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Abstract - This paper present a comparative study between two 
advanced control techniques, applied on the AVR – PSS systems 
of the synchronous generators. The first method used the non-
linear unified Neuro - Fuzzy PSS automated design, based on 
hybrid technology ANFIS (Adaptive Neuro-Fuzzy Inference 
System).This technology includes the transformation of fuzzy 
system into the adaptive network which has the property to train 
itself on a wide range of operating conditions. Using this 
technology, it is possible to get quality indexes, which are 
similar to the results achieved now with the use of conventional 
PSS, but having various gains of stabilization channels in 
different operating conditions. The second method, it is by using 
the robust linear H∞ Stabilizer, who was applied as a test 
control system in this work. The simplest "single machine–
infinite Bus" (SMIB) system was used for evaluation of 
effectiveness of the proposed methods. Stabilizers suggested in 
this work have the same structure as the traditional Russian 
PSS. The simulation results show that a highs performances 
using the first regulation technique method (ANFIS), due to the 
physical initial (real) non-linear power system.      
Key words: Turbo-Alternator and Excitations, AVR and PSS, 
adaptive Neuro - fuzzy algorithms, Robust loop-shaping H∞ 
approach, linear and non-linear control.  
 
 
.  Introduction 

 
Power system oscillations are damped by the 

introduction of a supplementary signal to the 
Automatic Voltage regulator (AVR) in power 
system. This is done through a regulator called 
Power System Stabilizer. Classical PSS rely on 
mathematical models that evolve quasi-continuously 
as load conditions vary. This inadequacy is 
somewhat countered by the use of news intellectual 
adaptive and robust generation of the PSS, and using 
numerical methods (fuzzy logic for examples) in 
modelling of the power system. Fuzzy logic power 
system stabilizer is a technique of incorporating 
expert knowledge in designing a controller. Past 
research of universal approximation theorem shown 
that any nonlinear function over a compact set with 
arbitrary accuracy can be approximated by a fuzzy 
system. There have been significant research efforts 
on adaptive fuzzy control for nonlinear system [16, 
19, 22]. First generation of fuzzy regulators 
possessing the rather small knowledge base and 
including the simplest operations with fuzzy sets has 
been created and recognized as being perspective [1, 
6]. The choice of membership functions of linguistic 
variables and formation of rule base for such a  

 
 
regulator was made by a trial and error, which took a 

lot of time and was considered as non-effective. At the 
same time, the fuzzy regulator is shown to expand the 
areas of small signal stability in comparison with 
classical AVR-PSS.  

The first regulator of the second generation, suggested 
in this paper, was developed on the basis of hybrid 
technologies combining the advantages of fuzzy logic 
and Adaptive networks [2,3]. The modern neuro - fuzzy 
systems (ANFIS [4], NEFCON [3], FuNe, GARIC, 
Fuzzy RuleNet) possess both adaptability of fuzzy 
methods and opportunity of training on the given data 
set. In order to train such a Neuro - Fuzzy PSS, the 
hybrid technology of Adaptive Neuro-Fuzzy Inference 
System (ANFIS) was chosen. This method in comparison 
with other ones has high speed of training, the most 
effective algorithm and simplicity of the software. 
  The second stabilizer of this new generation for the 
system AVR – PSS, aimed to improving power system 
stability, was  suggested in this paper and applied as a 
controller test, was developed using the robust loop-
shaping H∞ approach [14-15]. This has been advantage 
of maintaining constant terminal voltage and frequency 
irrespective of conditions variations in the system study. 
The closed loop is available for H∞ control. This loop is 
dedicated for regulating the terminal voltage of the 
Synchronous Generator to a set point by controlling the 
field voltage of the machine. The H∞ control design 
problem is described and formulated in standard form 
with emphasis on the selection of the weighting function 
that reflects robustness and performances goals [9]. The 
proposed system has the advantages of advantages of 
robustness against model uncertainty and external 
disturbances, fast response and the ability to reject noise.  

Simulation results showed the evaluation of the 
proposed adaptive NL ANFIS and the robust linear H∞ 
stabilizers and make a comparative study between these 
two advanced generations of control techniques for AVR 
– PSS.           
     
 
2.  Adaptive Learning Fuzzy AVR – PSS Based on 
Hybrid Technology ANFIS 
 

The development of the PSS automated designing 
methods using Neuro - Fuzzy identification algorithms is 
an important direction of automatic excitation control 



 

perfection, which should provide high quality of 
transients in the wide operating conditions. 

