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ABSTRACT 

A photovoltaic (PV) power generation system under partial shaded conditions (PSC) exhibits multiple 

power peaks in the power-voltage (P-V) characteristic curve and traditional optimization methods fail to 

detect the global maximum power point (GMPP). This paper proposes a hybrid intelligent algorithm by 

combining particle swarm optimization with chaos searching technique (CSTPSO) to improve the 

maximum power point (MPP) tracking capability for PV system under partial shading condition. The key 

advantage of the proposed technique is the elimination of PI control loops using direct duty cycle control 

method. Furthermore, since the CSTPSO is based on optimized search method, it overcomes the common 

drawback of the conventional MPPT.   Simulation  results  indicate  that  the  proposed  method  

outperforms  others  method   in   terms   of   global   peak   (GP)   tracking   speed   and  accuracy under 

various partial shading conditions. Furthermore , it  is  tested  using  data  of  a  tropical  cloudy  day,  

which includes rapid movement of the passing clouds and partial shading. 
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1. INTRODUCTION 

Photovoltaic (PV) energy  generation  provides  

numerous advantages over the  other 

renewable energy sources such  as 

environmental  friendliness,  absence  of  

rotating  parts,  ease  of  mounting  on  roof  

tops  etc [1]. The  recently  introduced 

governmental  laws  and  policies  [2]-[3]  

make  PV  systems  attractive  and  as  a  result  

the  installation  of  PV arrays within urban 

locations is becoming increasingly 

widespread. One of the major challenges in the 

extraction of power rises from partial shading 

due to neighboring buildings, trees and passing 

clouds. To ensure the  optimal  utilization  of  

large  PV  arrays,  maximum power point 

tracker (MPPT) is employed in conjunction 

with the   power   converter   (dc-dc   converter   

and/or   inverter). However, due to the varying 

environmental condition such as temperature 

and solar insolation, the P–V characteristics 

curve exhibit  inconsistent  maximum  power  

point  (MPP),  posing  a challenge  to  the  

tracking  problem.  The  situation  becomes 

more  complicated  when  the  array  is  

subjected  to  partial shading, i.e. a condition 

when a part or the whole module of  the  PV  

array  receives  non-uniform  insolation.  

During partial shading, the P–V curves are 

characterized by multiple peaks-several local 

and one global peak (GP). If the true GP is not  

properly tracked, the MPPT algorithm might 

be trapped at one  of  the  local  peak,  with  

the  consequence  of  significant  power losses 

[8]. To  date,  various  MPPT  techniques  

have  been  proposed; amongst these, the hill 
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climbing (HC) [9], perturb and observe (P&O)  

[12]  and  incremental  conductance  (IC)  [13]  

are  the most widely used. Although these 

methods are quite simple to implement, they 

are  incapable  of  handing  the  partial shading 

condition   as   they   lacked   the   sufficient   

intelligence   to differentiate between the local 

and global peak. Additionally, rapid 

fluctuations of solar insolation may cause the 

algorithm to   lose  track  of  the  MPP  

direction  completely .Several attempts have 

been carried out to improve these algorithms 

to cater for partial shading. In [12], a 

compensation method for a series-parallel (S-

P) array is  proposed. When shading occurs, it 

activates the corresponding bypass diodes of 

the PV module according  to  the  shading  

level.  Despite  its  effectiveness,  the 

technique  could  only  be  applied  to  an  

array  with  the  S-P configuration. Authors in 

[13] proposed a two-stage method to track the 

GP. In the first stage, the neighborhood of the 

GP is detected; the obtained information later 

becomes the basis for tracking  the  GP  in  the  

second  stage.  However,  it  was  noted that   

the   method   fails   to   track   the   GP   for   

all   shading conditions.  In another work [14], 

a critical study of I–V and P–V characteristics 

under the partial shading was carried out. 

Using  the  results  of  this  study,  The  

authors  proposed  a  two mode  tracking.  

First,  a  sudden  change  in  operating  power 

activates  a  subroutine  that  tracks  all  

possible  local  MPPs. Then all the local peaks 

are evaluated to determine which one is  the  

actual  GP.  The  problem,  however,  is  that  

for  certain  shading conditions, the algorithm 

needs to scan almost 80% of the  I–V  curve  

in  order  not  to  miss  any  potential  peak  

that would  become  the  GP.  Consequently,  

the  MPPT  response  is slow.  In  another  

work    [26],  a  two  mode  dividing  rectangle 

(DIRECT)    search    method    in    

conjunction    with    the conventional  P&O  is  

proposed.  A  global  mode  is  activated  

during   partial   shading   and   subsequently   

the   DIRECT algorithm tries to track the GP. 

