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Abstract: An invariant parameters based modeling and
an offline identification of a single cage, double cage and
deep bar Induction Motor (IM) are developed. Using
steady state electric measurements (voltage, stator current
and active power), the IM identification is developed by
performing a locked rotor test for different frequencies.
The linear Least Squares Technique (LST) and the Genetic
Algorithm (GA) are used so as to classify the IM
according to its rotor type (single cage, double cage or
deep bar). The identification and classification algorithms
are validated on four IMs. The accuracy and validity of
the algorithms are verified as the NRMSE between
measured and simulated speed during starting are less
than 2,24%.

Key words: Induction motor, Modeling, Offline
identification, Classification, Genetic Algorithm.

1. Introduction

Most of the electric energy needed in industrial
application is converted into mechanical one by
means of squirrel-cage induction motor (IM) [1]. The
analysis and the design of motor drive systems
require the IM model parameters. Different rotor
types are available: single cage, double cage or deep
bar. As the single cage model is not suitable to
characterize the dynamic behavior of all IM types
[2], many authors adopt the modeling of double cage
and deep bar motors by adding rotor branches to the
equivalent circuit of the single cage IM using
constant parameters [3-10]. Nevertheless, this
approach engenders an excess in electrical
parameters. Moreover, the identification of these
parameters, which uses external measures (current,
voltage, speed), leads to an infinity of solutions.
Hence, reducing the number of parameters is
imposed. The model of invariant parameters is
considered as the most efficient method. It resolves

the parameter identification using linear regression.
The new parameters are called MIVs and define both
the dynamic and the steady state behavior of the IM
model [11-12]. In literature, a complete survey on the
various approaches on offline identification is
investigated [13]. Mainly, the linear Least Squares
Technique is wused [14-16]. The parameters
identification is based on the transient measurements
(current, voltage, speed). The approach is limited as
it requires the measurements derivatives for which a
data filtering is necessary. Other authors are
interested in the parameters identification by using
nonlinear classic methods: Newton-Raphson, Gauss-
Newton, Levenberg-Marquardt methods. These
methods are based on the standard manufacturer data
and/or on the tests. These approaches may lead to
local minimum while searching for solution in single
direction of the search space [17-20]. The Genetic
Algorithm (GA) is known as adequate method that
solves complex nonlinear optimization problems.
The search of the global minimum is launched in
multiple directions which avoids to have a local
minimum [21]. Moreover, the GA approach does not
include derivates which is not avoidable in presence
of noisy measurements. Recently, some authors
identify the IM parameters by establishing a GA
excited with measurements of transient currents and
speed during IM starting. Consequently, accurate
speed sensor and fast data acquisition system are
required. Although GA necessitates a simulation of
the starting of the IM in every step, it does not imply
a heavy computation time thanks to the performance
of the nowadays computers [23].

In this work, an offline IM identification based
upon steady state electric measurements (voltage,
stator current and active power) is developed by
performing a locked rotor test for different
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frequencies. This test supplies data over the slip
range variation (from g=0 to g=1) without limitation
to the IM’s statically stable operating zone. This
method allows also a classification of the motor
according to rotor type. The present investigation
contains four sections. In section two, an IM
modeling adopting the MIVs is given. The developed
model is generalized for all motor types (single cage,
double cage or deep bar rotor). The parameters
identification and classification using the linear least
squares technique (LST) and the GA are presented in
section three. Section four shows the experiment and
the validation of the algorithms for four IMs. Finally,
a discussion on the obtained results is established.
Section five is reserved to the conclusion.

