

SELF-AWARE ADAPTABLE SOFTWARE ARCHITECTURAL PATTERN BASED

ON ASSOCIATION RULE MINING

Rajith Balakrishnan

Research Scholar

Anna University, Chennai, India

ranjithbke@gmail.com

Dr. N. Sankarram

Professor, Computer Science and Engg,

Sriram Engineering College

Chennai, India

n_sankarram@yahoo.com

Abstract-- Software architecture is one of the evergreen research

areas, as the technical advancement relies on the software

architecture. Due to the technical advancements, most of the

users possess different terminals for accessing Internet.

Irrespective of the diversity in operating system and user

terminal, the web service must be interoperable and compatible.

Based on the kind of user terminal, the web service has to be

provided without any time complexity. The performance of the

architecture is claimed better, only when the appropriate web

service is provided to the user without any time delay. In order to

map appropriate web services for varying user terminal, this

article presents a self-aware adaptable software architectural

pattern that is based on association rule mining. The proposed

approach does not require any prior knowledge about the system

and can work on the go. The performance of this approach is

analysed by varying the count of user requests and time with

respect to accuracy, precision, recall, F-measure and throughput.

The proposed approach proves nominal results with better

dynamic mapping capability.

Keywords-- Software architecture, adaptable software, web

application.

1. INTRODUCTION

Software architecture is the blueprint of any software

to be developed and hence, the quality of the software can be

determined with the software architecture. The complete

structure and the functionality of the software are portrayed in

software architecture. The key objective of this representation

is to detect the significant components involved in the

software system and their interrelationship as well. As stated

earlier, software architecture outlines all the components

involved in the system along with their functional details in an

abstract form. Hence, it is very important to have clear-cut and

sharp architecture, as the positive progress of software

development relies on a better software architectural design.

There are numerous formal definitions and representational

tools for software architecture in the literature. However, each

and every technique has its own merits and demerits.

 Initially, the requirements of a client are drafted

formally by means of the process of requirements engineering.

When this process is completed successfully, then the

requirements of the software are drafted in a software

requirements specification document. As soon as the

requirements are finalized and upon the positive approval of

clients, the design of the software is decided by means of

software architecture. The software architectural

representation sketches the different software components and

their interconnections with each other. Hence, a good software

architectural design has to impart better knowledge to the user.

All these points are easy to follow, when the system is static.

 Due to the advent of technology, most of the software

systems are dynamic today. The major reason is the usage of

different kinds of smart terminals such as mobile phones,

Personal Computer (PC), laptops, PDAs and so on. As the

applicability of software differs in terms of underlying

platform, it is very difficult to manage. In this case, presenting

software architecture is a highly challenging task. For instance,

the software must be adaptable to different environments and

must be capable of discovering and provisioning the available

services. In all these cases, the Quality of Service (QoS) must

not be compromised.

 Taking these issues into account, this research work

aims to present a robust self-adaptive, and a dynamic

adaptable software architectural pattern. The goal of this work

is to make the system function without any hassles, while the

behavioural or structural pattern of the environment changes.

This is made possible by designing an architectural solution

that considers several different scenarios. The term ‘adaptive

or adaptable’ is very generic, as it conceives different

meanings. This work uses the term adaptive or adaptable to

emphasize that the proposed architectural pattern can change

its nature with respect to the varying terminals. The

highlighting points of this work are as follows.

mailto:ranjithbke@gmail.com
mailto:n_sankarram@yahoo.com

• This work considers different user terminals, which can

connect to internet and different operating systems such as

iOS, blackberry, android, windows and so on.

• This work differentiates between the type of user terminals

and operating systems by means of building association

rules.

• As the decision is made by association rules, the decision

accuracy is perfect and the Quality of Service (QoS) is

better.

• The performance of the proposed approach is evaluated by

means of throughput by varying the number of transactions

and the count of transactions processed in a stipulated

period of time.

 The remainder of this paper is organized as follows.

Section 2 presents the review of literature with respect to

adaptable software systems. The proposed software

architectural pattern is presented in section 3. Section 4

analyses the performance of the proposed approach and the

results are discussed. The concluding remarks are presented in

section 5.

2. REVIEW OF LITERATURE

Frequency representation are mostly preferred for this section

reviews and discusses about the state-of-the-art adaptable

software systems in the literature.

