
  

IMPROVING THE PERFORMANCE OF A PARALLEL HYBRID ELECTRIC 

VEHICLE BY HEURISTIC CONTROL METHOD 

 
T.Gowrishankar     Dr.A.Nirmal Kumar 

Department of EEE, Anna University, Chennai, India, Email:tgowrisha@gmail.com 

 
 ABSTRACT 

Hybrid Electric Vehicles (HEV) are expected as one of 

key solutions for mobility in the future, with reduced 

pollutions and better fuel economy alternative. In this 

paper, an analysis on Parallel HEV to reduce fuel usage 

and improve emission control performance, in addition 

to optimising the size of its key components has been 

presented. Various number of optimisation strategies 

have been proposed in literature. With respect of real 

time implementation, most of the papers in the literature 

have proposed on the use of heuristics. Despite the 

research advances made, the key challenge with 

heuristic strategies remain in achieving reasonable fuel 

savings without over depleting the battery state of charge 

at the end of the trip. To handle this Challenge, this paper 

offers an effective heuristic control strategy based on 

Artificial Bee Colony(ABC) algorithm and also in 

addition a modified approach, in analysing and 

dynamically optimizing key vehicle key component size, 

which influence the vehicle performance and to find a 

right combination of these significant parameters, which 

would maximize vehicle performance through reduced 

fuel consumption and emission. The potential of the 

proposed heuristic control strategy was explored over 

various drive cycles, which reflect different driving 

scenarios. Results from this analysis show, that as much 

as 22% fuel savings could be achieved over the UDDS 

driving cycle, which is the maximum, when compared 

with other driving cycles considered. Also in comparison 

to a basic ABC algorithm, the Modified Artificial Bee 

Colony(MABC) algorithm was found to be 

outperforming, in that it achieved impressive real time 

fuel savings and reduced emissions, without much 

penalty to the final battery state of charge along with 

reduced key vehicle components size for different driving 

cycles. 

Keywords: Automotive system, Dynamic Optimisation, 

Parallel Hybrid Electric Vehicle, Artificial Bee Colony 

Algorithm 

1 Introduction 

Conventional fossil fuel based Automobiles are 

considered as one of the key sources for 

atmospheric pollution and related effects on the 

environment. Hence one of the primary 

requirements for the automobile manufacturers, has 

to come up with alternative modern vehicle design 

technologies, that could support reduced pollution 

and improved useful energy efficiency. Hybrid 

electric vehicle performance in terms of reduced 

emissions and improved fuel efficiency seems to be 

promising as an alternative technology. These type 

of vehicles generally have energy storage system 

and energy conversion possibilities, with which, it 

propels. The hybridization factor of a hybrid electric 

vehicles can be defined by the ratio of power 

provided by the electric motor to total power 

available by both ICE and the motor. In order to 

achieve the maximum possible fuel efficiency and 

reduced emissions, more accuracy is needed in 

terms of modelling and control of the said vehicle. 

Three types of vehicle modelling exist in literature 

known as the kinematic or backward approach, the 

quasi static or forward approach, and the dynamic 

approach. The kinematic approach is a backward 

methodology where speed of the vehicle and the 

road grade are the input variables. In this method, 

the engine speed will be determined using simple 

kinematics based relationships starting from the 

wheel revolution speed and the total transmission 

ratio of the driveline. The assumption on the 

kinematic approach is that the vehicle meets the 

target performance, so that the vehicle speed is 

known already and hence it has the advantage of 

simplicity and low computational cost [1]. In this 

method, there exist no guarantees that the given 

vehicle will actually be able to meet the desired 

speed trace, since the power request is directly 

computed from the speed and not checked against 



the actual power train capabilities. Another flaw of 

this modelling technique is its negligence of thermal 

transient behaviour of engines which are noticeable 

after an engine cold start. The quasi static approach 

of HEV modelling makes use of a driver model 

typically a PID which compares that target vehicle 

speed (drive cycle speed), with the actual speed 

profile, of the vehicle and then generates a power 

demand profile which is needed to follow the target 

vehicle speed profile. This power demand profile is 

generated by solving the differential motion 

equation of the vehicle [2]. The suitability and 

accuracy of the quasi-static modelling approach 

necessitates a more detailed engine simulation 

model in order to properly capture engine transient 

behaviour in a detailed way.  

Also the power management strategies of a HEV 

could be broadly classified in to two approaches 

namely optimization based methods that control the 

power split using exact knowledge of the vehicle 

power demand, and rule based real time 

implementable methods, which control the power 

split without exact knowledge of the future vehicle 

power demand. Optimization based control 

strategies decide the control signals either by 

minimizing the sum of the objective function over 

time (global optimization) or by instantaneously 

minimizing the objective function (local 

optimization). The two common types of rule based 

optimisation methods are Dynamic 

Programming(DP) and Pontryagins Minimum 

Principle(PMP) for HEV optimal energy 

management. DP originally developed by Richard 

Bellman, solves discrete multi-stage decision 

problems by selecting a decision based on the 

optimization criterion from a finite number of 

decision variables at each time step. DP can work 

better if the initial conditions of vehicle 

performance are already known. And also DP needs 

a kind of post processing steps like based on neural 

networks based processing or an equivalent method 

in order to finalise the results. This makes it even 

more complicated to arrive at the optimal solution. 

Equivalently PMP as proposed by Namwook [3] 

can be seen better than DP in terms of computing 

time, but there is a high chance of solution being 

trapped to local optima rather than reaching a global 

optimal solution.  