2. MIVs based IM state model

In literature, the IM recognizing based modeling
either as single cage, as double cage or as deep bar
rotor presents an excess in electrical parameters
compared to MIVs model. In fact, when the IM is
considered as single cage rotor, its recognizing model
necessitates five parameters instead of four in MIVs
model. Likewise, the recognizing model of the IM
double cage rotor needs eight parameters instead of
six in MIVs model [11]. The general equivalent
circuit of an IM (single cage, double cage or deep bar
rotor) is given by figure 1. In this section, a MIVs
state model of the IM is expressed. The core-losses
and the magnetic saturation are not taken into
consideration.
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Fig. 1. Equivalent circuit of the IM
S.C: Single cage, D.C: Double cage, D.B: Deep bar

The input impedance of the IM is expressed as:
n
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The general MIVs model parameters appear in the
numerator and the denominator of the motor’s

steady-state impedance expression .They are
independent of slip (g)and of the supply
frequency (w).The MIVs vector
(MIVs=[Ay, Ay ... Ay By By oo Byl)

represents the invariant parameters of the IM. Using
the equivalent circuit, the MIVs parameters are
expressed as:
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Where j is the rotor branch order 1< j<n. The

stator parameters are found forj=0
(Bho =I’S; AhO = Ls = Lm)'
Reciprocally — (r, ..., r,, 1, ..., 1)) are

calculated functions of MIVs (Ahj By ):
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Where a; are the roots of the polynomial:
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The state model is at first setup according to

[re, Ly, Ny o« oy by, ..., 1] parameters.
Using relations (3), the MIVs model is:
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3. IM parameters identification

calculated, the other set is deduced thanks to Eq.2

The identification of IM parameters is carried out and Eq.3. The parameters A,, and B,,, which

by means of two methods: the linear least squares
technique (LST) which identifies the MIVs by
applying Eq.1, and the real coded Genetic Algorithm
(GA) which computes the(r,,l;) parameters. Since

correspond respectively to ((LS = Lm) and r,) are
known. They are measured respectively by no load
test and volt-amperemetric experiment. The reduced
equivalent circuit of IM is shown by figure 2. Its

one of the parameters set ((r,l,)or MIVs) is



parameters R,and X, vary function of the slip
(g)and of the supply frequency (o).

The input impedance of the IM, given by equation 1
is:

Z(@,9) =1, + Ry + Xy (5)

Where: R, =\|/—Scos(go)— Fo, X = \I/—Ssin((p)
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Fig.2.The reduced equivalent circuit of the IM

3.1 LST based identification
Using Eq.5 and Eq.1, the decomposition of the

impedance Z(w,g)in the real and imaginary parts
leads to:
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Where S is the integer part of % n is the number of

rotor branches in the IM equivalent circuit
Equations 6 and 7 are valid either n is odd or even.
In case n is even A ,,=A,, and

By, 5s:1 = By, 1,1 are fixed to zero.

The IM parameter identification requires two steps:

Step1: For m values of the slip"g", the variables
Xmt and R, are measured. Accordingly, A, , By,
identified by applying the LST

algorithm to Eq.6.

and By, are

Let:
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Equation 6 becomes:
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Considering LST approach, for m measurement

points, equation 8 is written in matrix form

(1<k<n):
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The parameters A,, andB,, are known, they
correspond respectively to L, and ;.

AsXT =Y then T =(X'X ) X'v.

Step2: The obtained values of all B, are used to

calculate A, (EQ.7). This is accomplished by

applying the LST again.
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3.2 GA based identification

GAs are stochastic optimization technique that
tend to imitate the natural evolution process of
species and genetics. These evolving algorithms
applied on an optimization problem make develop a
set of candidate solutions called population of
individuals (or chromosomes). Each individual is
characterized by a chain of genes that correspond to
the process parameters. To each individual is
attributed a function “fitness” that measures the
solution’s quality it represents, it’s often the value of
the function to optimize. Then a new population of
possible solutions is produced by selecting the
parents among the best of the actual generation to
make the crosses and the mutations. The new
population contains a large proportion of
characteristics of the preceding generation best
individuals. In this way, from a generation to
another, the best genes propagate in the population
by combining or exchanging the best features. By
favoring the best individuals, the most promoting
regions of the research space are explored [21, 22].
(fig.3)
Inequality restrictions on the parameters have been
used,r, <r, <..<r, and I, <I,<..<l . They are

included in the algorithm with the following change
of variables:
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With x; >0 and y; >0.
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Fig.3. Optimization steps of GA

