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Abstract—In this paper, the problem of delay-dependent sta-
bility of micro-grid load frequency control systems under net-
worked environment with time-invariant delays and bounded
nonlinear perturbations has been addressed using the Lyapunov-
Krasovskii functional approach. In the networked control envi-
ronment, it is observed that transfer of feedback variable from
the sensor to centralized controller, and the control effort from
controller back to the actuator through communication links
introduces time-delays in the feedback path. The time-delays
adversely affect the overall performance of the closed-loop system
paving way to system instability. In addition, in distributed
generation scenario, the uncertainties in the time-delayed micro-
grid system brought about by the penetration of fluctuating
power generators, viz., solar and wind power combined with
perturbations in the system load also affect the performance
of the overall system. To assess the impact of these time-varying
uncertainties to the closed-loop stability of the micro-grid system,
they are included in the mathematical model of the system as
a norm-bounded nonlinear perturbation term. Subsequently, the
stated problem is solved in a less conservative manner by em-
ploying the classical Lyapunov-Krasovskii functional approach
combined with Wirtinger inequality. The analysis results in a
delay-dependent stability criterion in linear matrix inequality
(LMI) framework. In the sequel, the presented stability criterion
is validated on a standard benchmark system and supported with
extensive simulation results.

Index Terms—Delay-dependent stability, Time-delays,
Communication network, Nonlinear perturbations, Lyapunov-
Krasovskii functional, Linear Matrix Inequality (LMI).

I. INTRODUCTION

IN the last decade, a paradigm shift in the topology of
conventional power system has taken place, and the modern
power system has evolved in the form of small pockets of
independent entities called micro-grids. A typical microgrid
system connected to utility grid encompasses several dis-
tributed and interconnected generator units, energy storage
units, and loads. Different types of the distributed generation
sources include micro-turbine, wind-turbine, solar PV panel,
fuel cell with electrolyzer system etc. The load essentially
consists of domestic and small/medium-scale industrial loads.
The energy storage unit, an optional entity, usually includes
batteries, flywheels, super-capacitors, super conducting mag-
netic energy storage, plug-in-electrical vehicles etc., refer [1],

[2]. From the grid perspective of the modern power system, a
micro-grid system can be considered as a group of controllable
generator units and associated loads; refer [3], and the refer-
ences cited therein. With increasing penetration of renewable
energy sources into the utility grid, given their environment
dependent power generation characteristics, design and control
of distributed generation in micro-grid environment have be-
come quite complicated; nevertheless, owing to the challenges
involved in the process, it has invariably emerged as an active
area of research in recent times. The advantages of the micro-
grid system include increase in reliability and security of the
power system, decrease in the cost of operation by effectively
utilizing the micro-sources during peak load condition, base
load support and reduction in green house effects.

In this paper, a networked micro-grid closed-loop load
frequency control system with time-invariant approximation
for delay is investigated for its delay-dependent stability. In
this system, wind and PV generators serve as primary sources
of electric power. As power from these renewable sources
are intermittent in nature, a gas based micro-turbine unit is
employed cater the base load. In addition, when unexpected
real power imbalance occurs in power system, regulation of
grid frequency may not be possible with micro-turbine itself;
in such a scenario, for frequency compensation, a fuel cell
and electrolyzer system are appropriately integrated into the
micro-grid system. This system model is taken from [3].

In micro-grid systems, to compensate for continuous change
in load demand, real power generation control is required
to keep the frequency constant since incremental frequency
variable (∆f(t) = f(t)−fe) is an indication of the in-balance
that exists between the generation and the demand [4]. To ac-
complish this objective, load frequency control (LFC) control
strategy is employed so that all distributed generation units are
operated and controlled cohesively to ensure a stable operation
with desirable frequency and voltage profile in the system
[5]. This task is facilitated in a micro-grid system through
a remotely operated micro-grid central controller (MGCC).
The main functions of this centralized control are to obtain
measurement from the power system and control information
from local controllers, and to decide and implement necessary
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Fig. 1. Block Diagram of Micro-Grid System with Communication Delays.