There are also other approaches in the literature like 

Equivalent Consumption Minimization 

Strategy(ECMS) [4] which is based on the Euler-

Lagrange equation of variational calculus, which 

characterizes the equivalent fuel for electrical 

energy consumption. While this approach is useful 

in identifying the ultimate fuel saving potential of 

an HEV over a given driving cycle, this is not 

suitable for real time implementation as such, as it 

is time consuming and requires information about 

the vehicle’s future power demand before the trip, 

which is not practically possible. There are number 

of variants of this ECMS methodology available in 

literature, for instance the Adaptive ECMS [5] and 

Telemetry ECMS [6], which adjust the equivalent 

factor based on past driving data and future 

prediction. The main drawback or disadvantage of 

these adaptive techniques however, is the need for 

equipment’s like GPS (global positioning system), 

which often adds additional cost. Xiong has 

presented a paper which explains on adaptive 

energy management of hybrid electric vehicles 

using driver pattern recognition for fuel efficiency 

only. Again this is also based on Dynamic 

Programming strategy which still has the 

drawbacks of DP as mentioned earlier [7]. PSO 

based optimisation approach was also proposed by 

Wu, in which a single objective optimisation goal 

attainment method was used instead of a multi 

objective optimisation problem [8]. Montazeri tried 

to apply Genetic Algorithm to achieve optimal 

values for HEV components sizing and control 

strategy with minimum fuel consumption and 

emissions [9]. A major similarity of the studies 

mentioned above is that the approach for the 

optimal design is either for the component sizing or 

the control strategy, while other parameter is kept 

fixed. However, in practical scenario, in a vehicle, 

both the component sizing and the control strategy 

influence each other, in achieving the vehicle 

performance efficiency. Hence it becomes 

imperative to make simultaneous optimization of 

component sizes and control strategy parameters, so 

as to obtain a more optimal design of a Hybrid 

electric vehicle. Heuristic strategies when 

compared with other methods discussed above, are 

easily implementable in real time and with the 

potential for simplicity, customization and 

robustness; they have been reported to show a near 

optimal performance, if the rules are made clear and 

detailed so as to take care of circumstances that may 

affect the vehicle performance [10][11][12].  

Recent advances in heuristic controller research 

have focused on the use of heuristic approaches like 

the one proposed by Long VT [13], which mainly 

focuses on application of Artificial Bee 



Colony(ABC) algorithm based approach for HEV 

optimisation. In this approach, he used a Basic 

ABC(BABC) algorithm to find out the optimal 

solution for simultaneous optimisation of 

component sizes and also a control strategy for 

HEV. Also one more theory proposed by him in 

2014 uses a pheromone based approach [14] 

wherein which the computation time has been 

reduced compared to the previous one. In both of 

these approaches, the optimisation method used was 

a basic ABC method which has the problem of 

exploration and exploitation during the optimal 

solution search. The exploration refers to the ability 

to investigate the various unknown regions in the 

given solution space to discover the global 

optimum, while, the exploitation refers to the ability 

to apply the knowledge of the previous good 

solutions to find better solutions.  

In this paper, usage of a Modified ABC 

algorithm(MABC) based on global best solution 

guided approach is proposed to obtain better 

optimal solution through avoiding aforementioned 

issues. The significance of this work lies in 

analysing and dynamically optimizing different 

vehicle key component size, fuel consumption and 

emission parameters, which influence the vehicle 

performance and to find a right combination of 

these significant parameters, which would 

maximize vehicle performance through reduced 

fuel consumption and emission. The Key 

parameters considered are vehicle component size, 

fuel consumption, emissions and energy 

consumption of different vehicle components. The 

optimisation, for given driving cycle is performed 

using both the BABC/MABC approach, while 

vehicle has to still satisfy PNGV constraints.  

Also Driving cycle plays key role in fixing vehicle 

key parameters. In this paper, the weighting factor 

of vehicle performance parameters in objective 

function is varied and optimisation simulation is 

carried out for different driving cycles like FTP, 

UDDS and ECE-EUDC using BABC and MABC. 

Also the results of BABC and MABC are 

compared, and the results signifies the improvement 

of MABC in searching a better optimal solution of 

HEV parameters, with the similar boundary 

conditions, while still satisfying the PNGV 

constraints like acceleration and vehicle grade 

requirements. 

 

 

 

2 HEV Powertrain Modelling 

 

In order to improve efficiency of the HEV with 

better fuel economy and reduced emissions, it is 

imperative to develop vehicle models with accurate 

sub-system modelling and better predictability of 

fuel consumption and emissions under various 

driving conditions. This section will compose 

mainly of the physical and mathematical modelling 

of a parallel hybrid electric vehicle in a 

Matlab/Simulink environment. The vehicle 

subsystems detailed in this section aim to model to 

a high level of accuracy the vehicle components, 

which significantly affect fuel consumption and 

emission. Block diagram shown in Figure 1 below. 

 

 
Fig. 1. Parallel HEV Block Diagram 

 

The above said Vehicle’s Dynamic modelling has 

been defined as below. Whenever there is a 

movement of vehicle in forward direction, there 

exists a forward shift resistance or a ground reaction 

force which enables the vehicle movement which is 

termed as the rolling resistance moment of vehicle. 

This can be expressed as in equation 1: 

𝑉𝑟𝑜𝑙𝑙𝑖𝑛𝑔 = 𝜇𝑁𝑐𝑅𝑤  (1) 

The Wheel rolling force (Wrolling) to balance the 

𝑉𝑟𝑜𝑙𝑙𝑖𝑛𝑔 moment can be expressed  as in equation 2: 

𝑊𝑟𝑜𝑙𝑙𝑖𝑛𝑔 = 𝜇𝑁𝑐    (2) 

The coefficient of rolling resistance μ is a function 

of the material of tyre, its structure, temperature, 

inflation pressure and geometry. Whenever a 

vehicle travels in a particular speed in air, it faces a 

force resisting in opposition to its motion [15]. This 

opposing force is called as aerodynamic force, 

which will result mainly from two components: 

shape drag and skin friction. Thus Aerodynamic 

force (DFaero) could be expressed as a function of 

the vehicle speed, vehicle frontal area, air density 

and coefficient of air drag. The aerodynamic force 



(equation 3) could be expressed mathematically 

thus 

𝐷𝐹𝑎𝑒𝑟𝑜 = 0.5𝜌𝐴𝑓𝐶𝑑(𝑉𝑣 −  𝑉𝑎)2 (3) 

When a vehicle moves up or down a slope, its 

weight results in a component load, which is always 

directed towards the downward direction. This 

component load could result in either supporting the 

forward motion or opposing the forward motion. 