 
A. ANFIS Architecture  

 
The parameter set of an adaptive network is the 

union of the parameter sets of each adaptive node. In 
order to achieve a desired input-output mapping, 
these parameters are updated according to given 
training data and a gradient-based learning 
procedure described below. 

Suppose that a given adaptive network has L 
layers and the k-th layer has #(k) nodes. The node in 
the i-th position of the k-th layer can be denoted by 

(k; i), and its node function (or node output) by kiO . 

Since a node output depends on its incoming signals 
and its parameter set, we have: 
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Where a, b, c, etc… are the parameters pertaining to 
this node. 
Assuming the given training data set has P entries, 
we can define the error measure for the p-th 
( Pp ≤≤1 ) entry of training data entry as the sum 
of squared errors: 
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where pmT , , is the m-th component of p-th target 

output vector; and L
pmO ,  is the m-th component of 

actual output  
vector produced by the presentation of p-th input 
vector. The overall error measure is:∑

=

=
p

1p
pEE .  

First we have to calculate the error rate 
dO

Ep∂  for p-th 

training data and for each node output O. The error 
rate for the output node at (L; i) can be calculated 
readily from equation (2): 
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For the internal node at (k; i) the error rate can be 
derived by the chain rule: 
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Where 11 −≤≤ Lk . That is, the error rate of an 
internal node can be expressed as a linear 
combination of the error rates of the nodes in the 
next layer. Therefore for all Lk ≤≤1 and  ≤≤ i1  # 
(k) we can find        by equations (3) and (4).  

 
Actually, there are two learning paradigms for 

adaptive networks. With the batch learning (off-line 
learning), the update action takes place only after 

the whole training data set has been presented. On the 
other hand, if we want the parameters to be updated 
immediately after each input-output pair has been 
presented, then it is referred to as the pattern learning 
(On-line learning).    

Assume that the adaptive network has only one output:  
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is the set of input variables and S is the set of 
parameters. If there exists a function H such that the 
composite function FH o  is linear in some of the 
elements of S, then these elements can be identified by 
the least squares method. More formally, if the parameter 
set S can be decomposed into two sets: 21 SSS ⊕=  

Such that FH o  is linear in the elements of S2 , then 
upon applying H to equation (5), we have: 
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Which is linear in the elements of S2 . Now given values 
of elements of S1, we can plug P training data into 
equation (7) and obtain a matrix equation:                    
                              ,BAX =  
 Where X is an unknown vector whose elements are 
parameters in S2. Let MS =2 , then the dimensions of A, 

X and B are P×M, M×1, P×1, respectively. Since P 
(number of training data pairs) is usually greater than M 
(number of linear parameters), a least squares estimate of 

X, is sought to minimize the squared error 2
BAX − . 

We can now combine the gradient method and the 
least squares estimate to update the parameters in an 
adaptive network. Each epoch of this hybrid learning 
procedure is composed of a forward pass and a backward 
pass. In the forward pass, we supply input data and 
functional signals go forward to calculate each node 
output until the matrices A and B in equation (8) are 
obtained, and the parameters in S2 are identified by the 
least squares formulas. After identifying parameters in 
S2, the functional signals keep going forward till the error 
measure is calculated. In the backward pass, the error 
rates (equation (3) and (4)) propagate from the output end 
toward the input end, and the parameters in S1 are 
updated by the gradient method. 

Let consider the fuzzy inference system has two inputs 
x and y and one output z. 

Suppose that the rule base contains two fuzzy if-the n 
rules of Takagi and Sugeno's type: 

 
Rule 1: If x is A1 and y is B1, then f1 = p1x+q1y+r1; 
Rule 2: If x is A2 and y is B2, then f2 = p2x+q2y+r2: 
Then the type-3 fuzzy reasoning is illustrated in Figure 

3(a), and the corresponding equivalent ANFIS 
architecture is shown in Figure 3(b). 
 
Layer 1: Every node i in this layer is an adaptive node 
with a node function: )(xO
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y) is the input to node i, and Ai (or Bi-2) is the 
linguistic label (small, large, etc.) associated with 

this node function. Here, 1
iO is the membership 

function of Ai and it specifies the degree to which 
the given x satisfies the quantifier Ai. Usually we 
choose )(x

iAµ to be bell-shaped with maximum 

equal to 1 and minimum equal to 0, such as the 
generalized bell function, In this paper, generalized 
Gaussian membership function is taken as follows:   
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Where {ai, bi, ci} is the parameter set. Parameters in 
this layer are referred to as premise parameters. 
 
