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Abstract: Optimal control is mainly concerned in operating 

the system with minimum cost. The most promising optimal 

control strategy available in literature is linear quadratic 

regulator (LQR). In LQR, it is important to select the state 

(Q) and control (R) weighting matrices to get optimal 

results. With no standard guideline for selection of these 

weighting matrices, the generally adopted trial and error 

method makes the job of a control engineer more tedious 

and tiresome. To address this issue, a hybrid particle swarm 

optimization algorithm (HPSO) to obtain optimal weighting 

matrices is proposed in this paper. Moreover, the premature 

convergence of the particles leading to suboptimal results is 

eliminated by introducing a local convergence monitor, 

which transforms the entire population at the occurrence of 

local convergence to a new search space. The proposed 

HPSO tuned LQR control strategy is applied to cart 

position tracking and pendulum angle regulatory control of 

a single inverted pendulum, which is a  highly nonlinear 

unstable system. Experimental results reveal that compared 

to PSO tuned LQR, HPSO tuned LQR has improved 

tracking response with smooth error convergence. 
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1. Introduction. 
 The theory of optimal control focuses on 

operating the system with minimal cost without 

compromising the quality. One such optimal control 

algorithm is LQR. The challenges in LQR design lie in 

the proper selection of Q and R weighting matrices, 

which determines the performance of the controller. As 

an usual practice the weights are selected either using 

the past experience or by trial and error method. As a 

measure to optimally select the weight matrices, 

metaheuristic algorithms are used. Particle swarm 

optimization is the latest member of this kind.  
PSO based optimal weighting matrices 

selection of LQR is carried out for a sine wave three 

phase four wire voltage source inverter and it is 

reported that the effort in tuning the weighting matrices 

is very much reduced using PSO compared to 

conventional guess and check method [1]. An adaptive 

PSO is proposed in [2] to better the search efficacy and 

to improve the convergence speed. Multiobjective 

design optimization simulation studies using PSO for 

switched reluctance motor (SRM) is carried out and it 

is reported that the designed SRM developed better 

torque compared to the normal design [3]. Adaptive 

PSO tuned LQR for the attitude tracking of a 2 DoF 

helicopter and servo control of an inverted pendulum 

was proposed in [4] and [5] respectively. It is reported 

that adaptive PSO tuned LQR outperforms the 

conventional PSO tuned LQR. PSO algorithm is 

effectively used in load frequency control of power 

systems [6]. PSO together with dynamic objective 

constraint handling is used to find the state feedback 

controller gains for stabilizing controller in a linear 

inverted pendulum [7]. Trajectory optimization for       

manipulator motion planning using PSO is investigated 

and experimented successfully [8]. A state estimation 

method using HPSO was developed and applied to 

practical power distribution system. It is claimed that 

the proposed method has better convergence 

characteristics compared to the standard PSO [9]. In 

[10] PSO is used to find the direct and quadrature axis 

stator inductances and resistances of permanent-magnet 

synchronous machines with the aid of experimental 

measurements. It is reported that the developed PSO 

has fast and stable convergence characteristics, and it is 

relatively easy to implement. A new mechanism is 

added along with tuning of few parameters in PSO to 

improve its robustness in finding the global solution 

[11].This stochastic-based search algorithm had been 

widely used in recent years to find optimum solutions 

in both academic and practical problems.  On the other 

end, PSO has a demerit that particles converge in local 

optima resulting in suboptimal results. A perturbed 

particle updating strategy is employed to deal with the 

problem of premature convergence [12]. To address the 

premature convergence, hybrid PSO (HPSO) 

combining the advantages of space transformation 

search (STS) and modified velocity model for standard 

mathematical functions is theoretically proven in [13]. 

In this work, the HPSO based LQR approach is 

extended to a single input multi output (SIMO) system, 

performance assessment of the proposed approach is 

verified over a single inverted pendulum, a benchmark 

SIMO system and its effectiveness is demonstrated in 

comparison with standard PSO results.  
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2. Problem Formulation 
 Consider a linear time invariant (LTI) system whose 
state and output dynamics can be written as follows 
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where CBA ,, and D  are the system, input, output and 

direct transition matrices respectively. The purpose of 
LQR design is to minimize the following cost function 
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where Q  and R  are the positive semi definite and 

positive definite matrices respectively, popularly called 

as the state and control weighting matrices. The state 

feedback gain K  can be calculated by solving   

PBRK T1      (4) 

where P  is the solution of following algebraic Riccati 

equation (ARE) 
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The Q  and R  matrices play a vital role in determining 

the performance of the controller. The Q  and R  

matrices are selected based on the  

(i) Trial and error approach. This method is time 

consuming and it does not result in optimal response.   

(ii) Particle swarm intelligence approach, which may 

lead to suboptimal results due to premature 

convergence of the particles.  

Hence, to address these problems in weighting 

matrices selection of LQR, hybrid particle swarm 

intelligence, a combination of state transformation 

search and modified velocity model is proposed. 
 