This is termed as the Grade of the vehicle. The 

grade of that vehicle could thus be expressed thus 

as in equation 4: 

 𝑉𝑔𝑟𝑎𝑑𝑒 = 𝑚𝑔𝑠𝑖𝑛(𝛽)  (4) 

Combining the vehicle loads derived according to 

Newton’s second law, for a parallel hybrid electric 

vehicle, the engine torque and speed equation, could 

be thus expressed as in equation 5 and equation 6: 

        𝑇𝐼𝐶𝐸 =
(𝑚

𝑑𝑉𝑣
𝑑𝑡

+∑(𝐷𝐹𝑎𝑒𝑟𝑜+𝑉𝑟𝑜𝑙𝑙𝑖𝑛𝑔+𝑉𝑔𝑟𝑎𝑑𝑒+𝑉𝑒𝑥𝑡𝑟𝑎))𝑅𝑤

𝐹𝐷𝑅𝐺𝐸𝐸𝑓𝑓
−

𝑇𝑚𝑜𝑡𝐺𝑀

𝐺𝐸

     (5) 

Where 

𝑇𝑚𝑜𝑡𝑜𝑟 =
𝑃𝑚𝑜𝑡

𝐺𝑀𝐹𝐷𝑅𝑊𝑤ℎ𝑒𝑒𝑙
2𝜋

60

  (6)  

The general engine speed equation could be 

expressed as in equation 7 below: 

𝑊𝐼𝐶𝐸 = 𝑊𝑤ℎ𝑒𝑒𝑙𝐹𝐷𝑅𝐺𝐸
2𝜋

60
  (7) 

Engine modelling 

 

Engine modelling is one of the imperative steps in 

this analysis, since only with more accurate 

modelling of the engine, the main objective of fuel 

consumption reduction could be accurately 

predicted. The engine considered for modelling and 

simulation is Geo 1.0L(41KW) SI engine. Using 

the engine torque and speed values for the given 

engine, fuel converter efficiency for each engine 

torque-speed point could be read off as detailed in 

Figure 2. The engine fuel conversion efficiency in 

this manner implies that transmission losses have 

already been accounted for.  

 
Fig. 2. Engine fuel consumption map 

Gear shift strategy 

 

The gearbox of a multi-speed transmission houses 

gears of different gear ratios that are used to 

transmit torque from the engine or tractive motor to 

the final drive and on to the wheels. It thereby 

allows a number of discrete speed reduction and 

torque multiplication factors. Effects on torque and 

speed in the gearbox include torque multiplication 

and speed reduction via the gear ratio, torque loss 

due to the acceleration of rotational inertia, and 

torque loss due to the friction of the turning gears. 

There are several methods existing in expressing 

the gear shift for a given driving cycle. André [16] 

pioneered a new strategy strategy known as the 

“Artermis strategy”. This strategy considers 

simultaneously: the driving condition (engine 

speed and power demand) and driving styles of the 

drivers [17]. The gear shift strategy considered in 

this simulation is a 5 speed manual transmission. 

 

Electric motor modelling 

 

Wide range of motor designs are available in the 

market for this kind of applications. The key 

parameters to be considered while selecting the 

motor for HEV includes power, speed- torque 

characteristics and the efficiency when coupled 

with battery and the engine. The efficiency of the 

electrical machine is dynamically adjusted with 

respect to its speed and torque characteristics. Also 

the power source for the motor in the vehicle would 

be the battery power. In the current analysis, the 

motor considered is Westinghouse, 75 kW, AC 

Induction motor. The power drawn from the battery 

by the electrical machine could be electrically 

modelled as in equation 8 

𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =
2𝜋

60
𝑃𝑚𝑜𝑡𝑜𝑟Ƞ𝑚𝑜𝑡𝑜𝑟 (8) 

Also the torque speed characteristics of the motor 

is shown below in figure 3: 

 
Fig. 3. Speed-Torque Curves 



Electric battery modelling  

 

In a HEV, there will be power flow in both 

directions for the battery, meaning, there will be 

charging and discharging cycles, based on the 

operating mode of the vehicle. The battery power 

would be considered as negative during charging 

and positive during discharging. The measure of 

charge left in a battery as a proportion of the 

maximum possible charge of the battery is termed a 

State of Charge(SOC) of the battery. During 

simulation, an integral of battery current (I) over the 

maximum possible battery charge is used to 

calculate the battery state of charge. For the current 

analysis, a Hawker Genesis 12V26Ah VRLA 

battery is considered. At every simulation time step, 

the battery state of charge can be calculated thus in 

equation 9: 

𝑆𝑂𝐶𝑡+1 = 𝑆𝑂𝐶𝑡+̅ ∫
𝐼

𝑄
𝑑𝑡

𝑡+1

𝑡
 (9) 

Where ‘+’ indicates charging and ‘– ‘indicates 

discharging of the battery. A typical SOC curve for 

considered battery could be depicted as below in 

figure 4. There are basically two types of SOC 

correction possible namely Linear and Zero delta 

method. In this analysis, Zero delta method is used. 

 
Fig. 4. SOC curve 

Control Strategy 

 

The control strategy plays a key role in determining 

the ideal operating point of the vehicle’s engine and 

motor, to obtain the minimum fuel consumption and 

emission targets during vehicle optimisation [11]. 

