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Abstract: This paper discusses the method of 
temporal moments in order to develop a controller 
for flux and speed of an induction motor (IM). 
Controller dynamics is set a priori through time 
domain constraints which in their turn are set in 
terms of equality between the first (n+1) moments of 
the transfer function of the closed-loop system and 
those of an adopted reference model. This reference 
model, which best defines the dynamics of the 
closed-loop system, is easy to use. Closed-loop 
stability and time specifications (overshoot, response 
time…) are ensured using the linear matrix 
inequality formalism LMI. A simulation study was 
carried out on an induction motor to prove the 
effectiveness of the proposed method. 
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1. INTRODUCTION 
  

Since the 70s, the method of temporal moments 
has been the basis of several works [1], but it has 
mostly been studied since the 90s [2] where works 
have been devoted to the study of temporal moments 
in control by highliting the link between this 
technique and the internal model control. Later, this 
method has a decisive progress by tackling the 
frequency moments [3] and [4] where a combination 
of both technical frequency and time moments is 
done in order to ensure the stability of the closed-
loop system and satisfy temporal performance 
targets. Based on these works, our approach consists 
in proposing a controller synthesis method ensuring 
the performance of the closed-loop system through 
an approximation between this latter and a suitably 
selected reference model. Since the strict equality 
between this reference model and the concerned 
closed-loop system is not practically possible, this 
equality is replaced by equality of the first (n+1) 
temporal moments of the two model (the closed-loop 
system and those of the reference model) [5], [6] and 
[7]. The choice of the reference model depends on 
the studied system. It is composed of a set of 
dominant poles often characterized by second order 
system through which its dynamics is fixed using its 
damping coefficient and own pulsation. As 
previously mentioned the linear matrix inequality 

formalism LMI is used to ensure closed-loop 
stability and specify time constraints by minimizing 
the norm 2 of time moments cost. This method is 
applied to control the flux and the speed of an 
induction motor. 

 
The paper is organized as follows: in section 2, an 

extended state space representation is presented 
which includes the state model of the system and 
that of a dynamic controller. Besides closed-loop 
stability and transient performance which are 
characterized by a reference model with the help of 
temporal moments are given as LMIs. In section 3, 
the dynamic controller is computed by the 
demonstration of a special lemma and theorem. The 
last section is dedicated to simulation results applied 
to an induction motor. 

 

Notations 

*: mean the transposed 

  TSym P P P   

U  : the orthogonal complement of U so that 

0U U   
 
2. PROBLEM FORMULATION 

  
Let consider a square invertible LTI system with n 
inputs and n outputs ( )G s : 
 

( ) ( ) ( )

( ) ( )

G G G G

G G

x t A x t B u t

y t C x t

 


                                   (1) 

                        
And the state space representation of a controller 

( )C s  defined by: 
 

( ) ( ) ( )

( ) ( ) ( )

c c c c

c c c

x t A x t B e t

u t C x t D e t

 

 
                                      (2) 

With  

 

( ) ( ) ( )e t r t y t                                                   (3)  

Where ( ) l
Gx t  , ( ) nu t  , ( ) ny t   

( ) n
cx t  and ( ) nr t   are respectively the state 

vector of the system, the control variable, the 



 

 

output,  the state vector of the controller and the 

reference of the closed-loop system. 

Matrices include in the state space representation 

of controller: ,  ,   and c c c cA B C D are to be 

computed. 

Let consider now an extended variable 

( )z t gathering the state vector of the system and 

the controller 

( )
( )

( )

G

c

x t
z t

x t

 
  
 

                                                     (4) 

Consequently, the closed-loop system due to the 

application of the controller ( )C s to the system 

( )G s is given as follows: 

( ) ( ) ( )

( ) ( )

bf bf

bf

z t A z t B r t

y t C z t

 


                                       (5) 

With 

 

 

,  

0

G G c G G c G c

bf bf

c G c c

bf G

A B D C B C B D
A B

B C A B

C C

   
    

   



   (6) 

Among the objectives of this work is to ensure 

closed-loop stability. This is satisfied if there exists 

a positive definite matrix X  

0TX X   such that: 

 

  0bfSym XA                                                    (7) 

 

Remark: to facilitate the study, matrices 

 and c cA B in the controller state representation are 

defined in advance. Thus it remains to determine 

 and c cC D and the controller ( )C s is then 

interpreted as a static feedback gain K such that: 

