.

Probability of reaching the higher energy state is

inversely proportional to the temperature of the solid

body at that instant. The values are randomly
selected so that cost function of the currently selected

random values is minimum compared with the

previous cost function value. At the same time, the
values corresponding to the higher cost function

compared with the previous cost function are also

selected with some probability.

The probability depends upon the current

simulated temperature ‘T’. If the temperature is

large, probability of selecting the values
corresponding to higher energy levels are more. This

process of selecting the values randomly is repeated

for a finite number of iterations. The values obtained
after the finite number of iterations can be assumed.

4.4.2 Steps of SAO Algorithm

The SAO can be summarized as follow:

1. Initialize the value of the temperature ‘T’.

2. Randomly select the current values for the

variables sR , ,shR ,A and oI from their allowable

ranges. Let them be scR , ,shcR ,cA and ocI

respectively.

3. Compute the corresponding cost function value f(

scR , ,shcR ,cA ocI) .

4. Randomly select the next set of values for the

variables sR , ,shR ,A and oI from their allowable

ranges. Let them be snR , ,shnR ,nA and onI

respectively.

5. Compute the corresponding cost function value f(

snR , ,shnR ,nA onI).

6. If f(snR , ,shnR ,nA onI) <= f(scR , ,shcR ,cA ocI),

then the current values for the random variables

scR = snR , shcR = shnR , cA = nA and onoc II 

7. If f(snR , ,shnR ,nA onI) > f(scR , ,shcR ,cA ocI), then

the current values for the random variables scR =

snR , shcR = shnR , cA = nA and onoc II 

are

assigned when

 exp [(f(scR , ,shcR ,cA ocI)- f(snR , ,shnR ,nA onI))

/ T] > rand
Note that when the temperature ‘T’ is less, the

probability of selecting the new values as the

current values is less.

8. Reduce the temperature T = r X T, where r is a
scaling factor varying from 0 to 1.

9. Repeat steps 3:8 for n times until ‘T’ reduces to

the particular value of ‘T’.

5. Simulation Results

In this section, simulation results of PV module

parameters estimation using the selected evolutionary

algorithms are presented. In Table 1, exact and

estimated PV parameters are presented. According to

the results, PSO offers best estimated values. Then,

BF offers also good estimated values. However, GA

and SA estimated the parameters with lower

accuracy.

Table 1 Estimated PV parameters with different

techniques

M

P Exact PSO BF SA GA

RS
0.41138 0.4104 0.411 0.412 0.425

RP
150 149.976 149.95 149.367 149.85

Io
2.35e-8 2.35e-8 2.38e-8 2.18e-8 2.96e-8

A
1.21 1.21 1.211 1.205 1.226

Obj_

Fun. 0 4.371e-11 0.0000348 0.13342 1.0297

In Table 2, the computed PV parameters based on

the estimated values of Table 1 are depicted. The

computed relative errors are also presented in the

same table. The results proved the capability of the

evolutionary methods to estimate accurately the PV

parameters with different tolerances. The best

method was the PSO, while the relatively worst

method was the GA.

Table 2 Computed PV parameters with different

techniques

Method
PMAX

(watt)
IMAX VMAX ISC

VOC

EXACT 72.3296 4.3572 16.6 4.7869 21.389

PSO

% error

72.3296

0 %

4.3572

0 %

16.6

0 %

4.7869

0 %

21.389

0 %

BF

% error

72.3295

0%

4.3572

0 %

16.6

0 %

4.7869

0%

21.3

0.4161%

SA

% error

72.6612

0.45 %

4.3772

0.45 %

16.6

0 %

4.7868

0.002 %

21.3

0.4161%

GA

% error

71.9862

0.4748 %

4.3365

0.4751 %

16.6

0%

4.7864

0.01%

21.4

0.0514%

The estimated parameters with each method are

utilized to plot both I-V and P-V curves as shown in

Figures 2, 3, 4 and 5.The I-V and P-V curves with
PSO are plotted in Fig.2.a and Fig.2.b, respectively.