 In [1], a self-adaptive software system is designed by

means of Petri Nets. This work employs adaptive Petri net for

developing the adaptive software system. The computation of

this work is carried out on a local component, though the

complete system is adapted. However, the main issue of this

work is that it consumes more time to process the user

requests. A fuzzy based self-adaptive software system is

modelled by means of extended Unified Modelling Language

(UML) in [2]. The proposed extended UML is based on fuzzy

concepts. This fuzzy based UML can be incorporated in the

UML development environments. However, this work suffers

from technical complexity.

 In [3], a technique based on UML is proposed for

designing self-adaptive software system and the proposed

language is termed as Adapt Case Modeling Language

(ACML). This work enables the self-adaptiveness for software

by means of adaptation rules and deadlock freedom

capabilities. A comparative study is presented by considering

 the requirements and architectural approaches of

adaptive software systems in [4]. The architectural and

requirement models are carried out with respect to adaptation

and guidelines.

 A learning based framework for designing feature

oriented self-adaptive software system is presented in [5]. The

adaptation knowledge is represented by feature based

approach and the adaptation decision is tested over online

learning based approach. The knowledge is based on feature

model and the features are structured. The experimental results

of this work determine the ability of the system in terms of

adaptation and efficiency. In [6], the effectiveness of

controllers in self-adaptive software systems is examined.

Controllers are software components that make final decision

by means of information forwarded by probes.

 An aspect oriented framework for developing self-

adaptive software system namely JACAC is proposed in [7].

The aspect oriented approach aims to segregate between the

business logic and crosscutting concerns. This work clubs

aspect and components for proposing the JACAC. A

supporting framework for self-adaptive software system is

proposed in [8]. This framework supports the adaptable

software systems that can cope with environmental and user

requirement changes. This framework deals with the

controllable architecture, an application independent language

and implementation part.

 A service based technique is proposed for self-

adaptive software systems in [9]. This work relies on

autonomous elements that can be utilized for specific kind of

service or user requirement. This work claims that it requires

less memory and computational resources. An architectural

model that supports adaptive software systems, which is meant

for software systems is proposed in [10]. This work utilizes

architecture description language for representing the software

components and is reconfigured with respect to the

requirements of the user. The work presented in [11] reviews

the adaptive software in terms of techniques, tools and

applications. This work presents the details about the

techniques that change the structure and function of the

software, so as to cope up with the user requirements.

 A rigorous architectural reasoning framework is

presented in [12] for designing self-adaptive software systems.

An analytical framework that can improve the extended

architectural reasoning framework is presented. The analytical

framework is composed of artefacts and activities. The basic

model, properties and attributes are included in the templates

of artefacts. The activities transform the requirement instances

to architecture models and the system is illustrated with the

client-server system.

 In [13], a testing scheme is proposed for self-adaptive

software systems with architectural runtime model. The

proposed testing scheme enables the developers to check the

feedback loops in an earlier state by using the architectural

runtime model. These models are utilized at runtime and the

test inputs are described better. The resilience level of self-

adaptive software is evaluated in [14]. The resilience level of

the software is checked by the probabilistic model checking

and the properties of satisfaction are measured.

 In [15], distributed self adaptive software systems are

executed for adaptations in co-ordinated manner. The

adaptations are checked on multiple nodes of the distributed

system and the consistency is tested. This work states that it is

free from deadlock scenarios. The self-adaptive software

systems are modelled by fuzzy rules and petrinets in [16]. The

Intelligent Petri net (I-PN) is utilized for modelling the

software system. This work can model the run-time

environment and the behaviour of the software system. This

model can present the self-adaptive software with the ability to

make decisions at runtime by means of fuzzy inference

reasoning. A workflow based self-adaptive system is proposed

for monitoring and predicting the software is proposed in [17].

In this model, the users can specify their requirements in the

model and the QoS attributes are computed dynamically. The

operating condition and the context of the software system are

monitored.

 Motivated by the above presented works, this article

aims to present self-aware and adaptable software architectural

pattern that relies on several components. The goal of this

work is to ensure robustness and better QoS. The proposed

approach is elaborated in the following section along with the

overview of the proposed work.

