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Abstract: In this paper, different evolutionary algorithms 

have been employed to estimate the parameters of a real 

PV module. The used algorithms are Particle Swarm 

Bacterial Foraging, Simulated Annealing and Genetic 

Algorithms. The results endorse the capability of 

evolutionary computational approaches to determine 

precisely the parameters of the PV module. However, 

some differences have been observed in terms of required 

number of iterations and accuracy. The Particle Swarm 

and Bacterial Foraging showed noteworthy precision 
compared to Genetic Algorithm and Simulated Annealing 

in handling this problem. According to the carried out 

studies, Evolutionary Algorithms provided several sets of 

solutions to the estimation problem rather than a unique 

solution. 

 
Keywords: PV parameters estimation, particle swarm 

optimization, bacterial foraging optimization, simulated 

annealing optimization, genetic algorithms.  
 

1. Introduction  
 

In the last few decades, PV systems became 

common in grid-connected applications. However, 

unlike traditional power plants, cost and performance 
of PV systems strongly depend on the electrical 

properties (parameters) of the modules. Therefore, 

PV system investment decisions and PV system 
designing are not easy tasks. To overcome this 

problem, several analytical methods [1-4] and 

evolutionary computational algorithms [5-8] were 

developed to estimate the PV system parameters.  
 

Authors in [1] have demonstrated a step-by-step 

methodology based on Gauss–Seidel numerical 
method to estimate the lumped equivalent parameters 

of a PV module from its datasheets provided by 

manufacturers. Another analytical method is 
presented in [2] to estimate the most important 

parameters of a PV module using manufacturer's 

datasheet. Authors in [3, 4] have introduced two 

analytical methods based on Monte Carlo simulations 
and it was found that the estimated parameters were 

in agreement with the theoretical expression of the 

uncertainty. 

 
Authors in [5] have presented an approach for 

improving the extracting accuracy of the PV module 

parameters using a combination of an adaptive 
Genetic Algorithm (GA) with a Least Squares 

Gradient search. In [6], a new parameter extraction 

method based on the Differential Evolution (DE) 

technique was introduced. The performance of DE is 
evaluated against GA using a synthetic and 

experimental I-V data set. It is found that the DE 

method fits the I–V curve better than GA, has a 
lower fitness function value and faster execution 

time. Authors in [7, 8] have demonstrated Swarm 

Intelligence approach to extract equivalent circuit 
parameters of PV modules. It has been confirmed 

that the two approaches can obtain good parameter 

precision under the variations of solar radiation and 

environmental temperature. 
 

In this paper, four different evolutionary 

algorithms are introduced to estimate the parameters 
of a PV module and comparisons between each of 

them. The algorithms are Particle Swarm 

Optimization (PSO), Bacterial Foraging 
Optimization (BFO), Simulated Annealing 

Optimization (SAO) and Genetic Algorithm (GA).  

 

This paper is organized as follows: In section 2 
the mathematical model of a PV module is presented. 

Problem formulation is covered in section 3. Section 

4 is assigned to present the four evolutionary 
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computational algorithms used for parameter 

estimation including their steps. Section 5 

demonstrates and compares between the results 
obtained using these four algorithms with the 

experimental results. Finally, section 6 concludes the 

entire paper. 

 

2. PV Modeling 
 

    The commonly used equivalent circuit of a PV 

solar cell is shown in Fig. 1, where the model 

consists of a light dependent current source in 
parallel with an equivalent diode structure. The 

output of the current source is directly proportional to 

the light falling on the cell. The solar cell fails to 

maintain a fixed current as the load resistance 
increases. The output current reaches to zero when 

the load resistance becomes very large. 
 

 
Fig. (1). Solar cell equivalent circuit 

 

The solar cell current is determined as [9]: 
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Where Ic is the cell current, Iph is the light generated 

current, oI  is the reverse saturation current, q is the 

electron charge (1.6x10
-19

C), A is the ideality factor, 

K is the Boltzman constant (1.38x10
-23 

Nm/
o
K), T is 

the cell temperature (
o
K), Vc is the cell voltage, Rs is 

the series resistance, and Rsh is the shunt resistance. 