control actions for regulating the system frequency to the
desired value. Since solar and wind power sources constantly
generate shortfalls and excesses, MGCC, from the measure-
ment of ∆f(t), sends appropriate control signal automatically
to local controllers in micro-grid to ensure that total amount
of power demand at grid is consistently equal the total power
supply (i.e. ∆f(t) → 0, ∀ t). This centralized automatic
control loop is configured in networked control framework
with information exchange carried out through communication
channels; this orientation, in turn, introduces time-delays in the
feedback path as shown in Fig. 1.

The feedback loop delays are inevitable in such a distributed
system scenario where the system to be controlled and the con-
troller that executes the control action are connected through
a communication channel in which the measured/controlled
data that are realized in the form of discrete pockets of
information experience buffering, processing and propagation
at various internodes. These network-induced feedback loop

delays pose serious limitations to achievable performance of
the closed-loop system; in dire situations, when the delay
margin exceeds a critical value, the micro-grid system will be
driven to instability, and subsequently, it automatically trips
from the main grid. The loss of synchronism may sometimes
generate low frequency high amplitude power swings in the
power system paving way for catastrophic tripping of various
generation units connected to the grid leading to islanding of
regional power grids, and sometimes, blackouts [6], [7].

Hence, stable delay margin (i.e. maximum allowable delay
bound that the networked controlled system can accommodate
without losing asymptotic stability) for networked micro-grid
systems must be computed for various subsets of controller
parameters through a less conservative delay-dependent sta-
bility analysis procedure so that they will serve as a practical
guideline for fine tuning of controller parameters at the im-
plementation stage even with partial knowledge about network
delay size [8]. This, in turn, will enable the operating personnel
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to achieve optimal performance from the closed-loop LFC
system under delayed control inputs. In this direction, from
the perspective of fluctuating power generators, the undertaken
study is a capacity management problem; hence, it is signifi-
cant. Delay-dependent stability criteria are basically sufficient
conditions that are employed to compute the stable margin for
the network delays within which the power system controlled
through a remote MGCC remains asymptotically stable in the
sense of Lyapunov.

In this paper, using the classical Lyapunov-Krasovskii func-
tional approach [9] combined with Wirtinger inequality, a less
conservative stability criterion is presented for ascertaining
delay-dependent stability of the networked micro-grid load
frequency control system with time-invariant delays. In the
presented analysis, the controller to actuator delay τ1(t) and
sensor to controller delay τ2(t) (see, Fig. 1) are assumed to
be time-invariant (i.e., τi(t) = τi, i = 1, 2 ∀t); hence, they
are treated as a single feedback loop delay τ =

∑2
i=1 τi. Fur-

thermore, the environment dependent power generation from
non-conventional distributed sources solar and wind introduces
unmodelled time-varying dynamics into the system. In this
paper, we have considered these uncertainties by modelling
them as bounded nonlinear perturbations with respect to state
variables of the system. This is the novelty of the paper.

In literature, there are two results reported in recent times for
ascertaining delay-dependent stability of micro-grid systems
that involve communication delays [3], [10]. However, in
both these results, the impact of load perturbation on sys-
tem stability is not considered in the stability analysis. The
stability analysis presented in [3] and [10] are derived only
for nominal systems - systems without any uncertainties. This
has motivated the authors to explore the networked micro-
grid system for assessing impact of load perturbations on the
system performance and stability. In this aspect, to the best
of authors

′
knowledge, we wish to record that the problem of

delay-dependent stability of networked micro-grid system with
time-invariant delays and time-varying nonlinear perturbations
has not been addressed using Lyapunov-Krasovskii functional
approach so far.

II. MATHEMATICAL MODELLING

The mathematical model of various components of the
micro-grid control system are presented herewith.