3. PROPOSED SELF-AWARE ADAPTABLE

SOFTWARE ARCHITECTURE

 The technical and functional details of the Self-aware

Adaptable Software Architecture are presented in this section.

Initially, the overall flow of the system is presented.

3.1 Overall Flow of the System

 The central theme of this approach is to ensure better

web services to different range of user terminals, irrespective

of the operating system. Nowadays, numerous counts of user

terminals are in market and over ninety percent of the mobile

terminals are connected to the network. Hence, the user

request is submitted from varying mobile terminals to the

server. Though the content of web application is the same, the

server has to respond in different ways. Though this problem

has many solutions in the literature, the software architecture

based solutions for this issue are limited. Hence, this work

proposes a self-aware adaptable software architecture system

based on association rules. In order to achieve this goal, the

architectural pattern involves three tiers such as user terminal,

knowledge adoption and service response tier. The layered

architecture of the proposed approach is depicted in figure 1.

Fig.1. Layered architecture of the proposed architectural

pattern

The user terminal tier can enclose different mobile terminals

such as smart phones, desktops, laptops, PDAs and all the

devices that can access the services of internet. With these

terminals, the users submit the request to the server. Before

forwarding the service request to the server, there comes an

intermediate layer, which decides the look and feel of the web

application in a dynamic fashion. In this case, the content and

the services are the same, yet the visual look and feel of the

web application differs for every terminal. Additionally,

different user terminals utilize different operating systems and

the web services have to adapt these changes dynamically.

Finally, the service response tier provides service to the user

by considering the user terminal.

 The pre-defined web standards provide

interoperability and compatibility to the web services, such

that it adapts to the environment in a dynamic fashion. This

work intends to address the same issue by means of

architectural approach. Though there are several solutions for

the same issue, this work attempts to incorporate association

rules. Some of the important features of the proposed work are

this work does not require any special training to distinguish

between the user terminal and operating environment, the

throughput rate is better even when the count of transactions

are varied.

3.2 Proposed Approach

 As discussed earlier, this work employs three

different tiers such as user terminal, knowledge adoption and

service response tier. All the tiers have its own purpose and

work with better coordination to attain nominal QoS. The

reason for the incorporation of tiered architecture is that the

actions to be performed by the tiers are segregated perfectly

and is easy to manage. Additionally, the tiered architecture

makes it easy to modify or remove any component in the

system. The following subsections present the functionality of

the tiers in detail.

3.2.1 User terminal tier

User Terminal

Knowledge

Adoption

Service Response

Receive Service

Requests

Handle Service

Requests

Continuous

Observation
Rule framing (Logic) Decision Making

Alter Components
Map service to the

user device

In
p

u
t

T
ie

r
L

o
g

ic
a

l
T

ie
r

M
a

p
p

in
g

 T
ie

r

 The user terminal tier handles the user service

requests from different user devices. Usually, the user

terminals intend to submit web service request to the server. In

this case, the user terminal can be any device that can connect

with the internet. The web service request is submitted to the

application by means of web browser. The web application has

to handle service requests from different web browsers of

different user terminals. Based on the requirements of the user,

the service request is linked to the service response. From this

simple scenario, different ways of variations such as different

browsers, user terminals, operating systems are observed.

Irrespective of these variations, the user must be responded

with the service demanded without any time delay or

performance degradation. The intermediary tier plays a vita

role in determining the right kind of service to the user and is

presented below.

3.2.2 Knowledge adoption tier

 This tier contains the significant components, which

are meant for mapping the perfect service to the user. In order

to render perfect service, a component that can recognize the

user’s requirement and make decision on the service provision

is needed. As the decision has to be made in dynamic fashion,

the role of knowledge adoption layer is more. Hence, this tier

has got more functionality and is achieved by three important

modules such as observation, rule formation and decision

module. In fine, this module brings in adaptation to the

ordinary software system. These modules are the building

blocks of the tier and these modules are explained below.

3.2.2.1 Observation module

 This module listens to the activities that happen on

the network and captures the processing traces of the system

continuously. This module intends to build item set by

tracking the activities in a continuous fashion. The item set is

created with respect to a time period. For every time period,

there occurs a set of events and are saved as item set.