Layer 2: Every node in this layer is a fixed node 
which multiplies the incoming signals and sends the 
product out. For instance, 
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Each node output represents the firing strength of a 
rule. 
 
Layer 3: Every node in this layer is a fixed node. 
The i-th node calculates the ratio of the i-th rule's 
firing strength to the sum of all rules' firing 
strengths: 
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Outputs of this layer will be called normalized firing 
strengths. 
 
 
Layer 4: Every node i in this layer is an adaptive 
node with a node function 
       ),(4

iiyiiiii rqxpfO ++== ωω  

where iω  is the output of layer 3, and {pi, qi, ri} is 

the parameter set. Parameters in this layer are 
referred to as consequent parameters. 
Layer 5: The single node in this layer is a fixed node 
that computes the overall output 
as the summation of all incoming signals, i.e., 
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It is observed that given the values of premise 
parameters, the overall output can be expressed as a 
linear combinations of the consequent parameters. 
The output f in Figure 4 can be rewritten as:  
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Which is linear in the consequent parameters p1, q1, 
r1, p2, q2 and r2. As a result, we have S being a set of 

total parameters, S1 being a set of premise parameters and 
S2 being a set of consequent parameters in equation (6); 
H(.) and F(.,.) are the identity function and the function 
of the fuzzy inference system, respectively. Therefore the 
hybrid learning algorithm described above can be applied 
without any modification. In the forward pass of the 
hybrid learning algorithm, functional signals go forward 
till layer 4 and the consequent parameters are identified 
by the least squares estimate. In the backward pass, the 
error rates propagate backward and the premise 
parameters are updated by the gradient descent. 
 

B.   Design of ANFIS Based AVR and PSS  
 

A step-by-step method of designing ANFIS-based 
AVR is first presented as follows: 
 
a.  Choice of input variable: In this step it is decided 
which state variables representative of system dynamic 
performance must be taken as the input signals to the 
controller. In this paper, deviation of terminal voltage (e) 
and its derivative (

dt

de
e =& ) are taken as input signals of the 

ANFIS based AVR.  
 
b. Choice of linguistic variables: The linguistic values 
may be viewed as labels of fuzzy sets [10]. In this paper, 
seven linguistic variables for each of the input variables 
are used to describe them. These are, LP (Large 
Positive), MP (Medium Positive), SP (Small Positive), 
ZE (Zero), SN (Small Negative), MN (Medium 
Negative), LN (Large Negative). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  (a) type-3 fuzzy reasoning,  
(b) Equivalent ANFIS [9] 

 
c. Choice of membership functions: In this design, 
Gaussian membership functions are used to define the 
degree of membership of the input variables. 
d. Choice of fuzzy model: A zero order Sugeno fuzzy 
model is chosen for ANFIS-based AVR. 
e. Preparation of training data pair: In preparing the 
training data pair, the data should be representative of 
different kinds of disturbance situations, such that the 

(10) 

 (12) 

 (13) 

(11) 

 (14) 

(15) 



 

designed AVR can be used for highest flexibility 
and robustness. In this paper, the input and output 
training data pair for the ANFIS-based AVR are 
prepared by simulating the power system with 
conventional AVR under a broad range of small and 
large disturbances and for each run the 
Conventional AVR is tuned to give best 
performance. 
f. Optimization of unknown parameters: Using the 
training data matrix, the unknown parameters of the 
Gaussian input membership functions (center (ci) 
and spread (ai)) and the output parameters of each 
rule of zero order Sugeno fuzzy model are 
optimized. Initially, it is assumed that the input 
membership functions are symmetrically spaced 
over the entire universe of discourse. Accordingly 
some initial values for the center and the spread of 
each input membership function are assumed, 
whereas, in case of output for each rule, all initial 
values are assumed to be zero. Then, the input 
parameters are optimized by error back-propagation 
algorithm and the output constants are optimized by 
least square method. The tuned AVR thus obtained 
is used in the test systems to obtain a stable output. 

Now, in case of design of ANFIS based PSS, the 
same procedure is adopted except the following 
differences: 
- The input variables are rotor speed deviation (∆ω) 

and acceleration (
dt

dωω = ) respectively and the 

output is a voltage signal VPSS. Speed deviation and 
accelerating power deviation can also be chosen as 
input signal [11]. 
- Unlike AVR model, the PSS model is a first order 
Sugeno fuzzy model where pi and qi are non-zero. 