 
The photoelectric current and reverse saturation 

current of the solar cell can be calculated, 

respectively, using the following formulas: 
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Where G is the radiation (w/m
2
), Isc is the short 

circuit current, Ki is the short circuit current 

temperature coefficient (A/
o
C), Tr is the reference 

temperature (298K), Io is reverse saturation current, 

Ior is reverse saturation current at Tr, and Eg is band 

gap for silicon (1.1 ev). 
 

The PV module consists of series connected solar 

cells (ns). Therefore, the current-voltage (I-V) 

characteristic of the whole module can be derived by: 
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Where I is the module current and V is the module 

voltage. Now, the module output power (P) can be 

determined simply from 

IVP . (5) 

 

3. Problem Formulation 
 

According to the PV model, the main target is to 

determine the optimum parameters of the equivalent 

circuit model which can satisfy both current-voltage 

and power-voltage curves using different 
evolutionary algorithms.  

 

Therefore, the optimization problem is to estimate 

the best values for the four PV parameters ( sR , ,shR

,A and oI ) such that the fitness function J = f( sR ,

,shR ,A oI ) is minimized where ‘ sR ’ varies from ‘

sR min’ to ‘ sR max’, ‘ shR ’ varies from ‘ shR min’ to          

‘ shR max’, ‘ A ’ varies from ‘ A min’ to ‘ A max’, and ‘ oI ’ 

varies from ‘ oI min’ to ‘ oI max’. 

 
In all algorithms the unified fitness (objective) 

function of equation (6) is selected to test the 

estimated parameters. The fitness (objective) 
function is to minimize J such that: 

)((( __ estimatedaactuala IIabsSumJ  (6) 

 

4. Evolutionary Algorithms 
 

Several optimization techniques have been 

developed during the last two decades. GA is a 
commonly known evolutionary computational 

method that is inspired from the Darwinian theory of 

evolution in natural biology [10].  
 

On the other hand, relying on the social behavior 

of swarm of bees, fish and other animals, the concept 
of the PSO has been developed [11]. 

 

Other modern algorithm, BFO is a heuristic 

search technique that was developed based on 

modeling of bacteria E. coli behavior present in 
human intestine and it has been proven that it is 



 

efficient for various engineering optimization 

problems [12]. 
 

 SAO is a different algorithm based on the 

analogy between the annealing process in metallurgy 

where heating and controlled cooling of materials is 
used to recrystallize metals by increasing the 

temperature to the maximum values until the solids 

almost melted then decreasing the temperature 
slowly until the particles are arranged and the system 

energy becomes minimal [13]. More details about the 

above mentioned optimization algorithms are 
presented in the following sections. 

 

4.1 Genetic Algorithm (GA) 

4.1.1 Overview of  GA 
 

GA is essentially a method to generate a new 

population or generation from a given population. In 

this process the selection, crossover, and mutation 

operators are being used. Each member of the 
population, called a chromosome, is a possible 

solution for the problem under consideration, and is 

represented as a binary chain. Members of each 
generation are ranked according to a specific 

criterion called fitness.  
 

The choice operator gives those members a higher 

fitness ranking a better chance of being present in the 

next generation. The crossover and mutation 
operators are applied to each chromosome with a 

specific probability and cause new chromosomes to 

be present in the new generation. 
 

To solve the estimation problem using GA, all 
possible solutions have to be coded in chromosomes; 

that is the four parameters of the PV module. Series 

binary coding is used in this paper. Next, to calculate 

the fitness of a chromosome, the optimization 
function has to be calculated using the information in 

the chromosome. 
 

Therefore, the GA begins, like any other 

optimization algorithm, by defining the optimization 
variables, the fitness function, and the fitness. It ends 

like other optimization algorithms too, by testing for 

convergence.  

 

4.2.2 Steps of GA Algorithm  
 

The general steps implemented when using GA are: 

1. Generate a random initial population. 

2. Create the new population by applying the 
selection and reproduction operators to select 

pairs of strings. The number of pairs will be the 

population size divided by two, so the population 

size will remain constant between generations. 
3. Apply the crossover operator to the pairs of the 

strings of the new population. 

4. Apply the mutation operator to each string in the 

new population. 
5. Replace the old population with the newly created 

population. 

