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Abstract: An invariant parameters based modeling and 

an offline identification of a single cage, double cage and 

deep bar Induction Motor (IM) are developed. Using 

steady state electric measurements (voltage, stator current 

and active power), the IM identification is developed by 

performing a locked rotor test for different frequencies. 

The linear Least Squares Technique (LST) and the Genetic 

Algorithm (GA) are used so as to classify the IM 

according to its rotor type (single cage, double cage or 

deep bar). The identification and classification algorithms 

are validated on four IMs. The accuracy and validity of 

the algorithms are verified as the NRMSE between 

measured and simulated speed during starting are less 

than 2,24%. 
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1. Introduction 

     Most of the electric energy needed in industrial 

application is converted into mechanical one by 

means of squirrel-cage induction motor (IM) [1]. The 

analysis and the design of motor drive systems 

require the IM model parameters. Different rotor 

types are available: single cage, double cage or deep 

bar. As the single cage model is not suitable to 

characterize the dynamic behavior of all IM types 

[2], many authors adopt the modeling of double cage 

and deep bar motors by adding rotor branches to the 

equivalent circuit of the single cage IM using 

constant parameters [3-10]. Nevertheless, this 

approach engenders an excess in electrical 

parameters. Moreover, the identification of these 

parameters, which uses external measures (current, 

voltage, speed), leads to an infinity of solutions. 

Hence, reducing the number of parameters is 

imposed. The model of invariant parameters is 

considered as the most efficient method. It resolves 

the parameter identification using linear regression. 

The new parameters are called MIVs and define both 

the dynamic and the steady state behavior of the IM 

model [11-12]. In literature, a complete survey on the 

various approaches on offline identification is 

investigated [13]. Mainly, the linear Least Squares 

Technique is used [14-16]. The parameters 

identification is based on the transient measurements 

(current, voltage, speed). The approach is limited as 

it requires the measurements derivatives for which a 

data filtering is necessary. Other authors are 

interested in the parameters identification by using 

nonlinear classic methods: Newton-Raphson, Gauss-

Newton, Levenberg-Marquardt methods. These 

methods are based on the standard manufacturer data 

and/or on the tests. These approaches may lead to 

local minimum while searching for solution in single 

direction of the search space [17-20]. The Genetic 

Algorithm (GA) is known as adequate method that 

solves complex nonlinear optimization problems. 

The search of the global minimum is launched in 

multiple directions which avoids to have a local 

minimum [21]. Moreover, the GA approach does not 

include derivates which is not avoidable in presence 

of noisy measurements. Recently, some authors 

identify the IM parameters by establishing a GA 

excited with measurements of transient currents and 

speed during IM starting. Consequently, accurate 

speed sensor and fast data acquisition system are 

required. Although GA necessitates a simulation of 

the starting of the IM in every step, it does not imply 

a heavy computation time thanks to the performance 

of the nowadays computers [23].  

      In this work, an offline IM identification based 

upon steady state electric measurements (voltage, 

stator current and active power) is developed by 

performing a locked rotor test for different 
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frequencies. This test supplies data over the slip 

range variation (from g=0 to g=1) without limitation 

to the IM’s statically stable operating zone. This 

method allows also a classification of the motor 

according to rotor type. The present investigation 

contains four sections. In section two, an IM 

modeling adopting the MIVs is given. The developed 

model is generalized for all motor types (single cage, 

double cage or deep bar rotor). The parameters 

identification and classification using the linear least 

squares technique (LST) and the GA are presented in 

section three. Section four shows the experiment and 

the validation of the algorithms for four IMs. Finally, 

a discussion on the obtained results is established. 

Section five is reserved to the conclusion. 

 

2. MIVs based IM state model 

In literature, the IM recognizing based modeling 

either as single cage, as double cage or as deep bar 

rotor presents an excess in electrical parameters 

compared to MIVs model. In fact, when the IM is 

considered as single cage rotor, its recognizing model 

necessitates five parameters instead of four in MIVs 

model. Likewise, the recognizing model of the IM 

double cage rotor needs eight parameters instead of 

six in MIVs model [11]. The general equivalent 

circuit of an IM (single cage, double cage or deep bar 

rotor) is given by figure 1. In this section, a MIVs 

state model of the IM is expressed. The core-losses 

and the magnetic saturation are not taken into 

consideration. 