Fig.2.a, I-V curves with PSO

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

PSO
Exact

Voltage (V)

C
u

rr
en

t
(A

)

Fig.2.b, P-V curves with PSO

The I-V and P-V curves with BF are plotted in

Fig.3.a and Fig.3.b, respectively.

Fig.3.a, I-V curves with BF

Fig.3.a, P-V curves with BF

The I-V and P-V curves with SA are plotted in
Fig.4.a and Fig.4.b respectively.

Fig.4.a, I-V curves with SA

Fig.4.b, P-V curves with SA

The I-V and P-V curves with GA are plotted in

Fig.5.a and Fig.5.b respectively.

Fig.5.a, I-V curves with GA

The differences between actual values of PV

current and estimated values are plotted in Fig.6.b for

all algorithms. Moreover, the corresponding

difference in PV power between actual values and

estimated values are also plotted in Fig.6.b.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

GA
Exact

Voltage (V)

25 0 5 10 15 20
0

10

20

30

40

50

60

70

80

Voltage (V)

SA
Exact

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

SA
Exact

Voltage (V)

25 0 5 10 15 20
0

10

20

30

40

50

60

70

80

Voltage (V)

BF
Exact

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BF
Exact

Voltage (V)

25 0 5 10 15 20
0

10

20

30

40

50

60

70

80

Voltage (V)

PSO
Exact

P
o

w
er

 (
W

)

C
u

rr
en

t
(A

)

C
u

rr
en

t
(A

)

P
o

w
er

 (
W

)

C
u

rr
en

t
(A

)
 P
o

w
er

 (
W

)

Fig.5.b, P-V curves with GA

According to the obtained curves, PSO gives the best

performance, then BF, then SA and the worst

performance was of GA.

Fig.6.a, Difference between actual and

estimated PV current

Fig.6.b, Difference between actual and

estimated PV power

The following graphs illustrate the evolution of

objective function with each algorithm. According to

the results, PSO reached to the minimum value

(4.371e-11) after 380 iterations approximately as

shown in Fig.7.a. BF reaches a minimum value of

(0.0000348) after 200 iterations as indicated in

Fig.7.b. Moreover, the SA reached to the minimum

value (0.13342) after 230 iterations approximately as

shown in Fig.7.c. Finally, GA reached to the

minimum value (1.0297) after 500 iterations

approximately as shown in Fig.7.d.

Fig. 7.a, Evolution of objective function with PSO

Fig. 7.b, Evolution of objective function with BF

Fig. 7.c, Evolution of objective function with SA

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

Iterations

F
u

n
ct

io
n

 v
al

u
e

X: 230

Y: 0.13342

0

1

2

3

4

5

6

7

8

Iterations

F
it

n
es

s
v

al
u

e

X: 200

Y: 0.0000348

0 200 400 600 800 1000 1200

0

2

4

6

8

10

12

X: 380

Y: 4.371e-011

0 200 400 600 800 1000 1200

F
it

n
es

s
v

al
u

e

 0 2 4 6 8 10 12 14 16 18 20
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Voltage (V)

Difference in PSO

Difference in BF
Difference in GA
Difference in SA

E
rr

o
r

in
 P

o
w

er
 (

W
)

 0 2 4 6 8 10 12 14 16 18 20
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Voltage (V)

Difference in PSO

Difference in BF
Difference in GA
Difference in SA

25
 0 5 10 15 20

0

10

20

30

40

50

60

70

80

Voltage (V)

GA
Exact

P
o

w
er

 (
W

)

E
rr

o
r

in
 C

u
rr

en
t

(A
)

Iterations

Fig. 7.d, Evolution of objective function with GA

6. Conclusion

In this paper several evolutionary algorithms

(Particle Swarm, Bacterial Foraging, Simulated

Annealing and Genetic Algorithms) have been
applied to estimate the parameters of a real PV

module. The comparison between these algorithms

shows that PSO is the most efficient method to solve
the optimization problem in terms of accuracy and

convergence steps. Among these methods, SA

exhibit relatively lower accuracy and slower
convergence speed, while BF has better accuracy.