3. HPSO Algorithm. 
 
3.1. Space Transformation Search (STS) 

Evolutionary algorithm starts with some arbitrary 

solution and move towards the optimal solution. The 

iteration or process usually terminates either with 

predefined iteration number or with the satisfaction of 

predefined conditions. In PSO, particles migrate 

through the search space using the following position 

( x ) and velocity ( v ) update equations. 
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where 
i

d

bestpp  and 
d

gbestp are the particles local best and 

global best positions, r 1 and r 2 are the random 

numbers, c 1 and c 2 are the cognitive coefficients , w  

is the inertia weight, i  is the particle index and d  is 

the dimension of the decision variables. STS 

mechanism introduces a watchdog to monitor the 

occurrence of premature convergence. If the current 

search space hardly contains any global solution, STS 

mechanism transforms current search space to a new 

search space called the transformed space. The new 

transformed solution x * can be calculated as follows:  

xbakx  )(*
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x  € R within an interval of [ ba, ] and k  can be set as 

a random number within [0, 1], where ba,  are the 

particles minimum and maximum values. To be more 

specific, for an optimization problem of d  decision 

variables, according to the definition of the STS [13], 

the new dynamic STS model is defined by 
d
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    The sum of the particles maximum and minimum 

positions are multiplied by a random value k  and it is 

subtracted from the actual particle positions to 

transform the search space. The simultaneous 

evaluation of solutions in the current search space and 

transformed space is done and the search space giving 

the minimum cost is finalized as the current search 

space. Moreover, the interval boundaries )](),([ tbta d

i

d

i
 

are dynamically updated according to the size of 

current search space.  
 
3.2. Modified Velocity Model 

In PSO, particles are attracted to their corresponding 

previous personal best (
ibestpp ) and global best ( gbestp ) 

positions. As iteration progresses, particles move very 

close to 
ibestpp  and gbestp  respectively. Due to this the 

difference between 
ibestpp  and the current particle 

position xi becomes very small, and this will be same 

for the global best particles. Moreover, according to the 

velocity update equation the velocity becomes very 

small. Once 
ibestpp  or gbestp  falls into local minima, all 

particles in the swarm will quickly converge into local 

minima leading to premature convergence. All the 

particles will be stagnant and the chance to escape from 

local minima becomes very less. As a measure to 

overcome local minima trapping, this paper proposes a 

convergence monitor to watchdog each 
ibestpp and 

gbestp  positions in the search space. If the value of the 

convergence monitor reaches the threshold limit, a new 

modified velocity model is introduced to disturb the 



 

position of the particles by providing a disturbance 

factor in the cognitive and social part of the velocity 

update equation. 
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Where 
1d  and 

2d  are the disturbance factors with a 

random value within [0,1]. The pseudo code of hybrid 

particle swarm optimization algorithm is shown in 

Table 1. 

 
Table 1 
Pseudo code: HPSO 
 

 

Initialize the particles in  swarm arbitrarily 

for  i ≤ 100 

set convergence monitor (S) = 0 

Evaluate the cost function 2 ( )f ISE e t dt    

for  i = 1 to 30 

if  f < fpbesti 

fpbesti             f 

xpbesti           xi 

end if 

if f < fgbesti 

fgbesti             f 

xgbesti           xi 

else if  

S = S+1 

end if 

if S > Sthreshold 

for d = 1 to dimensions 

update the particles position and velocities using 

equations 6 and 11 

end for 

else if 

for d = 1 to dimensions 

update the particles position and velocities using 

equations 6 and 7 

end for 

end if 

end for 

end for 

  

 
4. Single Inverted Pendulum. 

The effectiveness of HPSO tuned LQR framework is 

demonstrated using single inverted pendulum, a typical 

single input multiple output (SIMO) benchmark 

system. This system consists of two encoders, one to 

measure the pendulum angle and the other to measure 

the position of the cart.  Fig. 1 shows the schematic 

diagram of a single inverted pendulum. 

         
Fig. 1. Schematic diagram of Single Inverted 

Pendulum. 
 

Stabilization control is the control scheme used to 
meet the control objective of maintaining the pendulum 
angle at zero degree, while the cart tracks the reference 
trajectory. Due to the practical limitation on control 
input (motor voltage) given to the cart system, 
stabilization control is implemented using LQR. Based 
on Euler-Lagrangian energy approach the nonlinear 
equation of motion of pendulum can be written as  
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Four variables namely, cart position, cart velocity, 
pendulum angle, and pendulum velocity are taken as 
state variables and the state space model is obtained. 
By linearizing the model around the equilibrium point  

 1)cos(,)sin(   , the linearized model of the 

inverted pendulum can be written as  
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  For the controller design, the system parameters 

are borrowed from [5], and by substituting system 
parameters the following state model is arrived. 
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5. Results and Discussion. 

HPSO tuned LQR framework is implemented for 

servo control problem of an inverted pendulum and the 

dynamic performance of conventional PSO tuned LQR 

framework is also compared in this work. HPSO based 

LQR servo control algorithm is implemented in 

MATLAB. The parameters used for HPSO and PSO 

algorithms are shown in Table 2.  
 