 
3 The Robust Loop – Shaping H∞ Synthesis of 

Power System Stabilizer  
 
Advanced control techniques have been proposed 

for stabilizing the voltage and frequency of power 
generation systems. These include output and state 
feedback    control [20], variable structure and neural 
network control [21], fuzzy logic control [1,6, 19], 
Robust H2 (linear quadratic Gaussian with 
KALMAN filter) and robust H∞ control [8,15]. 

 H∞ approach is particularly appropriate for the 
stabilization of plants with unstructured uncertainty 
[15]. In which case the only information required in 
the initial design stage is an upper band on the 
magnitude of the modelling error. Whenever the 
disturbance lies in a particular frequency range but is 
otherwise unknown, then the well known LQG 
(Linear Quadratic Gaussian) method would require 
knowledge of the disturbance model [8]. However, 
H∞ controller could be constructed through, the 
maximum gain of the frequency response 

characteristic without a need to approximate the 
disturbance model. The design of robust loop – shaping 
H∞ controllers based on a polynomial system philosophy 
has been introduced by Kwakernaak [10] and Grimbel 
[11].  

 H∞ synthesis is carried out in two phases. The first 
phase is the H∞ formulation procedure. The robustness to 
modelling errors and weighting the appropriate input – 
output transfer functions reflects usually the performance 
requirements. The weights and the dynamic model of the 
power system are then augmented into an H∞ standard 
plant.  The second phase is the H∞ solution. In this phase 
the standard plant is programmed by computer design 
software such as MATLAB [12-13], and then the weights 
are iteratively modified until an optimal controller that 
satisfies the H∞ optimization problem is found [9].               

Time response simulations are used to validate the 
results obtained and illustrate the dynamic system 
response to state disturbances. The effectiveness of such 
controllers is examined and compared with using the 
Non-linear adaptive Neuro – Fuzzy PSS at different 
operating conditions. The advantages of the proposed 
linear robust controller are addresses stability and 
sensitivity, exact loop shaping, direct one-step procedure 
and close-loop always stable [8].              

The H∞ theory provides a direct, reliable procedure for 
synthesizing a controller which optimally satisfies 
singular value loop shaping specifications [7-9]. The 
standard setup of the control problem consist of finding a 
static or dynamic feedback controller such that the H∞ 
norm (a uncertainty) of the closed loop transfer function 
is les than a given positive number under constraint that 
the closed loop system is internally stable.  

 
The robust H∞ synthesis is carried in two stages: 
i. Formulation: Weighting the appropriate input – 

output transfer functions with proper weighting 
functions. This would provide robustness to 
modelling errors and achieve the performance 
requirements. The weights and the dynamic model 
of the system are hen augmented into H∞ standard 
plant. 

ii. Solution: The weights are iteratively modified until 
an optimal controller that satisfies the H∞ 
optimization problem is found.  

 
Figure 5 shows the general setup of the design problem 

where:                 
P(s): is the transfer function of the augmented plant 
(nominal Plant G(s) plus the weighting functions that 
reflect the design specifications and goals), 
u2: is the exogenous input vector; typically consists of 
command signals, disturbance, and measurement noises, 
u1: is the control signal, 
y2: is the output to be controlled, its components 
typically being tracking errors, filtered actuator signals, 
y1: is the measured output. 



 

 
Fig. 5  General setup of the loop-shaping H∞ design  

 
The objective is to design a controller F(s) for the 

augmented plant P(s) such that the input / output 
transfer characteristics from the external input vector 
u2 to the external output vector y2 is desirable. The 
H∞ design problem can be formulated as finding a 
stabilizing feedback control law u1(s)-F(s).y1(s) 
such that the norm of the closed loop transfer 
function is minimized.  

In the power generation system including H∞ 
controller, two feedback loops are designed; one for 
adjusting the terminal voltage and the other for 
regulating the system angular speed as shown on fig. 
6. The nominal system G(s) is augmented with 
weighting transfer function W1(s), W2(s), and W3(s) 
penalizing the error signals, control signals, and 
output signals respectively. The choice proper 
weighting function is the essence of H∞ control. A 
bad choice of weights will certainly lead to a system 
with poor performance and stability characteristics, 
and can even prevent the existence of solution to the 
H∞ problem.  