A. Gas-Based Micro-Turbine

The transfer function model the micro-turbine is developed
taking into account the linear speed drop characteristics be-
tween the power and frequency. This transfer function is given
as follows:

GMT (s) =
∆PMT

∆f
= − 1

KMT
(1)

where ∆f , ∆PMT and KMT represent frequency deviation,
change in output power and drop characteristics of the micro-
turbine, respectively.

B. Fuel Cell and Electrolyzer

A fuel cell with an electrolyzer system is utilized to com-
pensate for real power imbalance when the local controller
of the micro turbine becomes less effective for substantial
variations in load. A part of the wind power is utilized by
the aqua electrolyzer to produce hydrogen for fuel cell. The
transfer function model of fuel cell and electrolyzer are given
as follows:

GFC(s) =
∆PFC

∆f
=

KFC

1 + sTFC
, (2)

GES(s) =
∆PES

∆f
=

KES

1 + sTES
, (3)

where ∆PFC , KFC and TFC represent the change in output
power, the gain, time constant of the fuel cell, respectively,
while ∆PES , KES and TES denote similar variables of the
electrolyzer.

C. Extended Load

The extended load demand ∆P
′

L consists of housing load,
wind power and PV generation; it is expressed as follows:

∆P
′

L = ∆PL −∆PPV −∆PW . (4)

The dynamics of PV and wind power are considered as nonlin-
ear perturbations in the test system employed for study. These
uncertainties do substantially affect delay margins results.

D. Local and Central Controller

The local and micro-grid central controller (GLC(s) and
GCC(s) respectively) are configured with PI control law. The
controller transfer functions are given below:

GLC(s) = KPL +
KIL

s
, (5)

GCC(s) = KPC +
KIC

s
, (6)

where KPX and KIX represent proportional and integral gains
of the controller.

E. Power System

The power system with its connected conventional (high
inertia) generators is modelled as a first order transfer function
given by

GP (s) =
1

sM +D
, (7)

where M and D are moment of inertia and damping constant
respectively.

F. State-Space Model

The overall system including central and local controller
encompassing network-induced delay is shown in Fig. 1. The
state-space model of the closed-loop system shown in Fig. 1
can be derived in the following autonomous framework:

ẋ(t) = Ax(t) +Adx(t− τ) + ω(t), (8)
x(t) = φ(t), t ∈ [−max(τ), 0], (9)
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∫ a

b

ω̇T (u)Rω̇(u)du ≥ 1

b− a

 ω(b)
ω(a)

1
b−a

∫ b
a
ω(u)du

T  4R 2R −6R
? 4R −6R
? ? 12R

 ω(b)
ω(a)

1
b−a

∫ b
a
ω(u)du

 .

where the system matrices A ∈ R5×5 and Ad ∈ R5×5 are as
follows:

A =


0 0 0 0 KIC

a21 a22 a23 a24 a25

0 0 − 1
TFC

0 KFC

TFC

0 0 0 − 1
TES

KES

TES

0 1
M

1
M − 1

M
D
M

 , (10)

Ad =


0 0 0 0 0
d21 d22 d23 d24 d25

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (11)

with state vector x(t) ∈ R5×1 being x(t) = [KIC

∫
∆f(t)dt

∆PMT (t) ∆PFC(t) ∆PES(t) ∆f(t)]T . The elements of
the matrices (in terms of system parameters) are given below:

a21 = 0,

a22 =
1

1 +KPL

[
−KIL − 1

MKMT

]
,

a23 =
1

1 +KPL

[
KPL

TFC
−KIL − 1

MKMT

]
,

a24 =
1

1 +KPL

[
− KPL

TES
+KIL +

1

MKMT

]
,

a25 =
1

1 +KPL

[
− KPLKFC

TFC
+
KPLKES

TES
+

D

MKMT

]
,

d21 = − KIL

1 +KPL
,

d22 = − KPLKPC

M(1 +KPL)
,

d23 = − KPLKPC

M(1 +KPL)
,

d24 =
KPLKPC

M(1 +KPL)
,

d25 =
1

1 +KPL

[
−KILKPC +

KPLKPCD

M
−KPLKIC

]
.