 Let 𝑇𝑃 = {𝑡𝑝1 , 𝑡𝑝2, 𝑡𝑝3, … 𝑡𝑝𝑛} and 𝑡𝑝𝑥 =

{𝑒𝑣𝑡1, 𝑒𝑣𝑡2, 𝑒𝑣𝑡3, … , 𝑒𝑣𝑡𝑛}, where 𝑇𝑃 is the complete time

period and 𝑡𝑝1, 𝑡𝑝2, 𝑡𝑝3, … 𝑡𝑝𝑛 are the time slots, in which

different events take place. The goal of this module is to listen

to the occurrence of events taking place in every time period

and create item sets. Additionally, this module performs pre-

processing activity that identifies the type of user terminal by

means of Wireless Universal Resource File (WURFL). The

WURFL processes the header information of Hyper Text

Transfer Protocol (HTTP) request and extracts the

characteristic features of the user terminal. The term

‘characteristic feature’ denotes the model of the device, web

browser, operating system, screen size. Taking these

characteristic features into account, the web services can be

provided in line with the user’s requirement.

 As soon as the characteristic features of the user

terminal that involved in submitting service request are

obtained, the user terminals are clustered by employing simple

distance metric. The distance metric being utilized to perform

clustering is the Euclidean distance measure and is computed

by

𝐸𝑑 = ∑ √𝑥𝑖
2 − 𝑦𝑖

2𝑛
𝑖=1 --- (1)

 In the above equation, 𝑥𝑖 and 𝑦𝑖 are the events and 𝑛

is the total number of events that occurred in a specific time

period. The cluster members are closely related to each other,

preferably the terminal with same device configuration. From

these clusters, the frequently participating user terminals in a

particular period of time can be figured out easily. Similarly,

the web services are clustered by following the same way. The

web service clustering process encloses the web services for

different terminals. For instance, the web services meant for

android based mobile devices are grouped together. In addition

to this, the size of the screen is also taken into account for

attaining web service clusters. In the next module, the

association rules are constructed on the go, such that the

appropriate web service can be mapped to the user.

3.2.2.2 Rule formation (logical module)

 This is the most crucial step as the rules are formed

and it determines the frequent patterns. The frequent patterns

are created by means of two important key ingredients, which

are support and confidence. The overall functionality of this

module is depicted in figure 2.

Fig.2. Functionality of knowledge adoption module

 As the rule formation of this work is based on apriori

algorithm, support and confidence are the main attributes. The

support and confidence are computed between the event

clusters and web service clusters as follows. The support of

𝑒𝑎 ⇒ 𝑒𝑏 is computed by dividing the count of events of same

Knowledge

Adoption Module
Track Log Create itemsets

Build association

rules

Store Rules

Service Request

Final Decision

For specific T
Refine RulesetRule selection

Service mapping

type that occurred both in 𝑡𝑝1 and 𝑡𝑝2 with the total number of

events in the cluster.

𝑆𝑃𝑇(𝑒𝑎 ⟹ 𝑒𝑏) =
|𝑒𝑎∪𝑒𝑏⊂(𝑒𝑐,𝑤𝑠𝑐)|

|(𝑒𝑐,𝑤𝑠𝑐)|
 (2)

Similarly, the confidence of the association rule is computed

by the following equation.

𝐶𝑜𝑛𝑓(𝑒𝑎 ⟹ 𝑒𝑏) =
𝑆𝑃𝑇(𝑒𝑎⟹𝑒𝑏)

𝑆𝑃𝑇(𝑒𝑎)
 (3)

 The frequently occurring pattern is identified by

means of considering the support and confidence. The support

and confidence level of an association rule must be greater

than the minimum support and confidence threshold. In this

work, the minimum support threshold is fixed as 2 and the

minimum confidence level is set as fifty percent. By this way,

the frequent item set is detected and the rules are added to the

decision database.

 As the web accessing nature of users is dynamic, the

computed association rules and the frequent patterns are not

static and they vary by time. Hence, the rules are refined then

and there, so as to ensure better service accessibility in less

period of time. The process of rule refinement may involve

rule inclusion, deletion and modification. The top-ranking

frequent web service requests are given room in cache

memory, such that the service is provided in streak. This in

turn increases the performance and the QoS as well.