 
Fig.  6   Simplified block diagram of the 

augmented plant including H∞ controller 
 

The control system design method by means of 
modern neuro - fuzzy identification algorithms is 
supposed to have some linear H∞ test regulator. It is 
possible to collect various optimal adjustment of 
such a regulator in different operating conditions 
into some database. Robust H∞ technique was used 
in this work as a test system, which enables to trade 
off regulation performance, robustness of control 
effort and to take into account process and 
measurement noise [8].  

 
 
 

  4.   Dynamic Power System Model 
In this paper the dynamic model of an IEEE - 

standard of power system, namely, a single machine 
connected to an infinite bus system (SMIB) was 
considered [1]. It consists of a single synchronous 
generator (turbo-Alternator) connected through a parallel 
transmission line to a very large network approximated 
by an infinite bus as shown in figure 7.  

 
Fig. 7    Block schematic diagram of the used 

Standard - IEEE type SMIB Power system 
 
Let the state variable of interest be the machine’s rotor 

speed variation and the power system acceleration:  
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Where x1 is the speed deviation and x2 is accelerating 
power, Pm and Pe represents respectively the mechanical 
and electrical power. It is possible to represent the power 
system in the following form [16]. 
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Where α=1/2H and H is the per unit inertia constant of 
the machine. x=[x1 x2]  is the state vector of the system 
and f (x1,x2) and g(x1,x2) are nonlinear functions and u is 
the PSS (Power  System Stabilizer) control signal to be 
designed. We need to express f and g as function of 
active power P and reactive power Q.  
The governor time constant is large compared to the time 
constants of synchronous machine and its exciter, the 
power system can be easily be put in the form (18) for a 
transient period after a major disturbance has occurred in 
the system. 

Figure 8, shows the proposed regulated excitation 
system (AVR and PSS) under Simulink – Matlab [7].    
   

 
 
 
 
 
 
 
 

 
Fig. 8   The regulation System (controller AVR and the 

stabilizer PSS) under Simulink - Matlab. 
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On the basis of investigation carried out, the main 
points of adaptive Neuro – Fuzzy and robust H∞ 
PSS automated design methods were formulated [1, 
6]. The nonlinear model of power system can be 
represented by the set of different linearized models 
[7-9]. For such models, the robust linear H∞ and 
Adaptive Non-linear ANFIS compensators can be 
synthesis and calculated by means of MATLAB 
Software [12, 13].  

The family of test regulators is transformed into 
united fuzzy knowledge base with the help of hybrid 
learning procedure. In order to solve the main 
problem of the rule base design, which called “the 
curse of dimensionality”, and decrease the rule base 
size the scatter partition method [2] was used. In this 
case, every rule from the knowledge base is 
associated with some optimal gain set. The 
advantage of this method is the practically unlimited 
expansion of rule base. It can be probably needed for 
some new operating conditions, which are not 
provided during learning process. 

 
 
5  Simulation Results and Discussion  

 
In the system study type ‘SMIB’ (Single Machine 

Infinite bus system), based on “Synchronous 
generator–transmission line–infinite bus” the main 
attention was devoted to receive adaptive Neuro – 
Fuzzy Control Power System Stabilizer ‘NFCPSS’ 
(based on Hybrid technology ANFIS) and robust H∞ 
PSS ‘HinfPSS’, working in the wide spectrum of 
operating conditions. The change of operating 
conditions corresponds to the variation of 
transmission line parameters (Xe) and the powers of 
the generator (PG, QG). Certain attention was 
devoted to the problem of the reactive power 
consumption (under - excitation modes), which is 
very important for all electric power systems. The 
illustration with using conventional PSS (Russian 
PSS with Strong Action  AVR-SA [1,7]), and with 
the proposed Robust linear H∞ controller and 
Adaptive Non-linear Neuro - fuzzy PSS method 
opportunities is given in Table 1 on the basis of the 
damping coefficient α comparison. Adaptive Neuro - 
Fuzzy regulator allows receiving the same 
performance quality as the application of robust 
linear compensator, but without resetting optimal 
gain of the regulator. 

The electromechanical damping oscillations of 
the parameters of the SG under different operating 
mode in controllable power system, equipped by 
HinfPSS (Red) and NFCPSS (Blue) are given in 
Figures 9 (a, b, c, d). Results of time domain 
simulations confirm both a high effectiveness of test 
robust H∞ Regulator, which has various adjustments 
of regulation channels in different operating 

conditions, but more large degree of performances and 
much more robustness of the dynamic of power system 
are improving and obtained by using the adaptive ANFIS 
PSS (figures 9 (b) and (d), due to the initial non-linear 
system study. After appearance of the real non-linear 
properties of the power system, especially in the under - 
excitation mode (2), the PSShinf quickly loses his 
effectiveness under condition of uncertainties.  