 

 c cK D C                                                     (8) 

 

According to this assumption, the extended system 

will be characterized by the triplet  ˆ ˆˆ,  ,  A B C and 

matrix bfA can then written: 

ˆ ˆˆ
bfA A BKC                                                    (9) 

 

Where 

0
ˆ G

c G c

A
A

B C A

 
  

 
, ˆ

0

GB
B

 
  
 

, 
0ˆ

0

GC
C

I

 
  
 

     

                                                                          (10) 

As previously alluded, the purpose of this work, in 

addition to the closed-loop stability, is to ensure 

some transient performance characterized by a 

reference model ( )refM s whose dynamics are 

fixed with the help of temporal moments.  

First of all let’s recall the representation of a given 

transfer function ( )G s represented in state space 

by  ,  ,  ,  G G G GA B C D . 

According to its temporal moments ( )G s can be 

written [8] and [9]: 
 

1 ( 1)( ) ( 1)n n
n G G G GG C A B D                        (11)  

for  1....n    

 

Where n refers to the moment order. Thus we can 

define the 0th order moment 0 , the first 1 , the 

second order 2 … 

This three first temporal moments 0 , 1  and 

2  provide sufficient information to characterize 

the essential elements of an impulse response such 

as static gain, response time, variance. 

Indeed for an impulse response ( )h t of a system as 

shown in Fig. 1 
 
 
 
 
 
 
 
 
 
 
 

                            
 
 

 

 0  represents the area of the impulse 

response of the system and is equal to its 

static gain.  

 1  describes the average time tm . Indeed 

for a first order system 1 0 , where   

refers to the constant time of the system. We 

have also 1

0

( )

( )

h
tm

h
   

 2  represents the dispersion  of the 

impulse response around tm . 

 

The controller synthesis technique by temporal 

moments is to achieve equality according to Fig. 2 
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between the closed-loop transfer ( )T s and the 

reference model ( )refM s  

1( ) ( ) ( )( ( ) ( )) ( )refT s G s C s I G s C s M s       (12)  

Or equivalently 

 
1( )( ( )) ( ) ( )ref refC s I M s G s M s                    (13) 

 
 

 

 

 

 

 

For a control law ( ) ( )u t Ke t and using the state 

space representation (2) of ( )C s , ( )u t will be 

written 

 
1( ) ( ) ( )c c c cu t C sI A B D e t    

                   (14) 

 

And according to (8), equation (13) becomes: 

 

1

1
( ( )) ( ) ( )

( )
ref ref

c c

I
K I M s G s M s

sI A B





 
  

 
 

                                                                          (15)

  
Or in a compact form, the time constraints can be 
represented by a linear expression where the 
formalism LMI can be applied 
 

( ) ( )KH s F s                                                   (16) 

 

Where 

1

1

( ) ( ( ))
( )

( ) ( ) ( )

ref

c c

ref

I
H s I M s

sI A B

F s G s M s





 
  

 



               (17) 

 

Remark: that the ideal equality (16) is not 

possible. Thus an approximation between ( )T s  

and ( )refM s  via temporal moments is necessary. 

Indeed when characterizing the response time this 

last equality (16) is substituted by the 

minimization of the quadratic distance between the 

first (n+1) time moments of the reference model 

and the closed-loop system as follow: 

   ( ) ( ) ( ) ( )
T

j j j jK G F K G F I    

                                                                          (18) 

The resolution of this LMI gives transitory time 

responses approximatively equal for  and refT M  

(same response time, same overshoot…). 
 
Notice that the main goal is reached if inequalities 
(7) and (18) are fulfilled. In the next section a 
solution of this problem is presented. 
 