 

Fig. 1. Equivalent circuit of the IM 

S.C: Single cage, D.C: Double cage, D.B: Deep bar 

The input impedance of the IM is expressed as: 
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The general MIVs model parameters appear in the 

numerator and the denominator of the motor’s 

steady-state impedance expression .They are 

independent of slip  g and of the supply 

frequency   .The MIVs vector 

(  hnhhhnhh BBBAAAMIVs  1010 ) 

represents the invariant parameters of the IM. Using 

the equivalent circuit, the MIVs parameters are 

expressed as: 
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Where j  is the rotor branch order nj 1 . The 

stator parameters are found for 0j  

 mshsh LLArB  00   ; . 

Reciprocally  nn llrr ,,,,, 11   are 

calculated functions of MIVs  hjhj BA , :  
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Where ia  are the roots of the polynomial: 
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The state model is at first setup according to 

 nnms llrrLr ,,,,,,, 11   parameters. 

Using relations (3), the MIVs model is:  
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Where: 

 Trqnrqsqrdnrdsde iiiiiiX  11 , 

 Tsqsde vvU 0000  , 
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3. IM parameters identification  

     The identification of IM parameters is carried out 

by means of two methods: the linear least squares 

technique (LST) which identifies the MIVs by 

applying Eq.1, and the real coded Genetic Algorithm 

(GA) which computes the  ii lr ,  parameters. Since 

one of the parameters set (  ii lr , or MIVs) is 

calculated, the other set is deduced thanks to Eq.2 

and Eq.3. The parameters 0hA  and 0hB , which 

correspond respectively to (  ms LL   and sr ) are 

known. They are measured respectively by no load 

test and volt-amperemetric experiment. The reduced 

equivalent circuit of IM is shown by figure 2. Its 



parameters 2R and motX vary function of the slip 

 g and of the supply frequency   . 

The input impedance of the IM, given by equation 1 

is:  

mots jXRrgZ  2),(   (5) 
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Fig.2.The reduced equivalent circuit of the IM 

 

3.1 LST based identification 

Using Eq.5 and Eq.1, the decomposition of the 

impedance ),( gZ  in the real and imaginary parts 

leads to: 
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Where s is the integer part of 
2

n
, n  is the number of 

rotor branches in the IM equivalent circuit . 

Equations 6 and 7 are valid either n  is odd or even. 

In case n  is even 1  12    nhsh AA  and 

1  12    nhsh BB  are fixed to zero. 

 

 The IM parameter identification requires two steps: 

 

Step1: For m  values of the slip "" g , the variables  

motX  and 2R  are measured. Accordingly, 2p hA , 2p hB  

and 12p hB are identified by applying the LST 

algorithm to Eq.6. 
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Considering LST approach, for m  measurement 

points, equation 8 is written in matrix form 
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The parameters 0hA  and 0hB  are known, they 

correspond respectively to sL  and sr . 

 

As YTX ˆ  then   YXXXT tt 1ˆ 
 . 

 

Step2: The obtained values of all hiB̂ are used to 

calculate 12 phA  (Eq.7). This is accomplished by 

applying the LST again. 
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 Since YTX ˆ  then   YXXXT tt 1ˆ 
 . 

 

3.2 GA based identification 

GAs are stochastic optimization technique that 

tend to imitate the natural evolution process of 

species and genetics. These evolving algorithms 

applied on an optimization problem make develop a 

set of candidate solutions called population of 

individuals (or chromosomes). Each individual is 

characterized by a chain of genes that correspond to 

the process parameters. To each individual is 

attributed a function “fitness” that measures the 

solution’s quality it represents, it’s often the value of 

the function to optimize. Then a new population of 

possible solutions is produced by selecting the 

parents among the best of the actual generation to 

make the crosses and the mutations. The new 

population contains a large proportion of 

characteristics of the preceding generation best 

individuals. In this way, from a generation to 

another, the best genes propagate in the population 

by combining or exchanging the best features. By 

favoring the best individuals, the most promoting 

regions of the research space are explored [21, 22]. 