6. Copy the best-fitted individuals to the newly 
created population to warrantee evolution. 

7. If the number of iterations is less than the 

maximum go to step two, else stop. Or, if the 

fitness of the best result does not get better over 
certain number of iterations, then stop. 

 

4.2 Particle Swarm Optimization (PSO) 

4.2.1 Overview of PSO 
 

Particle swarm optimization (PSO) is an 

optimization technique capable of finding global 

optimal points by using the social interaction of 
unsophisticated agents. In PSO, a population of 

particles flies through a search space with velocity 

updated by movement inertia, self cognition, and 

social interaction. Initially, the particles are randomly 
placed in a search space of a certain problem or 

function. So, each particle in swarm represents a 

solution to the problem. An objective function is 
evaluated for each particle. For each particle, its 

velocity and position is updated at each iteration by 

the following equations: 
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Where xi is the position of the i-th particle in the 

search space, vi is the velocity of the i-th particle, w 

is particle inertia, c1 is cognitive acceleration 
constant, c2 is social acceleration constant, Li is 

particle’s best known position, G is the best known 

position found by all particles, and r1, r2 are random 
number between 0 and 1.  

 

According to equations (7) and (8), each particle 

is updated by two best values, L and G. L is the local 
best solution that the particle achieved so far. G is the 

global best solution obtained so far by any particle 

within the neighborhood. Large values of w favor 
higher ability for global search, while low values of 

w favor a higher ability for local search. 



 

 

4.2.2 Steps of PSO Algorithm 
  

The PSO algorithm is divided into the following 

steps:  

1. Initialization: In this step, the PSO parameters are 

initialized randomly.   
2.  Evaluation of the initial position: where the cost 

for all particles in the initial population are 

evaluated according to the objective function.  
3.  Updating position and velocity: The velocity and 

position of the particles are updated according to 

equations (7) and (8).  
4. Evaluation of the updated position: The updated 

positions of particles are evaluated and the local 

best L and global best G particles are updated.  

5. Check if the terminal condition is satisfied: If the 
terminal condition has not been satisfied, the 

updating process will be repeated; otherwise, the 

optimization process ends. The terminal condition 
is a maximum number of iterations. 

6. Output results: The best solution G is obtained 

during the optimization. 
  

4.3 Bacterial Foraging Optimization (BFO) 

4.3.1 Overview of BFO 
 

BFO is an algorithmic approximation technique 

mimicking bacteria colony growth. BFO is a non 
gradient optimization problem which is inspired by 

the foraging strategy used by E. coli bacteria such 

that it maximizes their energy intake (E) per unit 
time (T) spent in foraging. The four principal 

mechanisms observed in bacteria are chemotaxis, 

swarming, reproduction, and elimination-dispersal 

[14-15]. 
 

Chemotaxis  
 

The movement of E. coli bacteria in the human 

intestine in search of nutrient-rich location away 

from noxious environment is accomplished with the 

help of the locomotory organelles known as flagella 
by chemotactic movement in either of the ways, that 

is, swimming or tumbling. 
 

Suppose θ
i
( j, k, l) represents the i

th
 bacterium at 

j
th
 chemotactic, k

th
 reproductive, and l

th
 elimination-

dispersal step. 

 
Then chemotactic movement of the bacterium 

may be mathematically represented by equation (9). 

In which, C(i) is the size of the unit step taken in the 
random direction, and Δ(i) indicates a vector in the 

arbitrary direction whose elements lie in the range 

[−1,1] as follows: 

𝜃𝑖 𝑗 + 1, 𝑘, 𝑙 = 𝜃𝑖 𝑗,𝑘, 𝑙 + 𝐶 𝑖 
∆ 𝑖 

 ∆𝑇 𝑖 ×∆ 𝑖 
     (9)  

 

 Swarming 
 

This group behavior is seen in several motile 

species of bacteria, where the cells, when stimulated 

by a high level of succinate, release an attractant 

aspertate. This helps them propagate collectively as 
concentric patterns of swarms with high bacterial 

density while moving up in the nutrient gradient. The 

cell-to-cell signaling in bacterial swarm via attractant 
and repellant may be modeled as per (10), where 