 
Table 1: Damping coefficients 'α' in the Close Loop system with  
AVR, HinfPSS and NFCPSS in different operating Conditions of 

power system 
 

 
 
 
 

1.  Nominal mode:  Xe=0.5, Pg=0.85, Qg=0.1865 (p.u) 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

(a1) (b1) 

(c1) 
(d1) 

Xe 
(p.u) 

Pg 
(p.u) 

Qg 
(p.u) 

    α 
  (AVR-SA) 

α      
(HinfPSS) 

α  
 (NFCPSS)  

0.5 0.85 0.20 -0.78 -2.18 -2.60 

0.5 0.85 0.65 -0.48 -2.10 -2.38 

0.5 0.85 -0.25 -0.89 -2.62 -2.85 

0.5 1 0.25 -0.99 -2.51 -2.60 

0.4 0.85 0.15 -0.72 -2.46 -2.50 

0.4 0.85 0.6 -0.48 -2.05 -2.10 

0.4 0.85 -0.25 -0.84 -2.14 -2.20 

0.4 1 0.20 -0.86 -2.42 -2.50 

0.3 0.85 0.15 -0.66 -2.2 -2.30 

0.3 0.85 0.65 -0.52 -1.78 -1.90 

0.3 0.85 -0.25 -0.79 -1.85 -2.00 

0.3 1 0.20 -0.76 -2.26 -2.30 

0.2 0.85 0.15 -0.65 -2.10 -2.10 

0.2 0.85 0.60 -0.55 -1.69 -1.70 

0.2 0.85 -0.20 -0.76 -1.88 -1.90 

0.2 1 0.20 -0.70 -1.90 -2.00 

0.1 0.85 0.20 -0.68 -1.57 -1.60 

0.1 0.85 0.55 -0.62 -1.30 -1.40 

0.1 0.85 -0.25 -0.77 -1.25 -1.35 

0.1 1 0.20 -0.69 -1.50 -1.53 



 

(b3) 

2. Under-excited mode: Xe=0.5, Pg=0.85, Qg=-0.245 (p.u) 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

3.Over-excited mode: Xe=0.5, Pg=0.85, Qg=0.635 (p.u) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9  Electromechanical damping oscillations of SG 
under different operating mode With HinfPSS (Red) 
and NFCPSS (Blue): (a) Active Power, (b) Interior 

angle, (c) Speed deviation,(d) Stator terminal voltage 
of SG Responses 

   
6  Conclusion  

 
This paper proposes two control methods: an 

adaptive non-linear stabilizer based on hybrid 
technology ANFIS and an optimal robust linear 
controller based on the loop-shaping H∞ approach, 
applied on system AVR - PSS of the synchronous 
generator, to improve transient stability of a single 
machine-infinite bus system (SMIB). This concept 
allows accurately and reliably carrying out transient 
stability study of power system and its controllers 
for voltage and speeding stability analyses. It 
considerably increases the power transfer level via 
the improvement of the transient stability limit. 
The computer simulation results have proved the 
efficiency and robustness of the Neuro - Fuzzy 

Controller, in comparison with using robust H∞ 
Controller, showing stable system responses almost 
insensitive to large parameter variations. This learning 
control possesses the capability to improve its 
performance over time by interaction with its 
environment. The results proved also that good 
performance and more robustness in face of uncertainties 
with the Non - Linear adaptive stabilizer (NFCPSS), in 
comparison with using linear robust H∞ controller, due 
to the initial non-linear power system.     
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 Appendix 

 
▪ the used Power System model:   
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▪ Parameters of power system study:  
 

Xd=2.56 pu, X0= 2.56, Rf= 8.44 10-4 pu, Xf=2.458 pu, 
X’d=0.3361, X’’d=0.3423, X’’q=0.3316, Td0’=4.14 sec, 
H=6s,  XT=0.12 pu, Vbus=1 pu, Uf0= 9.6523 10-4 pu. 

 
 
▪ AVR and PSS parameters:  

 
TA= 0.05, KA= 50, f= 50Hz, 0.30.5.1 EfEEf fd ≤≤−  

puUpu PSS 2.02.0 ≤≤− ,  
 