 Table 2 
Parameters of HPSO and PSO algorithms 

Parameters HPSO PSO 

No. of Population ( N ) 30 30 

No. of Iterations ( i ) 100 100 

Dimensions ( d ) 3 3 

1c  0.9 0.9 

2c  1.2 1.2 

Inertia weight ( w ) 0.9 0.9 

Convergence Monitor Yes - 

1d  and 2d  Random Values - 

 
Parameters for both the algorithms remain the same 
except for the presence of convergence monitor and the 

disturbance factors 
1d  and 2d . In HPSO technique 

according to the cost or fitness function ISE, the 
optimization algorithms are executed for the specified 
number of iterations and with the help of convergence 
monitor and the disturbance factor in the velocity 
update, the global best of the particles, so called the 
weights of LQR, are obtained. Table 3 gives the 
corresponding Q and R matrices and controller gain of 
LQR obtained using the PSO and HPSO algorithms.  

 
Table 3 
Parameters of PSO and HPSO algorithms 
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  The particles best positions of the HPSO and PSO 

algorithms are illustrated in Fig. 2. where the X-axis 
represents the number of decision variables, Y-axis 
represents the number of iterations and Z-axis 
represents the matrix dimensions. 
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Fig. 2. Comparison of Particles best positions. 

  
 From the Z-axis dimensions it is evident that an 
intensive search occurs in HPSO. All the three decision 
variables are scattered in the search space to find the 
global best solution, whereas in PSO the first two 



 

decision variables are more scattered than the third 
decision variable. It is worth to note that in the iteration 
number 75 of HPSO, whole population transformation 
occurs due to local trapping. Integral square error is 
taken as the performance index and the fitness function 
convergence is illustrated in 
Fig.3.
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Fig. 3. Fitness function convergence of PSO and 

HPSO. 
 

From the illustration it is evident that smooth 
convergence occurs in HPSO compared to PSO tuned 
LQR framework. On the successful completion of the 
specified number of iterations, global best of the 
particles are obtained.  

 
4.1. Trajectory Tracking Response 

A square trajectory having amplitude of 20 cm 
(peak to peak) with a frequency of 0.05 Hz is given as 
input to the system. The output responses of HPSO and 
PSO tuned LQR is illustrated in Fig. 4 and the zoomed 
view of the same is given in Fig. 5.  
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Fig. 4. Cart position for square trajectory. 

 

9 10 11 12 13 14
9

9.5

10

10.5

Time (s)

X
 (

c
m

)

 

 

PSO HPSO Reference

 
 Fig. 5. Zoomed view of Cart position.  

It is evident that the response of HPSO tuned LQR 
framework is appealing compared to PSO tuned 
framework in terms of maximum peak overshoot, rise 
time and settling time. Pendulum angular response for 
the test signals are shown in Fig. 6, 7 and 8. 

0 20 40 60 80 100
-2

-1

0

1

2

Time (s)

A
n

g
le

 (
d

e
g

)

 

 

HPSO PSO

ZOOM

 
 Fig. 6. Pendulum angular response for square 

trajectory. 
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Fig. 7. Zoomed view of pendulum angular 

response for square trajectory. 
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Fig. 8. Zoomed view of pendulum angular        

            response for square trajectory in steady state. 
 
 
Table 4 
 Comparison of Cart position response  

Optimization method 

 

Time domain parameters 

td ts %Mp 

PSO 0.45 1.01 5.3 

     HPSO 0.37 0.72 4.2 

 
 Moreover, from table 4 it can be inferred that 
maximum peak overshoot is reduced by 20.7 %, 
settling time is reduced by 28 % and the delay time is 
reduced by 17.7 % in HPSO algorithm compared to 



 

 

PSO algorithm. Table 5 gives the deviation and 
convergence time of pendulum angular response. 
 
Table 5 
 Pendulum angle response 

Optimization 
algorithm 

Convergence          ess(θ) 

time (s)    

PSO 4.8                        0.001 

HPSO 2.5                           0 

 
 The convergence time of HPSO tuned LQR 
framework is appealing than the PSO tuned LQR. 
From table 5 it can be inferred that in comparison of 
HPSO with PSO the convergence time is reduced by 
47.9 % and the steady state error is zero in HPSO 
algorithm. It is evident from the analysis that the HPSO 
tuned LQR controller performance is dynamic in servo 
control applications. 

 
6. Conclusions 

In this paper, the premature convergence problem of 
PSO tuned LQR has been solved using HPSO and the 
efficacy of the controller has been tested on a single 
inverted pendulum. Trapping up of the particles in 
local optima is identified by the convergence monitor 
and, the convergence in sub optimal solutions due to 
premature convergence is avoided by introducing a 
disturbance factor in the velocity update along with the 
transformation in search space. The trajectory tracking 
response of inverted pendulum shows that compared to 
PSO tuned LQR, the HPSO tuned LQR can result in 
not only improved tracking response but also reduced 
tracking error. 
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