Jcc(θ(i, j, k, l)) specifies the objective function value 

to be added to the actual objective function that 
needs to be optimized, to present a time varying 

objective function, S indicates number of bacteria in 

the population, p is the number of variables to be 

optimized, and θ = [θ1, θ2, . . . , θp]
T
 is a point in the 

p-dimensional search domain. The coefficients 

dattractant, wattractant, hrepellant and wrepellant are the measure 

of quantity and diffusion rate of the attractant signal 
and the repellant effect magnitude, respectively, 
 

𝐽𝑐𝑐   𝜃 𝑖, 𝑗, 𝑘, 𝑙  =  𝐽𝑐𝑐   𝜃, 𝜃𝑖 𝑖, 𝑗, 𝑘, 𝑙  =𝑆
𝑖=1

 (−𝑑𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑎𝑛𝑡  𝑒𝑥𝑝(−𝑤𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑎𝑛𝑡   𝜃𝑚 −𝑃
𝑚=1

𝑆
𝑖=0

𝜃𝑚
𝑖  2 ))+ (ℎ𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡  𝑒𝑥𝑝(−𝑤𝑟𝑒𝑝𝑒𝑙𝑙𝑎𝑛𝑡   𝜃𝑚 −𝑃

𝑚=1
𝑆
𝑖=1

𝜃𝑚
𝑖  2))                                                                        (10) 

 

Reproduction and Elimination-Dispersal 
  

The fitness value for i
th
 bacterium after travelling Nc 

chemotactic steps can be evaluated by the following 
equation: 

𝐽ℎ𝑒𝑎𝑙𝑡 ℎ
𝑖 =  𝐽𝑖

𝑁𝑐+1
𝑗=1 (𝑗,𝑘, 𝑙)                       (11) 

 

Here 𝐽ℎ𝑒𝑎𝑙𝑡 ℎ
𝑖  represents the health of i

th
 bacterium. 

The least healthy bacteria constituting half of the 

bacterial population are eventually eliminated while 

each of the healthier bacteria asexually split into two, 
which are then placed in the same location. Hence, 

ultimately the population remains constant. 

 

4.3.2 Steps of BFO Algorithm 
  

The BFO algorithm is divided into the following 

steps:  

1. Initialize the parameters  

a. Initialize the counters that is, chemotactic loop 
counter (j), reproduction loop counter (k), 

elimination dispersal loop counter (l), swim 



 

counter (m) to zero and set bacterium index i = 

0 

2. Elimination–dispersal loop l=l+1 
3.  Reproduction loop k=k+1 

4. Chemotaxis loop j=j+1  

a. For i=1,2,3,…,S take a chemotactic step for 

bacterium i as follows  

b. Compute value of objective function  𝐽𝑐𝑐   . 

c. Tumble: Generate a random vector with each 

element a random number in the range [−1, 1]  
as per ( 9),  

5. Calculate the health of each bacterium.  

a. Discard Sr number of bacteria with least health 

6. Compute and update 𝐽𝑐𝑐  as per (10). 
7. Calculate the new objective function  J(i, j + 1, k, 

l)  

8.  Swim 
a. Let m=0 (counter for swim length)  

b. While m < Ns  (if have not climbed down too 

long)  

c. Let  m = m+1 
d. If J(i, j + 1, k, l) < Jlast (if doing better),  set 

Jlast = J(i, j + 1, k, l) 

e. Else m < Ns  Go to next bacterium (i + 1). 
9.  If J < NC, go to step 4. In this case, continue 

chemotaxis since the life of the bacteria is not 

over. 
10.  Reproduction 

For the given k and l, and for each, let i=1, 2, 

3,….S update equation (3). 

11.  If we have not reached the number of specified 
reproduction steps, so start the next generation of 

the chemotactic loop and perform Elimination- 

Dispersal For with probability, eliminates and 
disperses each bacterium (this keeps the number 

of bacteria in the population constant) To do this, 

if a bacterium is eliminated, simply disperse 
another one to a random location on the 

optimization domain or search space.  

      If l < Nd , then go to step 1; otherwise end. 
 