By applying the GA technique for parameters
identification of the IM’s, a chromosome (fig.4)
contains the (x;, y;) parameters, where i is the

order of rotor branch of the IM model. A real coding
is used for this algorithm. The fitness function is the
sum of quadratic errors between the measured and
the calculated rotor impedances, defined as:

mo_. = 2
Fit:kz\zm(k)—zm(k)(

=1
Where “e” is the index of the measured value, “c”
corresponds to the index of the calculated value for
the evaluated chromosome’s parameters and m is the
number of measurements for different slips. The
expression of the rotor impedance characterized by
paralleling n branches (r;,1,) is:
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(r.,1,) are deduced from Equation 9 function of x,

and ;.

The GA algorithm

following conditions:

- The crossover BLX-a is applied with a probability
of 0.9.

- The uniform mutation is applied with a mutation
probability of 0.01. It’s about modifying a

is executed respecting the



parameter by choosing a new value uniformly at
random in the interval defined by the space
constraints.

- The individuals’ number per population Np is
limited to 300.

- The algorithm is stopped when the fithess
function (Eq.10) is less than a considered errors
fixed to 10 for seven successive times.

Xl X [V || Ya

Fig.4. Chromosome representation for the parameters of
the IM’s rotor branches.

4 Experimental validation

4.1 Experiment description

A test bench has been installed at the National
Engineering School, University of Sfax (ENIS)
Tunisia. It includes four IMs, an 8KVA alternator, a
DC motor and a data acquisition system. The DC
motor provides mechanical power to the alternator.
The alternator supplies the locked rotor IMs for
different frequency. The PC computer in which the
algorithm is implemented is connected to an
acquisition system which measures stator voltage and
stator current. The voltage and current sensors are
integrated into the acquisition system. Figure 5a
shows the real test bench as for figure 5b gives its
synoptic schema.

The IM’s identification and classification algorithms
require the measurement of R, and X, over the slip

range variation (g [0, 1]). Nevertheless, browsing
the zone g e[gema: 1] cannot be ensured since it
represents the instability zone of the IM ( g¢ IS the

slip at the breakdown torque). Therefore, an
equivalent test is proposed. This test [24] considers
figure 6 where the motor is at locked rotor and
supplies by Vg in variable frequency. Instead of

varying the load torque to browse the interval of
gel0, 1] in figure 2, it is possible to obtain the
same values of R, and X, by performing a locked
rotor test for different frequencies f €[0, 50]

Hence, the locked-rotor induction motor under test is
supplied by a three-phase alternator. This latter
allows the adjustment of the frequency and the

amplitude of the IM supply. The ratio™/ is

maintained constant which guaranties a constant
magnetic flux. So, the saturation state remains

unchanged during the test. The frequency is adjusted
by varying the speed of DC motor, while the
amplitude is fixed by the excitation voltage of the
alternator. Measurements of Vg, 14,P; are
performed by an acquisition system connected to a
PC computer (Fig.5.a,b).

The IM input impedance at locked rotor is (figure 6) :

Z(a)1 g:l) =r, + RZsf + ijotsf

Where: R, =\I/—:cos((pSf )— ry
Psf

3st Isf

Consequently, the IM input impedance for variable

speed and fixed frequency is:

Z(@,9) =T, +Ry + Xy

\Y
Xmotsf ZI_SfSin((DSf ) and COS((DSf ):
sf

First the virtual slip is calculated as: g :%

Then R,and X,,, are deduced as [24]:
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g
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Fig.6. The reduced equivalent circuit of the IM at locked
rotor test

4.2 Results and discussion
The developed algorithms are applied to four IMs.
Their nominal characteristics are listed in table 1.

Table 1. Name-plate parameters of IMs.