3. PROBLEM SOLUTION 

 

The solution of the previous problem is given by 

the next theorem 

Theorem: [7] for the LTI system (1) defined by 

the triplet  ,  ,  G G GA B C and its corresponding 

extended system (10)  ˆ ˆˆ,  ,  A B C and for a static 

state feedback sK ensuring closed-loop stability of 

the pair  ˆ ˆ,  A B , if the optimization problem 

below: 

min γ 

 ,  ,  L N X  

With the constraints 

    

 

0

ˆ ˆˆ ˆ

0

*

T

s s

T

X

Sym X A BK LC NK XB

N N



 
  

 
 

   

 

                                                                          (19) 

 ( ) ( )
0

*

j jI L G N F

I

  
 

  

                   (20) 

 

has a solution, thus the controller ( )C s with  

 
1

opt optK N L                                                      (21) 

 

guarantees closed-loop stability and ensures the 

time constraints fixed by the reference model 

( )refM s  

Notice that  and opt optN L correspond to  minimal 

renowned opt  

Proof of the theorem: 

The demonstration of theorem requires the recall 

of the following lemma: 

Lemma: Consider the extended system (5) where 

bfA  is given by (9), the matrices inequalities 

below included in item 1) are equivalent to that 

included in 2): 

( )C s  ( )G s  ( )refM s  r  r  y  y  

Fig. 2.  Closed-loop control configuration 



 

 

1) there exist two matrices  and sK K and a 

positive definite matrix 0TX X   such that: 

  ˆ ˆ 0sSym X A BK                                      (22) 

  ˆ ˆˆ 0Sym X A BKC                                     (23) 

2) it exists a non singular matrix N , two matrices 

 and sK K  and a positive definite matrix X such 

that: 

  

 

ˆ ˆ ˆ

* 0

0 ˆ 0

T

s

s

Sym A BK X XB

Sym N KC K I
I

 
  

 
  

             

                 (24) 

Proof of lemma: 

The proof of this lemma in turn requires the 

statement of the elimination lemma [10], [11] and 

[12]: 

Elimination lemma: For given matrices 

,  TM M U and V  of appropriates dimensions, 

the following statements are equivalent: 

 

i) there exists a matrix X satisfying 

0T T TM U XV V X U                      (25) 

 

ii) 
0,  or 0

0,  or 0

T T

T T

U MU UU

V MV V V

 

 

 

 
                 (26)  

Item ii) of the elimination lemma can be used with 

 
0

0 ,  V I V
I

  
   

 
 

  ˆ ˆ ˆ
and 

* 0

T

sSym A BK X XB
M

 
 

 
  

 

this leads to inequality (22).   

 

With 

 
ˆ( )ˆ ,  

TT
s

s

KC K
U I KC K U

I


  

         
 

  ˆ ˆ ˆ

* 0

T

sSym A BK X XB
M

 
 

 
  

 

leads us to inequality (23).   

Proof of theorem: 

Using Schur complement, (20) becomes: 

 

  ( ) ( ) ( ) ( )

0,1....

T

j j j jL G N F L G N F I

j n

  



                                                                          (27) 

In addition, the multiplication of (16) by N  leads 

to: 

 

( ) ( )LH s NF s                                                 (28) 

 

Thus (18) becomes: 

 

  ( ) ( ) ( ) ( )

0,1....

T

j j j jL G N F L G N F I

j n

  



                                                                          (29) 

Then it is evidence that (27) and (20) refers to the 

minimization of the norm 2 of the error between 

the first (n+1) moments of the chosen reference 

model and those of the closed-loop system. More 

than  is optimal more than the two transfers ( )T s  

and ( )refM s  are very close more than the desired 

transients are satisfied.  

Condition (19) which implies (23) equivalent to 

(7) ensure closed-loop stability. 
 
4. METHOD APPLICATION TO AN 

INDUCTION MOTOR 

 

The electromagnetic dynamic model of the 

induction motor in the synchronously rotating 

reference frame d-q axis can be expressed by the 

set of differential equations below [13], [14], [15] 

and [16] 

 

1

1

1
( )

d
d s q dr m qr d

r s

q

s d q m dr qr q

r s

dr
d dr s m qr

r r

dI
I w I pw v

dt L

dI
w I I pw v

dt L

d M
I w pw

dt


 

 


 

 

 

       

       


     

 

1
( )

qr

q s m dr qr

r r

d M
I w pw

dt  


       

( )m r
dr q qr d m

r

dw cpM f
I I w

dt JL J J
             (30) 

( )e dr q qr d

r

pM
c I I

L
                                   (31) 



 

2

2

2

,  ,  ,  

1-

s r

r r
r

s s r r

s r

M
R R

L LM

L L L R

M

L L

  
 





  



 

Where mw is the rotor speed, sw is the stator 

electrical speed, ( , dr qr  ) are the d-q rotor flux, 

( ,  , ,  d q d qI I v v ) are the stator currents and 

voltages, p is the number of pole pair, 

 ,  ,  ,  s r s rL L R R are the stator and rotor 

inductances and resistances respectively, J is the 

moment of inertia, f is the friction coefficient 

, M is the mutual inductance between stator and 

rotor, ec  is the electromagnetic torque and rc is 

the load torque.  