4.4 Simulated Annealing Optimization (SAO) 

4.4.1 Overview of SAO 
 

Annealing is the process of heating the solid body 

to a high temperature and allowed it to cool slowly 
causing the particles of the solid material to reach the 

minimum energy state. The mathematical 

equivalence of the thermodynamic annealing as 
described above is called simulated annealing. 

 

The energy of the particle in thermodynamic 

annealing process is corresponding to the cost 

function to be minimized in optimization problems. 

Initially the values assigned to the variables are 
randomly selected from a wide range of values. The 

cost function corresponding to the selected values are 

treated as the energy of the current state.  

 
Searching the values from the wide range of the 

values can be compared with the particles flowing in 

the solid body when it is kept in high temperature. 
 

The next energy state of the particles is obtained 

when the solid body is slowly cooled. This is 

equivalent to randomly selecting next set of the 
values. When the solid body is slowly cooled, the 

particles of the body try to reach the lower energy 

state. However, as the temperature is high, random 
flow of the particles still continues and hence there 

may be chance for the particles to reach higher 

energy state during this transition.  
 

Probability of reaching the higher energy state is 

inversely proportional to the temperature of the solid 

body at that instant. The values are randomly 
selected so that cost function of the currently selected 

random values is minimum compared with the 

previous cost function value. At the same time, the 
values corresponding to the higher cost function 

compared with the previous cost function are also 

selected with some probability.  
 

The probability depends upon the current 

simulated temperature ‘T’. If the temperature is 

large, probability of selecting the values 
corresponding to higher energy levels are more. This 

process of selecting the values randomly is repeated 

for a finite number of iterations. The values obtained 
after the finite number of iterations can be assumed.  

 

4.4.2 Steps of SAO Algorithm 
 

The SAO can be summarized as follow: 
 

1. Initialize the value of the temperature ‘T’. 

2. Randomly select the current values for the 

variables sR , ,shR ,A and oI  from their allowable 

ranges. Let them be scR , ,shcR ,cA and ocI

respectively. 

3. Compute the corresponding cost function value f(

scR , ,shcR ,cA ocI ) . 

4. Randomly select the next set of values for the 



 

 

variables sR , ,shR ,A and oI  from their allowable 

ranges. Let them be snR , ,shnR ,nA and onI

respectively. 

5. Compute the corresponding cost function value f(

snR , ,shnR ,nA onI ). 

6. If f( snR , ,shnR ,nA onI ) <= f( scR , ,shcR ,cA ocI ), 

then the current values for the random variables 

scR  = snR , shcR = shnR  , cA  = nA  and onoc II   

7. If f( snR , ,shnR ,nA onI ) > f( scR , ,shcR ,cA ocI ), then 

the current values for the random variables scR  = 

snR , shcR = shnR  , cA  = nA  and onoc II 
 
are 

assigned when  

 exp [(f( scR , ,shcR ,cA ocI )-  f( snR , ,shnR ,nA onI )) 

/ T] > rand 
Note that when the temperature ‘T’ is less, the 

probability of selecting the new values as the 

current values is less. 

8. Reduce the temperature T = r X T, where r is a 
scaling factor varying from 0 to 1. 

9. Repeat steps 3:8 for n times until ‘T’ reduces to 

the particular value of ‘T’. 

5. Simulation Results  

In this section, simulation results of PV module 

parameters estimation using the selected evolutionary 

algorithms are presented. In Table 1, exact and 

estimated PV parameters are presented. According to 

the results, PSO offers best estimated values. Then, 

BF offers also good estimated values. However, GA 

and SA estimated the parameters with lower 

accuracy. 

 

Table 1   Estimated PV parameters with different 

techniques 

M
 

P Exact PSO BF SA GA 

RS 
0.41138 0.4104 0.411 0.412 0.425 

RP 
150 149.976 149.95 149.367 149.85 

Io 
2.35e-8 2.35e-8 2.38e-8 2.18e-8 2.96e-8 

A 
1.21 1.21 1.211 1.205 1.226 

Obj_ 

Fun. 0 4.371e-11 0.0000348 0.13342 1.0297 

 

In Table 2, the computed PV parameters based on 

the estimated values of Table 1 are depicted. The 

computed relative errors are also presented in the 

same table. The results proved the capability of the 

evolutionary methods to estimate accurately the PV 

parameters with different tolerances. The best 

method was the PSO, while the relatively worst 

method was the GA. 