Compared to other algorithms, GA has the worst

accuracy and slowest convergence speed which

makes GA is not adequate algorithm to solve such
optimization problems. In general, evolutionary

computational methods are able to estimate the PV

parameters with acceptable precision.

References

1. Abir, C., Ali, K, Dhruv, K.: Identification of

Photovoltaic Source Models. In: IEEE Transactions on

Energy Conversion, Vol. 26 (2011), No.3, September

2011, p. 883 – 889.

2. Mohiuddin A., AI-Ahsan T., Mahmuda A. T.:

Estimation of Important Parameters of Photovoltaic

Modules from Manufacturer's Datasheet. In:

IEEE/OSA/IAPR International Conference on

Informatics, Electronics & Vision‘12 , 2012, p. 571-
576.

3. Filippo, A., Attilio, D., Mario, S., Maurizio, S.:

Uncertainty Analysis in Photovoltaic Cell Parameter

Estimation. In: IEEE Transactions on Instrumentation

and Measurement, Vol. 61, (2012), No. 5, May 2012,

p. 1334-1342.

4. Loredana C., Marco F., Marco R., Sergio T.: A

Simplified Model of Photovoltaic Panel. In:

Instrumentation and Measurement Technology

Conference (I2MTC) ‘12, 2012, p. 431-436.

5. Xue L., Sun L., Huang W., Jiang C.: Solar Cells

Parameter Extraction Using a Hybrid Genetic

Algorithm. In: Third International Conference on

Measuring Technology and Mechatronics Automation

‘11, 2011, p. 306-309.

6. Kashif I., Zainal S., Hamed T., Amir S.: Parameter

Extraction of Photovoltaic Cell Using Differential

Evolution Method. In: IEEE Applied Power Electronics

Colloquium (IAPEC) ‘11, 2011, p. 10-15.

7. Hengsi Q. , Jonathan W.: Parameter Determination of

Photovoltaic Cells from Field Testing Data using

Particle Swarm Optimization. In: Power and Energy

Conference at Illinois (PECI) ‘11, 2011, p. 1-4.
8. Jiang C., Xue L., Song D., and Wang J.: Solar Cells

Performance Testing and Modeling Based on Particle

Swarm Algorithm. In: International Conference on

Computer Science and Information Processing (CSIP)

‘12, 2012.

9. Eftichios, K., Kostas, K. , Nicholas, C.: Development of

a Microcontroller-based, Photovoltaic Maximum

Power Point Tracking Control System. In: IEEE

Transactions on Power Electronics, Vol. 16 (2001), No.

1, January 2001, p. 46-54.

10. Moldovan N., Picos R., Garcia-Moreno E.: Parameter
extraction of a solar cell compact model using genetic

algorithms. In: Proceedings of the 2009 Spanish

Conference on Electron Devices‘09, 2009, p. 379-382.

11. Kennedy J., and Eberhart R.: Particle Swarm

Optimization. In: Proceeding of the IEEE International

Conf. on Neural Network ’95, 1995, p. 1942-1948.

12. Zhang Y. and Wu L.: Bacterial Chemotaxis

optimization for protein folding model. In: 5th

International Conference on Natural Computation,

ICNC‘09, 2009, p. 159-162.

13. Gopi E. S.: Algorithm Collections for Digital Signal
Processing Applications Using Matlab, P.O. Box 17,

3300 AA Dordrecht, Netherlands.

14. Biswas, A., Das, S., Abraham, A., Dasgupta, S.:

Analysis of the reproduction operator in an artificial

bacterial foraging system In: Applied Mathematics

and Computation, vol. 215 (2010), , p. 3343-3355.

15. Hooshmand, R. A., Parastegari, M., Morshed, M. J.:

Emission, reserve and economic load dispatch problem

with non-smooth and non-convex cost functions using

the hybrid bacterial foraging-Nelder–Mead algorithm.

In: Applied Energy, Vol. 89 (2012), p. 443-453.

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200

X: 500

Y: 1.0297

Iterations

F
it

n
es

s
v

al
u

e