(fig.3 ) 

Inequality restrictions on the parameters have been 

used, nrrr  ...21  and nlll  ...21 . They are 

included in the algorithm with the following change 

of variables: 
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Fig.3. Optimization steps of GA 

 

By applying the GA technique for parameters 

identification of the IM’s, a chromosome (fig.4) 

contains the  ii yx ,  parameters, where i  is the 

order of rotor branch of the IM model. A real coding 

is used for this algorithm. The fitness function is the 

sum of quadratic errors between the measured and 

the calculated rotor impedances, defined as: 
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Where “e” is the index of the measured value, “c” 

corresponds to the index of the calculated value for 

the evaluated chromosome’s parameters and m  is the 

number of measurements for different slips. The 

expression of the rotor impedance characterized by 

paralleling n  branches  ii lr ,  is:  
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 ii lr ,  are deduced from Equation 9 function of  ix  

and iy . 

The GA algorithm is executed respecting the 

following conditions: 

- The crossover BLX-α is applied with a probability 

of 0.9. 

- The uniform mutation is applied with a mutation 

probability of 0.01. It’s about modifying a 

Initialization of initial population 

 Evaluation of each individual 

Selection of individuals 

Crossover BLX-α + uniform mutation 

Best individual in final population 

mutation 

Stop criteria 



parameter by choosing a new value uniformly at 

random in the interval defined by the space 

constraints.  

- The individuals’ number per population Np is 

limited to 300. 

- The algorithm is stopped when the fitness 

function (Eq.10) is less than a considered errors 

fixed to 10
-5

 for seven successive times. 
 

1x    
nx  1y    

ny  

 

Fig.4. Chromosome representation for the parameters of 

the IM’s rotor branches. 

 

4 Experimental validation 

 

4.1 Experiment description 

A test bench has been installed at the National 

Engineering School, University of Sfax (ENIS) 

Tunisia. It includes four IMs, an 8KVA alternator, a 

DC motor and a data acquisition system. The DC 

motor provides mechanical power to the alternator. 

The alternator supplies the locked rotor IMs for 

different frequency. The PC computer in which the 

algorithm is implemented is connected to an 

acquisition system which measures stator voltage and 

stator current. The voltage and current sensors are 

integrated into the acquisition system. Figure 5a 

shows the real test bench as for figure 5b gives its 

synoptic schema. 

The IM’s identification and classification algorithms 

require the measurement of 2R  and motX over the slip 

range variation (  1,0g ). Nevertheless, browsing 

the zone  1,maxCgg  cannot be ensured since it 

represents the instability zone of the IM ( maxCg is the 

slip at the breakdown torque). Therefore, an 

equivalent test is proposed. This test [24] considers 

figure 6 where the motor is at locked rotor and 

supplies by sfV  in variable frequency. Instead of 

varying the load torque to browse the interval of  

 1,0g  in figure 2, it is possible to obtain the 

same values of 2R  and motX  by performing a locked 

rotor test for different frequencies  50,0f  

Hence, the locked-rotor induction motor under test is 

supplied by a three-phase alternator. This latter 

allows the adjustment of the frequency and the 

amplitude of the IM supply. The ratio f

Vsf  is 

maintained constant which guaranties a constant 

magnetic flux. So, the saturation state remains 

unchanged during the test. The frequency is adjusted 

by varying the speed of DC motor, while the 

amplitude is fixed by the excitation voltage of the 

alternator. Measurements of sfsfsf PIV ,,  are 

performed by an acquisition system connected to a 

PC computer (Fig.5.a,b).  

The IM input impedance at locked rotor is (figure 6) :  

motsfsfs jXRrgZ  21),(  

Where:   ssf

sf

sf

sf r
I

V
R  cos2  

 sf

sf

sf

motsf
I

V
X sin   and   

sfsf

sf

sf
IV

P

3
cos  . 