 

Table 2   Computed PV parameters with different 

techniques 

Method 
PMAX   

(watt) 
IMAX VMAX ISC 

 

VOC 

 

EXACT 72.3296 4.3572 16.6 4.7869 21.389 

 

PSO 

% error 

72.3296 

0 % 

4.3572 

0 % 

 

16.6 

0 % 

4.7869 

0 % 

21.389 

0 % 

 

BF 

% error 

72.3295 

0% 

4.3572 

0 % 

 

16.6 

0 % 

4.7869 

0% 

21.3 

0.4161% 

 

SA 

% error 

72.6612 

0.45 % 

4.3772 

0.45 % 

 

16.6 

0 % 

4.7868 

0.002 % 

21.3 

0.4161% 

 

GA 

% error 

71.9862 

0.4748 % 

4.3365 

0.4751 % 

 

16.6 

0% 

4.7864 

0.01% 

21.4 

0.0514% 

 

The estimated parameters with each method are 

utilized to plot both I-V and P-V curves as shown in 

Figures 2, 3, 4 and 5.The I-V and P-V curves with 
PSO are plotted in Fig.2.a and Fig.2.b, respectively. 

 

 

Fig.2.a, I-V curves with PSO 
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Fig.2.b, P-V curves with PSO 

 
The I-V and P-V curves with BF are plotted in 

Fig.3.a and Fig.3.b, respectively. 

 

 
Fig.3.a, I-V curves with BF 

 

 
Fig.3.a, P-V curves with BF 

 

The I-V and P-V curves with SA are plotted in 
Fig.4.a and Fig.4.b respectively. 

 

 
Fig.4.a, I-V curves with SA 

 

 

 

 
Fig.4.b, P-V curves with SA 

 

The I-V and P-V curves with GA are plotted in  

Fig.5.a and Fig.5.b respectively. 

 

 
Fig.5.a, I-V curves with GA 

 

The differences between actual values of PV 

current and estimated values are plotted in Fig.6.b for 

all algorithms. Moreover, the corresponding 

difference in PV power between actual values and 

estimated values are also plotted in Fig.6.b.  
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Voltage (V) 
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Fig.5.b, P-V curves with GA 

 
According to the obtained curves, PSO gives the best 

performance, then BF, then SA and the worst 

performance was of GA. 

 

 
Fig.6.a, Difference between actual and  

estimated PV current 

 

 
Fig.6.b, Difference between actual and 

estimated PV power 

 
The following graphs illustrate the evolution of 

objective function with each algorithm. According to 

the results, PSO reached to the minimum value 

(4.371e-11) after 380 iterations approximately as 

shown in Fig.7.a. BF reaches a minimum value of 

(0.0000348) after 200 iterations as indicated in 

Fig.7.b. Moreover, the SA reached to the minimum 

value (0.13342) after 230 iterations approximately as 

shown in Fig.7.c. Finally, GA reached to the 

minimum value (1.0297) after 500 iterations 

approximately as shown in Fig.7.d. 

 
Fig. 7.a, Evolution of objective function with PSO 
 

 

Fig. 7.b, Evolution of objective function with BF 
 

 

 
Fig. 7.c, Evolution of objective function with SA 
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Fig. 7.d, Evolution of objective function with GA 

 

6. Conclusion 
 

In this paper several evolutionary algorithms 

(Particle Swarm, Bacterial Foraging, Simulated 

Annealing and Genetic Algorithms) have been 
applied to estimate the parameters of a real PV 

module. The comparison between these algorithms 

shows that PSO is the most efficient method to solve 
the optimization problem in terms of accuracy and 

convergence steps. Among these methods, SA 

exhibit relatively lower accuracy and slower 
convergence speed, while BF has better accuracy. 

Compared to other algorithms, GA has the worst 

accuracy and slowest convergence speed which 

makes GA is not adequate algorithm to solve such 
optimization problems. In general, evolutionary 

computational methods are able to estimate the PV 

parameters with acceptable precision.  
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