3.2.2.3 Decision making module

 The decision making module is responsible for

declaring the nature of user terminal and the web service to be

provided by applying the idea of the logical module. The

outcome of this module is considered as final and the web

service is provided to the user accordingly. The decision of

this module is passed on to the final tier, which is service

response tier. The details of this tier are presented as follows.

3.2.3 Service Response Tier

 This tier contains servers within which the web

services reside. Based on the decision of the decision making

module, the appropriate service is mapped to the user. The

servers contain several functional components, which are to be

altered before provisioning. On the other hand, the user

terminal incudes several web page components that are

enabled by different web browsers such as Google Chrome,

Mozilla Firefox, Opera, Internet Explorer and so on. The

service response tier is controlled by Internet Information

Service (IIS), Tomcat and so on. By taking the user request

and the nature of service request into account, the web service

is mapped to the user terminal. This kind of architectural

pattern is found to be reliable and robust, which is found by

performing experiments in different scenarios. The following

section analyses the performance of the proposed architectural

pattern for web service access.

4. RESULTS AND DISCUSSION

 The effectiveness of the proposed approach is

evaluated on a stand-alone computer with 8 GB RAM and

Intel i7 processor. The proposed approach is simulated in

MATLAB environment. The performance of the proposed

approach is tested by varying the number of user requests and

time in terms of standard performance metrics such as

throughput, precision, recall, F-measure are tested are utilised

to justify the efficiency of the proposed approach. The formula

for computing the performance measures are presented as

follows.

 The throughput is the rate of service response by the

web server and it measures the amount of data being

transmitted with respect to time and is denoted by the

following equation. Greater throughput rates indicate the better

performance of the proposed approach.

𝕋 =
𝐷𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 (𝑚𝑏)

𝑇𝑖𝑚𝑒 (𝑆𝑒𝑐)
 (4)

 Precision and recall are important performance

measures that determine the working ability of the proposed

approach. Precision rate is the fraction of total number of

correctly mapped services to the total count of services being

mapped. In this case, a perfect service mapping scheme attains

greater precision rates, as it encounters maximal perfect

service mappings. On the other hand, the recall rate is

measured by computing the ratio of total number of correctly

mapped services to the total count of perfect services with

respect to the service request in the database. The precision

(𝛲) and recall (ℝ) rates are measured by the following

formulas.

𝛲 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑚𝑎𝑝𝑝𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑎𝑝𝑝𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠
 (5)

ℝ =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑚𝑎𝑝𝑝𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠
 (6)

 The F-measure is computed on the basis of the 𝛲 and

ℝ values. In this case, greater F-measure means that the web

services are correctly mapped to the user requests and is

computed by

Ϝ =
2𝛲ℝ

𝛲+ℝ
 (7)

 The accuracy rate is computing the ratio of the

summation true positive (TP) and true negative (TN) rates to

the summation of true positive, true negative, false positive

(FP) and false negative (FN) rates. The following equation

presents the formula for computing the accuracy rate.

А =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8)

 The experimental results of the proposed work are

presented as follows. Initially, the performance of the

proposed approach is tested by varying the count of processed

user requests. The processed user requests are varied from 1 to

100.

Fig.3 Throughput analysis by varying the user requests

On observation, it is noticed that the throughput of

the proposed approach is satisfactory. Greater throughput rates

enhance the performance of the system. This analysis is

carried out by varying the count of user requests to be

processed. The experimental results show that the proposed

approach shows maximum throughput, which is 1.71 MB

when dealing with one user request. The least throughput

being shown by this approach is 1.58 MB that happens when

processing ten user requests. As the number of user requests

progresses, the proposed approach shows stable results that is

around 1.6 MB. The following section presents the average

precision, recall and F-measure of the proposed approach

Fig.4. Comparative analysis w.r.t precision, recall and F-

measure

 The proposed approach is tested for its precision,

recall and F-measure rates by varying the user requests from

10 to 100. The proposed approach shows consistent results,

irrespective of the count of user requests. The highest

precision rate being shown by the proposed approach is 98.3

percent and it happened while the system handles ten user

requests. The least precision rate of the proposed approach is

96.8 percent and it occurred while handling thirty user

requests. The average precision rate of the proposed approach

is 97.4 percent.

 When it comes to recall rates, 96.2 percent is the

greatest recall rate being proven by the proposed approach.