The flexibility of this strategy lies in allowing a 

vehicle to adjust its controls based on its driving 

location or local control limits, real-time adjustment 

to driving cycles and Incorporating the temperature 

effects on fuel use, engine-out emissions, and 

catalyst behaviour [12]. In this analysis, the parallel 

Electric Assist Control Strategy(EACS) has been 

utilised. The EACS uses the motor for additional 

power, when needed by the vehicle and maintains 

charge in the batteries. The parallel assist strategy 

can use the electric motor in a variety of ways: 

1.The motor can be used for all driving torque 

below a certain minimum vehicle speed. 

2.The motor is used for torque assist if the required 

torque is greater than the max torque deliverable by 

the engine at the engine’s operating speed. 

3.The motor charges the batteries by regenerative 

braking. 

4.When the engine would run inefficiently at the 

required engine torque at a given speed, the engine 

shuts off and the motor produce the required torque. 

5.When the battery SOC is low, the engine will 

provide excess torque which will be used by the 

motor to charge the battery. 

 

Driving Cycles 

 

The FTP, ECE-EUDC and UDDS are considered as 

the base driving cycles for the analysis. These 

vehicle driving cycles are considered due to the fact 

that they cover the majority part of the different 

driving conditions that a vehicle, would face during 

its usage [18]. The corresponding driving cycle 

details as shown in the figures 5, figure 6 and figure 

7 below: 

 
Fig. 5. FTP driving cycle 

 
Fig. 6. ECE-EUDC driving cycle  

 
Fig. 7. UDDS driving cycle 



Vehicle model baseline validation 

 

The Parallel HEV considered in the ADVISOR tool 

has various subsystems in the modelled vehicle. 

The key components include fuel converter, torque 

coupling, motor controller, energy storage, 

transmission, wheel axle, exhaust after treatment, 

power train control and accessory modules. Each 

module has a set of variables defined, which can be 

varied and analysed for vehicle performance. The 

key parameters of the vehicle considered are as 

depicted in Table 1. The vehicle considered in this 

optimisation is a parallel hybrid electric vehicle 

using the ADVISOR [19] [20] as a simulation tool, 

with gasoline engine and battery as sources of 

power for vehicle driving [21]. The considered 

vehicle is depicted in a block diagram as shown 

below in figure 8: 

 

Vehicle Parameter Description 

Engine type Geo 1.0L (41kW) SI Engine 

Power train Parallel Hybrid 

Motor 
Westinghouse, 75 kW, AC 

Induction motor  

Transmission 
5-Speed Manual 

Transmission 

Motor efficiency 92 % 

Vehicle mass(m) 592 Kg 

Fuel converter 

efficiency 
34 % 

Battery 12V, 26Ah VRLA battery 

Wheel Radius RW 0.282 m 

Frontal area Af 2.0 m2 

Coefficient of drag 

Cd 
0.335 

Table 1. Vehicle Parameters 

 

 

Fig. 8. Simulation vehicle block diagram 

In this analysis, the key input parameters considered 

are fuel converter scaling factor for torque range, 

motor/controller torque scaling range, number of 

battery modules and a set of control strategy 

parameters as shown in table 2 below. The 

mentioned parameters are given as input to the 

heuristic algorithm and the resultant optimised 

outputs in terms of fuel consumption and emissions 

are obtained. The approach is discussed in detail 

below.  

 

Objective function and constraints 

 

The key objective function of this paper is to 

minimise the parameters of Fuel Consumption(FC), 

Carbon Monoxide(CO), Nitrous Oxide(NOX) and 

Hydro Carbons(HC), so as to obtain maximum 

vehicle performance. The objective function is as 

follows as in equation 10: 

Min F(x) = b1FC+b2CO+b3NOX+b4HC    (10) 

 

Where b1 to b4 are termed as weighting factors of 

different parameters considered in the objective 

function, subjected to following constraints as 

stated below in equation (11) until equation (18) 

Acceleration time for 0-60mph(t1) ≤ 12s      (11) 

Acceleration time for 40-60mph(t2) ≤ 5.3s   (12) 

Acceleration time for 0-85mph(t3) ≤ 23.4s   (13) 

The gradeability at 55mph for 1200s ≥ 6.5%(14) 

Maximum speed ≥ 85.1mph                    (15) 

Maximum acceleration >16.4 ft/s-2        (16) 

Distance in 5 s  >140 ft                     (17) 

Delta State of Charge ∆SOC ≤ 0.5%       (18) 

These are the PNGV constraint limits as defined by 

US Consortium. Also the considered system is 

pertaining to the following environment conditions 

as per equation 19, equation 20 and equation 21: 

a. The engine can only produce power:   

Pengine > 0   (19) 

b. The power output of engine is limited to the max 

power rating of the engine, which is stated as:  

     0<Pengine<Pengine_max_power  (20) 



c. To behave as a charge sustaining control system, 

the State Of Charge (SOC) of battery should be 

always within the defined minimum and maximum 

limits:          SOClow<SOCbattery<SOChigh (21) 

 

3 Heuristic Approach 

Approach 1: Basic Artificial Bee colony based 

optimisation 

 

The optimisation algorithm used for the problem is 

Artificial Bee Colony (ABC) algorithm for the 

heuristic approach based solution search. The 

details of the Basic ABC are detailed below. The 

ABC algorithm is a swarm based meta-heuristic 

algorithm, introduced by Karaboga in 2005 

(Karaboga, 2005) for optimizing numerical 

problems. It was inspired by the intelligent foraging 

behaviour of honey bees. To apply ABC, the 

considered optimization problem has to be first 

converted to the problem of finding the best 

possible solution (values of parameters), which 

maximises the fitness [22]. Then, the artificial bees 

randomly discover a population of initial solution 

vectors and then iteratively improve them by 

employing the strategies: moving towards better 

solutions by means of a neighbourhood search 

mechanism, meanwhile forgetting the abandoned 

poor solutions [13] [14]. This can be 

mathematically represented as per equation 22 

v𝑖,𝑗 =𝑥𝑖,𝑗 +Φ𝑖,𝑗 (𝑥𝑖,𝑗 −𝑥𝑘,𝑗)  (22) 

The major steps of the ABC algorithm are outlined 

as follows: 

Initialize all parameters;  

Repeat while Termination criteria is not met  

Step 1: Employed bee phase for computing new 

food sources.  