The time-delay satisfies the following condition:

0 ≤ τ ≤ τ̄ ; (12)

where τ̄ is the upper bound of the time-delay.

III. MAIN RESULT

The proposed result of this paper is derived by modelling
unknown extended power system load disturbance as time-
varying nonlinear perturbation in terms of current and delayed
state vector. The term ω(t) represents the uncertainties caused
due to the intermittent penetration of solar and wind power to
the micro-grid and load perturbation as well. It is treated as a
function of state-variables as follows:

ω(t) = ω(t, x(t), x(t− τ)), (13)

satisfying the following norm-bounded condition:

||ω(·)|| ≤ α||x(t)||+ β||x(t− τ)||, (14)

where α ≥ 0 and β ≥ 0 are known scalars. A somewhat
restricted version of the condition (14), which is used in this
paper, is given by

ωT (·)ω(·) ≤ α2xT (t)GTGx(t)

+ β2xT (t− τ)FTFx(t− τ), (15)

where G and F are known constant matrices of appropriate
dimensions. The problem addressed in this paper is stated
below:
Problem: To develop a less conservative robust stability crite-
rion in LMI framework to ascertain delay-dependent stability of
the networked micro-grid system described by the state-space
model (8) with the load disturbance satisfying the condition
(14), and network-induced time-delay (12) using Lyapunov-
Krasovskii functional approach.

For deriving the delay-dependent stability criterion, follow-
ing lemma is required:

Lemma 1. For given symmetric positive definite matrix R, and
for any differentiable signal ω in [a, b]→ Rn, the Wirtinger
inequality stated at the top of this page holds.

The proposed delay-dependent stability criterion is stated in
the form of a theorem.

Theorem 1. For a given delay bound τ , networked micro-grid
frequency control system (8) with time-delay (12) and non-
linear perturbation (14) is asymptotically stable in the sense
of Lyapunov, if there exist real, symmetric, positive definite
matrices P , S and R; symmetric matrix Z and free matrix Q of
appropriate dimensions and scalar ε > 0 such that following
LMIs hold:

Π(τ) > 0, (16)
Φ(τ) < 0, (17)

where Φ(τ) =
∑4
i=1 Φi(τ). The elements of Φi(τ), i = 1

to 4 are given at the top of next page, where ? represents
transposed terms in the symmetric matrix.

Proof: The proof of this stability criterion employs the
following LK functional (positive definite energy functional):

V (t) =

[
x(t)∫ t

t−τ x(s)ds

]T [
P Q
? Z

] [
x(t)∫ t

t−τ x(s)ds

]
+

∫ t

t−τ
xT (s)Sx(s)ds+

∫ 0

−τ

∫ t

t+θ

ẋT (s)Rẋ(s)dsdθ.

(18)
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Π(τ) =

[
P Q
? Z + 1

τ S

]
,

Φ1(τ) =


ATP + PA+Q+QT + S −Q+ PAd τATQ+ τZ P

? −S τATdQ− τZ 0
? ? 0 τQT

? ? ? 0

 ,

Φ2(τ) =


AT

ATd
0
I

 (τR)


AT

ATd
0
I


T

,

Φ3(τ) = −1

τ


R −R 0 0
? R 0 0
? ? 0 0
? ? ? 0

− 1

τ


3R 3R −6R 0
? 3R −6R 0
? ? 12R 0
? ? ? 0

 ,

Φ3(τ) =


εα2FTF 0 0 0

? εβ2GTG 0 0
? ? 0 0
? ? ? −εI

 .

By bounding the time-derivative of the LK functional with
Wirtinger inequality stated in Lemma 1, and including the
constraint imposed on non-linear perturbation term (14), the
delay-dependent stability criterion is derived. For detailed
derivation, [11] and [12] may be referred simultaneously.