N° P(kw) N(rpm) f(Hz) Pp I(A) U(V)
IM 1 11 1390 50 2 467 220
IM2 6 1455 50 2 24 220
IM 3 7.35 725 50 4 280 220
IM 4 11 965 50 3 392 220

The identification results are presented in tables 2.
Identified parameters allow computation of the rotor

impedance Z, using (Eq.11). The comparison
between calculated and measured data of Z, s
evaluated by calculating for each IM model the

Normalized Root Mean Square Error ( NRMSE%%)
defined by (Eq.13), [3]:

Ly = 2
[z - )
mio
x100 (13)
1317, )
migh "*
Assume the type of rotor is unknown. Then GA and
LST algorithms are executed for the three models
(n=1, 2, 3 rotor branches). For each case the
computed parameters(r;,l;) are used to calculate
NRMSE. The comparison of obtained NRMSE
classifies the motor in single, double or triple cage
(Fig. 7). This procedure is applied to all previously
chosen motors (tablel).
The parameters of the first branch (r,l,) are
accurately identified using only the low slip
measurement points.

NRMSE (%)=

: o R
The rotor impedance is: Z, =—+ jX,
9

External
measurements

Vg, lg Py, T

Execution of GA

and LST algorithms
I

v v v
Single cage Double cage Triple cage
model n=1 model n=2 model n=3

v v v

2 rotor 4 rotor 6 rotor

parameters parameters parameters

rn,l sl (O PV e PO P
Calculation Calculation Calculation
NRMSE_1 NRMSE _2 NRMSE _3

Comparison between the NRMSE _i and analysis of the computed
parameter values I, 1;

v

| Classification of the IM to single, double or triple cage |
Fig. 7. IM classification procedure

Figures 8, 9, 10 and 11 show measured and
calculated R et X in terms of the slip.

Let’s consider the IM_1, the LST method provides
erroneous parameters (leakage inductance negative)

because measurements R et X, are too disturbed by

measurement noise as is shown in Figure 8. In fact,
the measurement of low current leads to a noisy
acquisition. In this case GA results become more
interesting. The values of NRMSE obtained for the
models of two and three rotor branches (n = 2, 3) are
similar while the NRMSE of the single cage model is
the highest. Consequently, the double cage model is
selected as it is less complicated in use. For the IM_2
motor, the smallest NRMSE is obtained with the LST
method for the double cage model (n = 2). In this
case LST has converged to reasonable results. The

shape of the curves R, and X, are smooth and have

no noise. So the assessed IM must be classified as
double cage. The identification using LST is very
simple since it is reduced to a linear regression
according to invariant parameters. However, as it’s
very sensitive to measurement’s errors the measure
should be accurate. For IM_3 the smallest NRMSE is
delivered by the AG method, this latter confirms that
the model is of a deep bar rotor with three rotor
branches (n = 3). As for the LST method, it gives
negative values for the IM parameters which discard
this method of classification.



Table 2. Identification results of the IM,  LST: Linear least squares technique GA: Genetic algorithm