Consequently, the IM input impedance for variable 

speed and fixed frequency is: 

mots jXRrgZ  2),(  

First the virtual slip is calculated as: 
50

f
g    

Then 2R and motX  are deduced as [24]: 

g

R
R

sf2

2   and 
g

X
X

motsf

mot   

Where  1,0g and  100 . 

 
Fig.5.a IM measures test bench. 

        Fig.5.b synoptic schema 
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Fig.6. The reduced equivalent circuit of the IM at locked 

rotor test 

4.2 Results and discussion 

The developed algorithms are applied to four IMs. 

Their nominal characteristics are listed in table 1. 

 
Table 1. Name-plate parameters of IMs. 

N° P(kw) N(rpm)
 

f(Hz) Pp
 

I(A) U(V) 

IM_1 1.1 1390 50 2 4.67 220 

IM_2 6 1455 50 2 24 220  

IM_3 7.35 725 50 4 28.0 220  

IM _4 11 965 50 3 39.2 220  

 

The identification results are presented in tables 2. 

Identified parameters allow computation of the rotor 

impedance '
rcZ  using (Eq.11). The comparison 

between calculated and measured data of '
rZ   is 

evaluated by calculating for each IM model the 

Normalized Root Mean Square Error ( % NRMSE ) 

defined by (Eq.13), [3]: 
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NRMSE  (13) 

Assume the type of rotor is unknown. Then GA and 

LST algorithms are executed for the three models 

( n =1, 2, 3 rotor branches). For each case the 

computed parameters  ii lr ,  are used to calculate 

NRMSE. The comparison of obtained NRMSE 

classifies the motor in single, double or triple cage  

(Fig. 7). This procedure is applied to all previously 

chosen motors (table1). 

The parameters of the first branch  11 , lr  are 

accurately identified using only the low slip 

measurement points.  

The rotor impedance is: '
'

'
r

r
r jX

g

R
Z   

 
Fig. 7. IM classification procedure 

 

Figures 8, 9, 10 and 11 show measured and 

calculated '
rR et '

rX in terms of the slip. 

Let’s consider the IM_1, the LST method provides 

erroneous parameters (leakage inductance negative) 

because measurements '
rR et '

rX  are too disturbed by 

measurement noise as is shown in Figure 8. In fact, 

the measurement of low current leads to a noisy 

acquisition. In this case GA results become more 

interesting. The values of NRMSE obtained for the 

models of two and three rotor branches ( n  = 2, 3) are 

similar while the NRMSE of the single cage model is 

the highest. Consequently, the double cage model is 

selected as it is less complicated in use. For the IM_2 

motor, the smallest NRMSE is obtained with the LST 

method for the double cage model ( n  = 2). In this 

case LST has converged to reasonable results. The 

shape of the curves '
rR  and '

rX  are smooth and have 

no noise. So the assessed IM must be classified as 

double cage. The identification using LST is very 

simple since it is reduced to a linear regression 

according to invariant parameters. However, as it’s 

very sensitive to measurement’s errors the measure 

should be accurate. For IM_3 the smallest NRMSE is 

delivered by the AG method, this latter confirms that 

the model is of a deep bar rotor with three rotor 

branches ( n  = 3). As for the LST method, it gives 

negative values for the IM parameters which discard 

this method of classification. 
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Table 2.   Identification results of the IM,      LST: Linear least squares technique   GA: Genetic algorithm 