In this paper, to facilitate our study, we will adopt 

an orientation of the rotating reference such that 

the axis d coincides with the direction of dr . On 

this basis, from (30) we can extract the expression 

of the open-loop control  and d qv v , the electrical 

reference speed and the flux dr  

2

2

2

2

2

2

       

        +

d
d s s r d s s q

r

r dr

r

q

q s s r q s s d

r

m dr

r

dI M
v L R R I w L I

dt L

M
R

L

dI M
v L R R I w L I

dt L

M
pw

L

 

 

 
    

 

 

 
    

 



          

                                                                          (32) 

dr
r dr d

s m q

r dr

d
MI

dt

M
w pw I






 

 


                                       (33) 

e dr q

r

pM
c I

L
                                                   (34) 

Let’s define two other control variables 1 1and d qv v  

such that: 

 

1 1 and  d d d q q qv v e v v e     

Where  

2

2

d s s q r dr

r

q s s d m dr

r

M
e w L I R

L

M
e w L I pw

L





  

   

 

The two new commands 1 1and d qv v  are defined as 

follows: 

2

1 2

2

1 2

d
d s s r d

r

q

q s s r q

r

dI M
v L R R I

dt L

dI M
v L R R I

dt L





  
    

  


 
   

 

                  (35) 

As it was mentioned in previous sections, our 

study focuses on the comparison of the first (n+1) 

moments of transfers function representation of a 

given reference model and that corresponding to a 

state model of the system. 

In this work, we want to control the flux and the 

speed, then referring to (33) and (34), (35) 

becomes: 

1

1

( )( 1)

( )

s r
d dr

s r
q e

dr

L s s
v

M

L L s
v c

pM

  

 

 
 





 



                         (36) 

s is Laplace operator. 

 

The open-loop transfer function of the flux dr  

and ec are given then by: 

( )( 1)

( )

dr

e

s r

dr
c

s r

M
H

L s s

pM
H

L L s

  

 

 
 






                              (37) 

We have too 

e r
m

c c
w

Js f Js f
 

 
                                      (38) 

Thus  

1

1m

bfce

w

H
f

H
s




                                                 (39) 

1
,  

1
bfce

bfce

J
H

f s



 


 

bfceH : is the closed-loop transfer function of the 

electromagnetic torque. 

bfce : is the closed-loop system constant time of 

the electromagnetic torque. It was chosen equal to 

79 5e in order to obtain a time response of the 

closed-loop system ten times faster than open-loop 



 

 

one.  

On these bases, the transfer function of the flux 

dr
H has a second order dynamics, the same for 

the speed mw . We assume that its transfer function 

denoted 
mwH is of the form: 

 

2

2

1

2 1
1

wm

n n

H

s s
w w




 

                                   (40) 

 

Let’s now recall a general transfer function H . 

This transfer function contains the open-loop 

transfer of variables that we want to control ie the 

flux and the speed: 

 

0

0

dr

mw

H
H

H

 
  
  

                                           (41) 

 

Notice that H is diagonal to ensure decoupling 

between the two variables  and dr mw . The 

objective is to ensure some transients 

performances characterized by a reference model 

such that the reduction of the time response of the 

system, keeping the overshoot of the closed-loop 

inferior to 5%  whereas decoupling the two 

outputs. These transient performances can be 

performed by a diagonal second order reference 

model with unity static gain: 

 

2

2
1 1

2

2

1
0

2 1
1

1
0

2 1
1

n n

ref

n n

s s
w w

M

s s
w w





 
 
  

 
  
 
  
 
 

(42) 

 

Such a choice corresponds to settling time of 0.12s 

for the flux dr  and of 0.3s for the speed, 

1
1 39.5833nw rds , 

115.833nw rds . 