The highest recall rate is achieved while dealing with ten user

requests. The least recall rate being recorded during this

simulation is 94.6 percent and it happened when the system

processed 120 user requests. The average recall rate of the

proposed approach is 95.3 percent. The metric F-measure

depends on the precision and recall measures. As this work

proves better precision and recall rates, it is obvious that the F-

measure of this work is greater. The following table tabulates

the results attained by the proposed approach.

User

Requests

Precision

(%)

Recall

(%)

F-Measure

(%)

Accurac

y (%)

10 98.3 96.2 97.23 95.4

30 96.8 95.9 96.34 96.2

60 97.3 94.9 96.08 94.4

100 97.9 95.3 96.58 93.2

120 96.9 94.6 95.73 94.8

Average 97.4 95.3 96.39 94.82

Table 1. Experimental Results by varying user requests

 F-measure is directly proportional to the combination

of precision and recall rates. The greatest F-measure being

recorded is 97.23 percent, which is shown during the

submission of ten user requests. As stated earlier, the greatest

F-measure is attained while processing ten user requests, as the

greatest precision and recall rates are also attained during the

execution of ten user requests. 95.73 percent is the smallest F-

measure rate that is observed when processing 120 user

requests. In addition to this, the count of service requests being

responded in a specific period of time is calculated and the

experimental results are presented in figure 5.

1.5

1.55

1.6

1.65

1.7

1.75

1 10 20 30 40 50 60 70 80 90 100

Th
ro

u
gh

p
u

t
(M

B
)

User Requests

92

93

94

95

96

97

98

99

10 30 60 100 120

V
al

u
e

s
(%

)

User Requests

Precisi
on

Fig.5 Service request handling analysis

 Hence, the efficiency of the proposed approach is

proven with greater throughput, precision, recall, F-measure

and accuracy rates. The results are obtained by varying the

user requests ranging from 1 to 120. The service request

handling ability of the proposed approach is proven to be

better, as it shows rapid progress. As time progresses, the

number of service requests being handled increases. This

increases the robustness and reliability of the system. The

main reason for better service mapping is that the proposed

approach relies on association rules, which are constructed by

utilising tiered architecture. As the rules are framed

dynamically, the perfect service is mapped by performing

alteration. Thus, the proposed tiered architectural pattern

works better, with respect to the tested scenario. Additionally,

it is easy for performing any dynamic operation such as alter

or delete over the components involved in the tier.

5. CONCLUSION

 This article proposes a self-aware, dynamic, adaptable

software architectural pattern based on association rule

mining. The proposed software architectural pattern relies on

three significant tiers such as user terminal tier, knowledge

adoption tier and service response tier. The user terminal tier is

responsible for accepting different user requests from wide

range of user terminals. The knowledge adoption tier is the

heart of the proposed approach that is decomposed into three

modules such as observation, rule formation and decision

making module. The observation module performs the

preliminary tasks for framing association rules. The rules are

then formed by considering the support and confidence values.

Based on the user request, the decision making module

commands the service response tier to map the appropriate

service to the user. The dynamic service provision involves

component deletion or modification. Finally, the performance

of the proposed approach is evaluated by varying the user

requests and the efficacy of the architectural pattern is tested in

terms of throughput, accuracy, precision, recall and F-measure

rates. On analysis, the proposed approach shows reasonable

results and is robust. In future, this work is planned to be

extended by considering dynamic user requirements, which

changes the functional ability of the components.

REFERENCES

[1] Zuohua Ding; Yuan Zhou; Mengchu Zhou, "Modeling Self-

Adaptive Software Systems with Learning Petri Nets", IEEE

Transactions on Systems, Man, and Cybernetics: Systems,

Vol.46, No.4, pp.483-498, 2016.

[2] Deshuai Han; Qiliang Yang; Jianchun Xing, "Extending UML

for the modeling of fuzzy self-adaptive software systems", The

26th Chinese Control and Decision Conference, 31 May-2 June,

Changsha, China, 2014.
[3] Markus Luckey ; Gregor Engels, "High-quality specification of self-

adaptive software systems", ICSE Workshop on Software Engineering

for Adaptive and Self-Managing Systems, 20-21 May, San Francisco,

USA, 2013.