Step 2: Onlooker bees phase for updating location 

the food sources based on their amount of nectar.  

Step 3: Scout bee phase for searching new food 

sources in place of rejected food sources.  

Step 4: Memorize the best food source identified so 

far. End of while  

The Output of the algorithm would be, the best 

solution identified so far. Using the foraging 

behaviour, the vehicle component size has been 

optimised, in turn, reducing emissions and fuel 

consumption. The basic ABC has a disadvantage of 

exploration and exploitation problems, which 

causes the algorithm to get trapped to local optima 

and may not achieve global optimal solution. The 

exploration refers to the ability to investigate the 

various unknown regions in the given solution 

space to discover the global optimum, while, the 

exploitation refers to the ability to apply the 

knowledge of the previous good solutions to find 

better solutions, as mentioned previously. 

 

Approach 2: Modified Artificial Bee Colony 

based optimisation(MABC) 

 

In order to overcome the “exploitation” issue with 

BABC, a Modified ABC(MABC) algorithm has 

been utilised for the proposed problem 

optimisation, which overcomes the issues of basic 

ABC and provides better optimisation results. In the 

MABC algorithm, a new search equation described 

by Global best guided ABC inspired by PSO, in 

order to improve the exploitation, takes advantage 

of the information of the global best(Gbest) solution 

to guide the search of candidate solutions by Zhu 

and Kwong [23] has been utilised. This improves 

the solution, through reducing aforementioned 

problems of basic ABC and to take advantage of the 

global best solution information as shown in 

equation 23 below: 

    v𝑖,𝑗 =𝑥𝑖,𝑗 +Φ𝑖,𝑗 (𝑥𝑖,𝑗 −𝑥𝑘,𝑗)+Ψ𝑖,𝑗 (𝑦𝑗 −𝑥𝑖,𝑗)   (23) 

where v𝑖,𝑗 is the new neighbouring food source, 𝑦𝑗 is 

the 𝑗th element of global best solution, Ψ𝑖,𝑗 is a 

uniform random number in the range of 0 to 1.5, Φ𝑖,𝑗 

is a random number in the range[−1, 1], and 𝑗 ∈ {1, 

2, . . . , 𝑛} is a  randomly chosen index. Ψ𝑖,𝑗 (𝑦𝑗 −𝑥𝑖,𝑗) 

is the Gbest term added in addition to basic ABC. 

Practically the exploration and exploitation 

contradict with each other, and in order to achieve 

good optimization performance, the two abilities 

should be well balanced. Hence here compared to 

basic ABC, the search of candidate solution is 

guided, which helps to reach the global optimum. 

 

4 Simulation and analysis 

 

The key vehicle parameters are set in ADVISOR 

tool [19] [20] developed by NREL in MATLAB for 

vehicle simulation to obtain the output parameters, 

as required for objective function.  Also additional 

tests like acceleration and grade tests with the 

required conditions were set and the tool will 

perform the simulation. The result window typically 

provides FC, HC, CO, NOX, Gradeability and 

Acceleration tests results. In this approach, as 

mentioned earlier the zero delta SOC correction 

technique is used. The Zero-Delta correction 

routine adjusts the initial SOC until the simulation 

run yields a zero change in SOC +/- a 0.5% 



tolerance band, which is one of the mandatory 

PNGV constraints. The FTP, UDDS and ECE-

EUDC are considered as the base driving cycles 

[18]. There are four different cases considered. In 

case 1 and case 2, the weighting factor for 

minimisation of fuel usage is kept as high as 50 %, 

while the weightage of other three parameters are 

distributed with remaining 50%. While in Case 3 

and Case 4 the weightage of Emissions kept as 70% 

while Fuel usage were kept within 30% weightage. 

This strategy of varying the weightage has been 

taken in this research, so as to analyse the 

effectiveness of algorithm under various 

requirements of the vehicle. Also the driving cycle 

utilised has an influence on the results based on the 

peak speed and distance relationship, and related 

fuel consumption and emission.  

    
Table 2. Optimisation results for FTP driving cycle            

 
Table 3. Optimisation results for ECE-EUDC cycle 

                    
Table 4. Optimisation results for UDDS cycle  
The corresponding initial input and optimised 

values obtained for the considered driving cycles 

for optimisation approach 1, for various cases are 

tabulated in Table 2, Table 3 and Table 4, for 

different driving cycles for basic ABC. The fuel 

usage, SOC and emission plots are shown for a case 

1 FTP for BABC in Figure 9 below.

Fig. 9. BABC Fuel usage, emission and SOC plot 

 Also the corresponding initial input and optimised 

values obtained for the considered driving cycles 

for optimisation approach 2, for various cases are 

tabulated in Table 5, Table 6 and Table 7 with 

modified ABC. The corresponding fuel usage, SOC 

variation and emission plots for a driving cycle FTP 

case 1 is shown in Figure 10 below.  