  r1 (Ω) l1 (H) r2 (Ω) l2 (H) r3 (Ω) l3 (H) NMRSE % 

IM
_

1
 

 2,6670 0,0240     4,89 
LST 2,8607 0,0248 85,254 -0,2737   3,38 

 2,8755 0,0273 60,169 0,0770 173,39 -1,295 2,65 

 2,6307 0,0238     5,49 
GA 2,7994 0,0277 49,010 0,0277   2,13 

 2,7893 0,0274 76,185 0,0274 166,82 0,0548 2,12 

IM
_

2
 

 0,1650 0,0053     9,26 
LST 0,1769 0,0052 5,3089 0,0068   1,34 

 0,1764 0,0053 4,7279 0,0065 -70,468 0,0475 1,40 

 0,1644 0,0053     10,28 
GA 0,1628 0,0055 4,1352 0,0083   1,89 

 0,1622 0,0055 4,4796 0,0108 32,416 0,0164 1,90 

IM
_

3
 

 0,1789 0,0038     5,97 
LST 0,2017 0,0042 2,9735 0,0040   7,12 

 0,1960 0,0039 1,1071 0,0034 -1,2332 -0,0067 8,37 

 0,1728 0,0038     10,58 
GA 0,1843 0,0045 2,3234 0,0045   2,35 

 0,1843 0,0045 2,4244 0,0049 42,763 0,0094 2,02 

IM
_

4
 

 0,1701 0,0028     4,14 
LST 0,1858 0,0031 3,1169 0,0040   2,77 

 0,1838 0,0030 2- 4,8i 0,016- 0,006i 2+ 4,8i 0,016+ 0,006i 3,14 

 0,1720 0,0029     5,77 
GA 0,1813 0,0032 2,8525 0,0042             2.71 

 0,1815 0,0032 2,7580 0,0043 1002,9 0,0435 2,72 

 

Fig.8. Variation of '
rR and  '

rX  in terms of slip for IM_1 

 

Fig.9. Variation of '
rR and  '

rX  in terms of slip for IM_2 

 

Fig.10. Variation of '
rR and  '

rX  in terms of slip for IM_3 

 

Fig.11. Variation of '
rR and  '

rX  in terms of slip for IM_4 
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IM_4 analysis gives similar NRMSE for models with 

two and three rotor branches ( n = 2, 3). The leakage 

inductance of the third branch appears too large. It is 

close to sL  (cyclic inductance of the stator). For this 

reason the third branch is eliminated from the model 

and the model is considered as two branches. 

Measurements of the stator current in phase a  and 

the rotor speed during direct starting of IM_2 are 

established. The identification results of IM_2 

classify it as double cage. The calculated parameters 

(Table 2) allows to simulate the start-up using the 

state model (Eq.4) for ( n  = 2). The measured and 

simulated current and speed are shown in Figures 12 

and 13. A good agreement of the model and its 

parameters with the experimental measurements are 

observed. In fact, the NRMSEcomputed for the 

current and the speed are respectively equal to 27,26 

%  and 2,24%. 
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Fig.12. Comparison between simulated and measured 

currents in phase a for IM_2 
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Fig.13. Comparison between simulated and measured rotor 

speeds for IM_2 

 

5 Conclusion  

A MIVs state model of the squirrel cage induction 

motor is developed. An offline IM identification 

based upon steady state electric measurements 

(voltage, stator current and active power) is 

elaborated by performing a locked rotor test for 

different frequencies. The parameters identification 

using the linear Least Squares Technique (LST) and 

the Genetic Algorithm (GA) is established. The 

identification and classification is validated on four 

IMs. The LST method is adequate as the model in the 

steady state is linear function of the MIVs 

parameters, but it shows its limitation when 

measurement errors increase. GA is judged more 

efficient since it persists and converges for a high 

measurement noise. The parameters that are 

determined by means of experimental tests are used 

in order to establish the dynamic model of the IM. 

The algorithms are verified and validated by 

computing NRMSE of measured and simulated 

current and speed during starting of the IM. A good 

agreement of model and its parameters with the 

experimental measurements are observed. 

 

Nomenclature 

sqsd vv ,  dq stator voltages (V) 

sqsd ii ,  dq stator currents (A) 

rqirdi ii ,  dq rotor currents of the i
th
 branch (A) 

sV  phase voltage (V) 

SI  line current (A) 

P  active electrical power (W) 

 hnhhhnhh BBBAAAMIVs  1010     

                 Invariant parameters 

sr  stator resistance ( ) 

ir  rotor resistance of the i
th
 branch ( ) 

mL  mutual inductance (H) 

il  
rotor leakage inductance of the i

th
 

branch(H)  

Z  input impedance of th IM per phase ( ) 

  synchronous angular speed (rad/s) 

re  electrical rotor speed (rad/s) 

f  Synchronous frequency (Hz) 

g  slip (p.u) 

pp  number of pairs of poles 

J  total mechanical inertia ( 2.mKg ) 

RC  load torque ( mN . ) 
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