[4] Konstantinos Angelopoulos ; Vítor E. Silva Souza ; João Pimentel,

"Requirements and architectural approaches to adaptive software

systems: A comparative study", ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems, 20-21 May, San

Francisco, USA, 2013.

[5] Naeem Esfahani ; Ahmed Elkhodary ; Sam Malek, "A Learning-Based

Framework for Engineering Feature-Oriented Self-Adaptive Software

Systems", IEEE Transactions on Software Engineering, Vol.39, No.11,

pp.1467-1493, 2013.

[6] Javier Cámara ; Rogério de Lemos ; Nuno Laranjeiro ; Rafael

Ventura; Marco Vieira, "Robustness Evaluation of Controllers in Self-

Adaptive Software Systems", Sixth Latin-American Symposium on

Dependable Computing, 1-5 April, Rio de Janeiro, Brazil, 2013.

[7] Selim Kebir, "JACAC: An aspect oriented framework for the

development of self-adaptive software systems", International

Conference on Sciences of Electronics, Technologies of Information

and Telecommunications, 21-24 Mar, Sousse, Tunisia, 2012.

[8] Liangdong Wang; Yang Gao; Chun Cao; Li Wang, "Towards a General

Supporting Framework for Self-Adaptive Software Systems", IEEE

Annual Computer Software and Applications Conference Workshops,

16-20 July, Izmer, Turkey, 2012.

[9] Gholamreza Safi; Seyed-Hassan Mirian-Hosseinabadi, "A Service

Based Approach to Self-Adaptive Software Systems Based on

Constructing a Group of Autonomic Elements", IEEE International

Conference and Workshops on Engineering of Autonomic and

Autonomous Systems, 22-26 March, Oxford, England, 2010.

0

100

200

300

400

500

600

200 400 600 800 1000

Se
rv

ic
e

 R
e

q
u

e
st

s

Time (sec)

[10] Hyun-Chong Kim; Ho-Jin Choi; In-Young Ko, "An architectural model

to support adaptive software systems for sensor networks", 11th Asia

Pacific Software Engineering Conference, 30 Nov-3 Dec, Busan, South

Korea, 2004.

[11] J. Gray; R. Klefstad; M. Mernik, "Adaptive and evolvable software

systems: techniques, tools, and applications", 37th Annual Hawaii

International Conference on System Sciences, 5-8 Jan, Big Island,

USA, 2004.

[12] Nadeem Abbas; Jesper Andersson; Muhammad Usman Iftikhar ;

Danny Weyns, "Rigorous Architectural Reasoning for Self-Adaptive

Software Systems", Qualitative Reasoning about Software

Architectures, 5-8 April, Venice, Italy, 2016.

[13] Joachim Hänsel ; Thomas Vogel ; Holger Giese, "A Testing Scheme

for Self-Adaptive Software Systems with Architectural Runtime

Models", IEEE International Conference on elf-Adaptive and Self-

Organizing Systems Workshops, 21-25 Sep, Cambridge, USA, 2015.

[14] Javier Cámara ; Rogério de Lemos ; Nuno Laranjeiro ; Rafael

Ventura; Marco Vieira, "Robustness-Driven Resilience Evaluation of

Self-Adaptive Software Systems", IEEE Transactions on Dependable

and Secure Computing, Vol.14, No.1, pp.50-64, 2017.

[15] Martin Weißbach; Philipp Chrszon ; Thomas Springer ; Alexander

Schill, "Decentrally Coordinated Execution of Adaptations in

Distributed Self-Adaptive Software Systems", 11th International

Conference on Self-Adaptive and Self-Organizing Systems, 18-22 Sep,

Tucson, USA, 2017.

[16] Zuohua Ding ; Yuan Zhou ; Mengchu Zhou, "Modeling Self-Adaptive

Software Systems By Fuzzy Rules and Petri Nets", IEEE Transactions

on Fuzzy Systems, Vol.PP, No. 9, pp.1-1, 2017.

[17] Xiaowei Zhang; Bin Li ; Junwu Zhu, "A Monitoring and Prediction

Model of Workflow Based Self-Adaptive Software System", Second

International Conference on Advanced Cloud and Big Data, 20-22 Nov,

Huangchen, China, 2014.