Case 1 Case 2 Case 3 Case 4

Initial 

Value

FC_torque_scale 1.500 1.500 1.500 1.385 1.349

MC_torque_scale 0.783 1.024 1.182 1.158 1.182

ESS_module_number 30.000 30.000 30.000 27.000 30.000

CS_EL_Speed_lo 8.000 4.000 0.000 4.000 3.000

CS_EL_Speed_hi 22.000 30.959 20.000 17.000 20.000

CS_min_trq_frac 0.800 0.317 0.218 0.317 0.218

CS_off_trq_frac 0.069 0.050 0.104 0.050 0.137

CS_lo_soc 0.570 0.570 0.569 0.523 0.567

CS_hi_soc 0.650 0.632 0.695 0.632 0.695

CS_charge_torque 31.000 31.000 31.000 12.000 31.000

Grade                      (%) 9.057 8.751 8.813 8.076 7.200

0-60 mph time(t1)  (s) 7.841 8.380 8.415 8.396 8.400

40-60 mph time(t2) (s) 3.633 4.060 4.105 4.069 4.000

0-85 mph(t3)           (s) 14.882 16.410 16.536 16.475 16.300

Max speed         (mph) 131.012 127.450 127.351 126.399 127.000

Max acce        (ft/s­2) 16.400 16.400 16.400 16.400 16.400

Distance in 5s (ft) 185.041 184.340 184.380 183.250 183.700

FC         (mpg) 34.857 33.340 32.247 33.141 32.200

HC        (gms/mile) 0.605 0.611 0.603 0.566 0.564

CO        (gms/mile) 2.522 2.280 2.430 2.133 3.244

Nox      (gms/mile) 0.472 0.477 0.462 0.452 0.471
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Case 1 Case 2 Case 3 Case 4

Initial 

Value

FC_torque_scale 1.315 1.300 1.500 1.500 1.349

MC_torque_scale 0.952 0.700 1.200 0.967 1.182

ESS_module_number 29.000 29.000 30.000 30.000 30.000

CS_EL_Speed_lo 7.000 7.600 8.000 4.000 3.000

CS_EL_Speed_hi 12.902 14.000 25.118 19.000 20.000

CS_min_trq_frac 0.259 0.678 0.291 0.810 0.218

CS_off_trq_frac 0.002 0.211 0.143 0.154 0.137

CS_lo_soc 0.261 0.523 0.276 0.567 0.567

CS_hi_soc 0.655 0.727 0.867 0.844 0.695

CS_charge_torque 30.000 32.000 15.000 31.000 31.000

Grade                      (%) 8.526 8.097 10.222 9.512 7.200

0-60 mph time(t1)  (s) 9.231 8.141 8.4426 7.621 8.400

40-60 mph time(t2) (s) 4.614 3.842 4.1031 3.495 4.000

0-85 mph(t3)           (s) 18.618 15.677 16.574 14.325 16.300

Max speed         (mph) 120.897 127.922 127.302 130.77 127.000

Max acce        (ft/s­2) 16.4 16.4 16.4 16.4 16.400

Distance in 5s (ft) 178.297 183.18 183.059 187.148 183.700

FC         (mpg) 30.387 33.154 28.776 30.33 28.600

HC        (gms/mile) 0.74 0.763 0.888 0.85 0.768

CO        (gms/mile) 2.857 2.895 3.002 2.839 3.157

Nox      (gms/mile) 0.474 0.481 0.56 0.503 0.495

O
b

je
ct

iv
e

V
ar

ia
b

le
s

C
o

n
st

ra
in

ts

ECE-EUDC Driving cycle - ABC

Items

Case 1 Case 2 Case 3 Case 4

Initial 

Value

FC_torque_scale 1.454 1.500 1.500 1.500 1.349

MC_torque_scale 0.755 0.937 0.900 1.066 1.182

ESS_module_number 20.214 24.000 20.000 25.000 30.000

CS_EL_Speed_lo 4.000 3.000 4.000 0.000 3.000

CS_EL_Speed_hi 24.000 20.000 21.000 22.000 20.000

CS_min_trq_frac 0.216 0.278 0.318 0.100 0.218

CS_off_trq_frac 0.116 0.182 0.080 0.068 0.137

CS_lo_soc 0.394 0.343 0.487 0.516 0.567

CS_hi_soc 0.765 0.844 0.680 0.950 0.695

CS_charge_torque 29.000 31.000 34.850 40.000 31.000

Grade                      (%) 10.019 10.370 9.797 10.056 7.200

0-60 mph time(t1)  (s) 8.648 8.264 8.583 8.659 8.400

40-60 mph time(t2) (s) 4.206 3.959 4.171 4.256 4.000

0-85 mph(t3)           (s) 17.046 16.054 16.885 17.167 16.300

Max speed         (mph) 124.087 127.749 125.030 124.983 127.000

Max acce        (ft/s­2) 16.400 16.400 16.400 16.400 16.400

Distance in 5s (ft) 181.133 183.649 181.635 182.580 183.700

FC         (mpg) 35.197 34.276 33.746 32.174 31.400

HC        (gms/mile) 0.774 0.806 0.805 0.793 0.737

CO        (gms/mile) 2.726 3.506 2.782 3.061 4.833

Nox      (gms/mile) 0.545 0.581 0.566 0.548 0.557
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Table 5. Optimisation results for FTP driving cycle 

 

               
Table 6. Optimisation results for ECE-EUDC cycle 

It can be observed from above results, for a given 

driving cycle, to achieve required PNGV 

performance, irrespective of the type of algorithm 

used, there is always a trade-off between emissions 

and Fuel usage, that is, the reduction of emissions is 

achieved, only with additional fuel consumption 

and vice versa, since they lie at different operating 

points for an SI engine. The optimal control 

problem set up is solved over the FTP, ECE-EUDC 

and UDDS drive cycles and the results are 

compared below to benchmark the proposed 

MABC algorithm over the BABC algorithm in 

finding the optimal solution for the defined 

objective function as shown in Table 8 below. 

  
Table 7. Optimisation results for UDDS cycle         

Fig.10. MABC Fuel usage, emission and SOC plot 

A comparison of fuel economy and emissions 

before and after optimization for both approaches 

reveals that most of the solutions can increase the 

fuel economy and reduce the emission of CO, HC, 

NOx as shown in table above. Hence, as per the 

results in table 8, the MABC is identified to be 

superior in finding a better solution in terms of fuel 

consumption and emissions than BABC for various 

cases. Also when comparing the variables, the 

optimization results indicate that the engine torque 

scale, the electric motor torque scale and the 

number of the battery modules was reduced 

significantly in most of the cases, when compared 

to non-optimised values.  