The static state feedback gain sK  defined in (19)  

stabilizing the pair  ˆ ˆ,  A B has been computed: 

 

0.1061 0 1.6977 0

0 0.4937 0 0.004
sK

 
  

 
  

 

 The matrices ,X N  and L  verifying (19) and 

(20) are given as follow: 

8 2.1182 0
10

0 5.7960
N

 
  

 
 

8.8585 14opt e    

The obtained static gain is: 

 

0.0128 0 1.6977 0

0 0.0592 0 0.004
K

 
  
 

 

 

5.  SINULATION RESULTS AND 
INTERPRETATIONS 
 

To test the effectiveness of the proposed method, 

simulation results are accomplished on an 

induction motor powered by a voltage inverter as 

illustrated in Fig. 3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that (33) allows estimating the flux and the 

electrical stator speed sw so that [14] and [17]: 
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b) Step response of the speed and the reference 

model 

 
Fig. 4 Step response of the speed and the flux 

 and their corresponding reference models 

 

ˆ
1

dr d

r

M
I

s
 


. 

For sw , which is equal to 
ˆs m q

r dr

M
w pw I


 


, 

cannot be used as it is since the flux ˆ
dr is null 

when starting the motor. We use then the 

following equation:  

 

ˆs m q

r dr

M
w pw I

 
 

 
 

Where  

0.01  . 

1
s sw

s
  . 

 

The designed control algorithm was fulfilled by 

the software Matlab/SIMULINK. The 

specifications of the induction motor are listed in 

Table1. 

 

Table 1: Parameters of the motor 

 

Motor rated power (kW) 1.2  

Rated current (A) 6 

Pole pair number (p) 2 

Stator inductance sL (H) 0.261 

Rotor inductance rL (H) 0.261 

Stator resistance sR ( ) 2.3 

Rotor resistance rR ( ) 1.83 

Mutual inductance M (H) 0.245 

Motor inertia J (Kg.m
2
) 0.03 

Viscous coefficient 

f (N.m.s/rd) 

0.002 

 

 

Fig. 4 represents the step responses of the flux 

 and the speed dr mw  and their corresponding 

reference model. We notice that the transient 

performances, fixed by the reference model, are 

almost guaranteed with a slight gap. 

Fig. 5 represents respectively evolutions of the 

electromagnetic torque, d,q-axis current, d,q-axis 

rotor flux and the rotor speed. The reference flux 

is taken equal to ˆ 0.8Wbdref  . 

 

The speed reference goes from 0 to 100 rd/s and 

remains to this value up to t=6s beyond which it 

changes its sign in going to -100 rd/s and keep this 

values until t=11s. Le cycle is repeated going 

through a zero value between t=11s and t=12s. An 

external load torque is introduced at 4t s  and 

cancelled at 5t s . 

Fig. 6 represents the evolutions of the previously 

cited variables without load torque. The results 

obtained show robustness against external 

disturbances and show the convergence of the 

measured states around the desired trajectory. 

These results show also that when the reference 

speed changes, all shapes of existing variables 

undergo small fluctuations but remain close to 

their reference values. This is clearly visible in the 

shape of the d-axis flux which tends to 0.8Wb 

whereas the q-axis flux remains null. 
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a) Step response of the flux and the reference 

model 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Electromagnatic torque 
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b) q-axis current 
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measured current

reference current

c) d-axis current 
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f) q-axis rotor flux 

 

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

time in s

q
u
a
d
ra

tu
re

 r
o
to

r 
fl
u
x
 i
n
 [

W
b
]

d) d-axis rotor flux 
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e) Local curve of d) 
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b) q-axis current  
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c)  d-axis current  
 

0 2 4 6 8 10 12
-5

0

5

10

time in s

d
ir
e
c
t 

c
u
rr

e
n
t 

a
n
d
 i
ts

 r
e
fe

re
n
c
e
 i
n
 [

A
]

 

 

measured current

reference current

e)  q-axis rotor flux 
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Fig. 5. Simulation results of a temporal moment 

based controller for a trapezoidal command signal 

with load torque 
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g) Rotor speed 

 

d)  d-axis rotor flux 
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6. CONCLUSIONS 
 
In this paper, we have applied the method of 
temporal moment to synthesize a controller whose 
various stages of synthesis are performed using LMI 
formalism. The closed-loop stability that must verify 
a system and transient performances have been 
analyzed with the help of a reference model. The 
effectiveness of the proposed method is 
demonstrated through numerical simulation applied 
to the flux and the speed regulation of an induction 
motor. This yielded adequate results.  
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