IV. BENCHMARK MICRO-GRID SYSTEM

The parameters of the standard benchmark system taken
from [3] are given in Table I.

TABLE I
NOTATIONS

Parameter Value
M 10
D 1

KMT 0.04
KFC 1
TFC 4
KES 1
TES 1
KPL 1
KIL 1

For this system, the maximum delay bound τ̄ of the time-
varying delay for different sub-set of the centralized controller
parameters (KPC ,KIC) obtained by the delay-dependent sta-
bility criterion stated in Theorem 1 is given in Table II.
The analytical results are validated using simulation based
study. The simulation based study assumes white noise model
for intermittent power output from renewable sources viz.,
wind and solar. Since power electronics based converters are
invariably employed for interface with power system grid, this
assumption is appropriate. The micro-grid central controller
parameters are set at KPC = 1 and KIC = 0.8. The
uncertain extended load demand through out the study is kept

TABLE II
MAXIMUM UPPER DELAY BOUND τ̄ FOR F = G = 0.1I5×5

KPC
α = 0, β = 0 α = 0, β = 0.05 α = 0.05, β = 0.05

KIC τ̄ KIC τ̄ KIC τ̄

0.2 9.943 0.2 6.753 0.2 5.477
0.4 5.264 0.4 3.240 0.4 2.408

1.0 0.6 3.664 0.6 2.076 0.6 1.415
0.8 2.857 0.8 1.511 0.8 0.947
1.0 2.371 1.0 1.184 1.0 0.684

0.2 12.688 0.2 10.097 0.2 9.103
0.4 7.155 0.4 5.347 0.4 4.606

2.0 0.6 5.053 0.6 3.574 0.6 2.957
0.8 3.949 0.8 2.667 0.8 2.127
1.0 3.270 1.0 2.122 1.0 1.637

at P
′

L ∈ [0.4, 0.6], and time-delay is kept initially at τ = 0; at
this condition, the system is assumed to be at the equilibrium
state with ∆f(t) = 0. The closed-loop system is introduced
with a sudden step change in time-delay at t = 200secs. For
validating the stable closed-loop operation, the time-delay τ
is increased from 0 secs to 2.6 secs. The maximum allowable
delay bound, in accordance to Table II, for the chosen MGCC
parameters, is τ̄ = 2.857secs. Since τ = 2.6 < τ̄ , the
incremental frequency variable ∆f(t) evolves asymptotically
towards equilibrium point ∆f(t) = 0 as shown in Fig. 2. If
the delay τ is increased to τ̄ = 2.857, the system is marginally
stable as shown in Fig. 3, and if the delay is further increased
to τ = 3 > τ̄ , the micro-grid system becomes unstable with
∆f(t) variable evolving unboundedly with time t as shown
in Fig. 4. These results clearly substantiate the impact of
time-invariant delay on the performance and stability of the
networked micro-grid load frequency control system, thereby
validating the presented stability analysis.
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Fig. 2. Time-domain Simulation for τ = 2.6 secs.
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Fig. 3. Time-domain Simulation for τ = 2.857 secs.

V. CONCLUSIONS

In this paper, a less conservative stability analysis has
been presented for ascertaining delay-dependent stability of
networked micro-grid load frequency system with time-delays
that emerges due to the communication channels employed
in the feedback path, and nonlinear perturbations due to fluc-
tuating power generators connected to the micro-grid system.
The presented analysis is based on Lyapunov-Krasovskii func-
tional approach combined with Wirtinger inequality, and the
resulting stability criterion is expressed in LMI framework.
The nonlinear perturbation term in the mathematical model
depicting the uncertainties in the fluctuating power generators
is norm-bounded, and they are associated with appropriate
scaling factors to quantify the magnitude of the disturbance
in the micro-grid system. The proposed stability criterion is
illustrated on a standard bench mark system and substantiated
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Fig. 4. Time-domain Simulation for τ = 3 secs.

with appropriate simulation results. The possibility of allevi-
ating the limitations of the presented results may be explored
as a future work.
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