Case 1 Case 2 Case 3 Case 4

Initial 

Value

FC_torque_scale 1.351 1.400 1.400 1.458 1.349

MC_torque_scale 0.714 0.783 1.100 1.076 1.182

ESS_module_number 27.741 30.000 27.000 28.000 30.000

CS_EL_Speed_lo 4.195 7.000 3.000 1.000 3.000

CS_EL_Speed_hi 19.595 23.000 31.000 18.000 20.000

CS_min_trq_frac 0.442 0.800 0.317 0.311 0.218

CS_off_trq_frac 0.051 0.069 0.050 0.139 0.137

CS_lo_soc 0.540 0.570 0.507 0.500 0.567

CS_hi_soc 0.753 0.650 0.617 0.680 0.695

CS_charge_torque 13.890 31.000 25.000 31.000 31.000

Grade                      (%) 8.547 8.322 8.260 8.891 7.200

0-60 mph time(t1)  (s) 8.735 7.976 8.453 8.152 8.400

40-60 mph time(t2) (s) 4.287 3.730 4.097 3.886 4.000

0-85 mph(t3)           (s) 17.381 15.281 16.571 15.754 16.300

Max speed         (mph) 123.160 129.960 126.200 129.030 127.000

Max acce        (ft/s­2) 16.400 16.400 16.400 16.400 16.400

Distance in 5s (ft) 181.746 184.330 182.510 184.167 183.700

FC         (mpg) 35.890 35.600 33.701 33.958 32.200

HC        (gms/mile) 0.539 0.574 0.571 0.587 0.564

CO        (gms/mile) 2.236 2.639 2.504 2.519 3.244

Nox      (gms/mile) 0.418 0.460 0.459 0.457 0.471
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Case 1 Case 2 Case 3 Case 4

Initial 

Value

FC_torque_scale 1.190 1.200 1.300 1.210 1.349

MC_torque_scale 0.783 0.811 0.700 0.834 1.182

ESS_module_number 30.000 30.000 23.000 28.000 30.000

CS_EL_Speed_lo 8.000 8.000 4.330 6.751 3.000

CS_EL_Speed_hi 11.000 11.000 30.000 19.665 20.000

CS_min_trq_frac 0.100 0.723 0.246 0.534 0.218

CS_off_trq_frac 0.183 0.183 0.211 0.162 0.137

CS_lo_soc 0.520 0.516 0.223 0.158 0.567

CS_hi_soc 0.850 0.845 0.727 0.611 0.695

CS_charge_torque 36.000 35.000 5.200 39.118 31.000

Grade                      (%) 7.565 7.606 9.075 8.015 7.200

0-60 mph time(t1)  (s) 8.964 8.954 9.221 9.704 8.400

40-60 mph time(t2) (s) 4.451 4.444 4.595 4.934 4.000

0-85 mph(t3)           (s) 18.105 18.071 18.675 19.935 16.300

Max speed         (mph) 120.456 120.678 119.172 119.385 127.000

Max acce        (ft/s­2) 16.4 16.4 16.4 16.4 16.400

Distance in 5s (ft) 180.665 180.761 178.23 176.349 183.700

FC         (mpg) 33.558 33.357 29.291 32.667 28.600

HC        (gms/mile) 0.724 0.729 0.736 0.736 0.768

CO        (gms/mile) 3.148 3.124 2.566 3.735 3.157

Nox      (gms/mile) 0.482 0.486 0.436 0.508 0.495
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ECE-EUDC Driving cycle - MABC

Items

Case 1 Case 2 Case 3 Case 4

Initial 

Value

FC_torque_scale 1.386 1.245 1.500 1.093 1.349

MC_torque_scale 0.619 1.089 0.820 1.200 1.182

ESS_module_number 16.655 22.000 18.000 22.000 30.000

CS_EL_Speed_lo 5.109 1.000 4.000 4.000 3.000

CS_EL_Speed_hi 22.436 18.000 20.000 23.000 20.000

CS_min_trq_frac 0.181 0.361 0.118 0.324 0.218

CS_off_trq_frac 0.175 0.139 0.170 0.103 0.137

CS_lo_soc 0.417 0.500 0.453 0.267 0.567

CS_hi_soc 0.616 0.844 0.695 0.764 0.695

CS_charge_torque 36.795 36.000 33.000 32.000 31.000

Grade                      (%) 9.409 7.892 10.111 6.910 7.200

0-60 mph time(t1)  (s) 9.499 8.692 8.774 9.972 8.400

40-60 mph time(t2) (s) 4.749 4.278 4.288 5.149 4.000

0-85 mph(t3)           (s) 19.311 17.293 17.351 21.024 16.300

Max speed         (mph) 117.698 123.230 123.577 113.148 127.000

Max acce        (ft/s­2) 16.400 16.400 16.400 16.400 16.400

Distance in 5s (ft) 175.702 181.879 180.253 175.500 183.700

FC         (mpg) 38.250 34.594 35.550 34.350 31.400

HC        (gms/mile) 0.758 0.679 0.813 0.602 0.737

CO        (gms/mile) 4.093 3.674 3.530 5.405 4.833

Nox      (gms/mile) 0.560 0.533 0.583 0.471 0.557
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Parameters Base 

value 

Percentage change in fuel consumption and emission from base value 

Basic ABC algorithm(%) Modified ABC algorithm(%) 

FTP driving cycle Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 

O
b

je
ct

iv
e FC   (mpg) 32.2 8.25% 3.54% 0.15% 2.92% 11.46% 10.56% 4.66% 5.46% 

HC (gms/mile) 0.564 7.27% 8.33% 6.91% 0.35% -4.43% 1.77% 1.24% 4.08% 

CO   (gms/mile) 3.244 -22.26% -29.72% -25.09% -34.25% -31.07% -18.65% -22.81% -22.35% 

Nox (gms/mile) 0.471 0.21% 1.27% -1.91% -4.03% -11.25% -2.34% -2.55% -2.97% 

ECE-EUDC cycle Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 

O
b
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ct
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e 