r () Iy (H) r; () I, (H) r; () I;(H)  NMRSE %
2.6670 0.0240 4,89
LST 2,8607 0,0248 85,254 -0,2737 3,38
F'| 2,8755 0,0273 60,169 0,0770 173,39 -1,295 2,65
2 2,6307 0,0238 5,49
GA 2,7994 0,0277 49,010 0,0277 2,13
2,7893 0,0274 76,185 0,0274 166,82 0,0548 2,12
0,1650 0,0053 9,26
LST 0,1769 0,0052 5,3089 0,0068 1,34
N 0,1764 0,0053 47279 0,0065 -70,468 0,0475 1,40
; 0,1644 0,0053 10,28
GA 0,1628 0,0055 4,1352 0,0083 1,89
0,1622 0,0055 4,4796 0,0108 32,416 0,0164 1,90
0,1789 0,0038 5,97
LST 0,2017 0,0042 2,9735 0,0040 7,12
“, 0,1960 0,0039 1,1071 0,0034 -1,2332 -0,0067 8,37
2 0,1728 0,0038 10,58
GA 0,1843 0,0045 2,3234 0,0045 2,35
0,1843 0,0045 2,4244 0,0049 42,763 0,0094 2,02
0.1701 0.0028 414
LST 0,1858 0,0031 3,1169 0,0040 2,77
N 0,1838 0,0030 2- 4 8i 0,016- 0,006i 2+ 4.8i 0,016+ 0,006i 3,14
2 0,1720 0,0029 577
GA 0,1813 0,0032 2,8525 0,0042 2.71
0,1815 0,0032 2,7580 0,0043 1002,9 0,0435 2,72
4 T T
+  Rrexp + 05 + Rrexp
E 351 ] T 04 " ;
é Rr.cal *)‘/-P( £ . % 0.4 Rr'.cal .L#Ww+
T 3 epbt_abbeT t T 03 e
@ MH,JJ__*/”F- T ook e
2.5 £ 0.1
° : + :Xr'ex 1.2 t :+ >:<r'exp
€ Xr'.calp E i IR Fhﬁhih.ﬂ_l_“; + — Xr'.cal
E 8 o L+1»L e TSI :8’ 1 w“;‘hd»" . -
X | BT e s N * S
6 08 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.r8 0.9 1
0.1 0.2 0.3 0.4 0.5 . 0.6 0.7 0.8 0.9 1 slip
Slip
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IM_4 analysis gives similar NRMSE for models with
two and three rotor branches (n= 2, 3). The leakage
inductance of the third branch appears too large. It is
close to L, (cyclic inductance of the stator). For this

reason the third branch is eliminated from the model
and the model is considered as two branches.
Measurements of the stator current in phase a and
the rotor speed during direct starting of IM_2 are
established. The identification results of IM_2
classify it as double cage. The calculated parameters
(Table 2) allows to simulate the start-up using the
state model (Eqg.4) for (n = 2). The measured and
simulated current and speed are shown in Figures 12
and 13. A good agreement of the model and its
parameters with the experimental measurements are
observed. In fact, the NRMSEcomputed for the
current and the speed are respectively equal to 27,26
% and 2,24%.
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Fig.12. Comparison between simulated and measured
currents in phase a for IM_2
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Fig.13. Comparison between simulated and measured rotor
speeds for IM_2

5 Conclusion

A MIVs state model of the squirrel cage induction
motor is developed. An offline IM identification
based upon steady state electric measurements
(voltage, stator current and active power) is
elaborated by performing a locked rotor test for
different frequencies. The parameters identification
using the linear Least Squares Technique (LST) and
the Genetic Algorithm (GA) is established. The
identification and classification is validated on four
IMs. The LST method is adequate as the model in the
steady state is linear function of the MIVs
parameters, but it shows its limitation when
measurement errors increase. GA is judged more
efficient since it persists and converges for a high
measurement noise. The parameters that are
determined by means of experimental tests are used
in order to establish the dynamic model of the 1M.
The algorithms are verified and validated by
computing NRMSE of measured and simulated
current and speed during starting of the IM. A good
agreement of model and its parameters with the
experimental measurements are observed.

Nomenclature
Vg Vg dq stator voltages (V)

-

dq stator currents (A)

Igislg  dgrotor currents of the i™ branch (A)

Vs phase voltage (V)

Is line current (A)

P active electrical power (W)

MIVs = [AhO An Ay Bro Bu Bhn]
Invariant parameters

r, stator resistance ()

r rotor resistance of the i" branch ()

L, mutual inductance (H)

I rotor leakage inductance of the i"

: branch(H)

Z input impedance of th IM per phase ()

0] synchronous angular speed (rad/s)

O electrical rotor speed (rad/s)

f Synchronous frequency (Hz)

g slip (p.u)

Py number of pairs of poles

J total mechanical inertia (Kg.m?)

Cq load torque (N.m)
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