FC     (mpg) 
28.6 6.25% 15.92% 0.62% 6.05% 17.34% 16.63% 2.42% 14.22% 

HC   (gms/mile) 
0.768 -3.65% -0.65% 15.63% 10.68% -5.73% -5.08% -4.17% -4.17% 

CO   (gms/mile) 
3.157 -9.50% -8.30% -4.91% -10.07% -0.29% -1.05% -18.72% 18.31% 

Nox (gms/mile) 0.495 -4.24% -2.83% 13.13% 1.62% -2.63% -1.82% -11.92% 2.63% 

UDDS driving cycle Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 

O
b

je
ct

iv
e 

FC     (mpg) 
31.4 12.09% 9.16% 7.47% 2.46% 21.82% 10.17% 13.22% 9.39% 

HC   (gms/mile) 
0.737 5.02% 9.36% 9.23% 7.60% 2.85% -7.87% 10.31% -18.32% 

CO   (gms/mile) 
4.833 -43.60% -27.46% -42.44% -36.66% -15.31% -23.98% -26.96% 11.84% 

Nox (gms/mile) 0.557 -2.15% 4.31% 1.62% -1.62% 0.54% -4.31% 4.67% -15.44% 

Table 8. Percentage change in Fuel consumption and emission values 

 

Thus the drivability can be improved by optimizing 

the parameters of the control system with the sizing 

of the key vehicle components being decreased. 

Although in both the methods of optimisation, there 

are some exceptional cases, in which the 

improvement of fuel economy also leads to increase 

of certain emissions based on weighting factor and 

driving cycle nature, thus proving the statement that 

in achieving an expected vehicle performance there 

is always a trade-off between emissions and fuel 

economy. 

 

5 Conclusion 

 

Comparing the results of non-optimised values with 

respect to the performance of BABC and MABC, 

results shows that there is: 

 Engine, motor and ESS component size could 

be reduced in most of the cases which results in 

reduced cost of overall vehicle 

 Fuel economy could be increased as high as 

close to 22%  

 Engine emissions decreased particularly CO as 

low as close to 44% 

 Driving cycle pattern also plays an important 

role in deciding the fuel economy and 

emissions 

 PNGV constraints defined was always met in 

every driving cycle and test case 

 SOC change is within 0.5% tolerance on every 

solution even with reduced battery modules still 

meeting the required vehicle performance 

The Weighting factors of objective function also 

has the influence on determining the parameters for 

the vehicle performance. Also the for this 

simulation, a 2.4 GHz i5 processor has been used 

and it took approximately 25 Hours for every test 

case, for the ABC & MABC algorithm to converge 

and reach its final optimised values. Also in 

comparison to a BABC algorithm, the MABC 

algorithm was found to be outperforming, in that it 

achieved impressive real time fuel savings and 

reduced emissions, without much penalty to the 

final battery state of charge along with reduced key 

vehicle components size for different driving 

cycles. 
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Nomenclature – General 

 

ADVISOR     Advanced Vehicle Simulator 

CO   Carbon MonOxide  

EACS  Electric Assist Control Strategy 

ECE-EUDC New European Drive Cycle  

FC   Fuel Consumption  

FTP   Federal Test Procedure  

HC   Hydrocarbons  

HEV  Hybrid Electric Vehicle  

ICE   Internal Combustion Engine   

NOX   Oxides of Nitrogen 

NREL National Renewable Energy 

Laboratory 

PNGV  Partnership for a New Generation 

of Vehicles 

PSO  Paricle Swarm Optimisation 

SI  Spark Ignition 

SOC  State Of Charge 

UDDS Urban Dynamometer Driving 

Schedule 

VRLA  Valve Regulated Lead Acid 

 

Notations 

 

Af  Vehicle frontal area (m2) 

Cd   Aerodynamic drag coefficient 

DFaero   Aerodynamic drag force (N) 

Eff            Drive train efficiency 

Ev  Energy of Vehicle(J) 

g  Gravitational constant (m/s2)  

GM  Motor gear ratio 

GE  Engine gear ratio 

gms  grams 

m  Effective mass of vehicle (Kg) 

mpg  miles per gallon 

Nc    Normal load on centre of rolling 

wheel (N) 

Pmot  Motor Mechanical power(W) 

Pengine  Engine power(W) 

Pengine_max_power Maximum Engine power(W) 

Rw     Radius of rolling wheels (m) 

Tmot    Motor Torque(Nm) 

tcycle  Driving cycle time(s) 

Va   Velocity of the air(m/s)  

Vgrade     Resistance force by grade (N) 

Vrolling     Rolling resistance force (N) 

Vv   Vehicle Speed(m/s) 

WICE    Engine speed(RPM) 

Wrolling  Wheel rolling force(N) 

WWheel   Wheel Speed (RPM) 

µ  Coefficient of rolling resistance 

ρ  Air density (kg/m3) 

β  Inclined vehicle angle  

Ƞ  Efficiency 

 

Parameter definition: 

 

CS_hi_soc highest desired battery 

state of charge  

CS_lo_soc lowest desired battery 

state of charge  

CS_EL_Speed_lo Vehicle speed below 

which vehicle runs as pure 

electric at low SOC 

CS_EL_Speed_hi Vehicle speed below 

which vehicle runs as pure 

electric at High SOC 

CS_off_trq_frac     minimum torque threshold 

when commanded at a 

lower torque, the engine 

will SHUT OFF 

CS_min_trq_frac  minimum torque 

threshold; the engine 

operates at low threshold 

torque and motor acts as 

generator  

CS_charge_torque an alternator like torque 

loading on the engine to 

recharge the battery pack 

ESS_module_number number of battery 

modules in a pack  

FC_torque_scale scaling factor for torque 

range of ICE  

MC_torque_scale torque scaling factor of 

EM 
 
 

 