Once the stopping condition is achieved,   it   

activates   the   P&O   method  to   maintain   

the operating point at GP. Although, this 

method has been proven to  be  effective  for  

most  of  the  times,  the  algorithm  is  very 

complex;  it  increases  the  computation  

burden  of  the  overall  MPPT   system   

significantly.   Recently,   several   works   are 

carried  out  to  employ  artificial  intelligence  

technique,  in  particular  the  fuzzy  logic  

control  (FLC)  for  MPPT  [16-18].  Although 

FLC MPP tracking is effective, it requires 

extensive processes   which  include   

fuzzification,   rule   base storage, inference 

mechanism  and defuzzification operations.  

Consequently, compromise  has  to  be  made  

between  tracking speed and computational 

cost.  An alternative approach is to treat the 

MPP tracking as an  optimization problem and 

thereafter applying the evolutionary algorithms  

(EA)  to  search  for  the  global  maxima.  Due  

to  its ability to handle multi-modal objective 

functions [19, 20], EA are envisaged to be well 

suited for a problem of such nature. 

Recognizing these advantages, various authors 

have employed particle swarm optimization 

(PSO) to track the GP during the partial  

shading  [21-23].  However,  in  all  these  

PSO  methods, random  numbers  are  used.    

The  main  disadvantage  of  this approach is 

that the randomness tends to reduce the 

searching efficiency  significantly.  For  

example,  during  the  exploration process, if a 

low valued random number is multiplied with 

the present  information  of  control  variable  

(voltage,  current  or duty  cycle),  only  a  

small  change  in  the  velocity  term  of  the 

PSO  equation  is  obtained.  This  small  

perturbation  may  be insufficient  to  bring  

the  operating  point  to  near  the  desired 

value. Consequently, further iterations need to 

be carried out. However, there is no guarantee 

that the random number in the subsequent 

iteration will close the gap towards the GP. On 

the other  hand,  if  the  perturbation  is  too  

large,  it  may  cause  the control  variable  to  

escape  from  the  GP  region  and  possibly 

being  trapped  into  the  vicinity  of  a  local  

peak.  Furthermore, the  unpredictability  of  

solution  due  to  randomness  is  more severe  

if  the  number  of  particles  is  small.  

Increasing  the number of particles will 

improve the chances of converging to a 



feasible solution. However, this can only be 

achieved at the expense  of  computation  time.  

If  the  time  taken  to  locate  the GP is too 

long, practical implementation of the 

algorithm may not be possible. In   view   of   

these   drawbacks,   this   paper   introduces   a 

CSTPSO to improve the tracking capability of  

the  conventional  PSO  algorithm.  The  main  

idea  is  to remove the random number  in the 

accelerations factor of the PSO  velocity  

equation.  In  addition,  the  maximum  change  

in velocity,Vmax , is restricted to a particular 

value– which will be determined  based  on  

the  critical  study  of P–V  characteristics 

during partial  shading. To   evaluate   the   

idea,   the   algorithm   is  implemented  on  a  

boost  converter  and  compared  to  the  

conventional      MPPT   methods.    The  

proposed approach  offers several advantages:  

(1)  due  to  the  absence  of  random  values,  

the particles follow a deterministic behavior; 

for each independent run,  the  solution  is  

consistent  even  with  a  small  number  of 

particles (2) only one parameter i.e. the inertia 

weight, need to be  tuned,  (3)  the  

optimization  structure  is  much  simpler 

compared  to  conventional  PSO  and  (4)  by  

limiting  Vmax ,  the algorithm   can   be   very   

useful   in   frequently   changing 

environmental conditions.    

2. NON-LINEAR 

CHARACTERISTICS OF PV 

ARRAY UNDER PARTIAL 

SHADED CONDITIONS 

Fig.1 shows the model of a generalized S-P 

configuration of a PV array. The output 

current equation of this topology using two-

diode model  can be written as [24]: 
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where IPV  is the current generated by the 

incidence of light; Io  is  the  equivalent  

reverse  saturation  currents  of  diode1  and 

diode2, respectively. Other variables are 

defined as follows: VT (Ns kT/q) is the thermal 

voltages of the PV module having Ns    cells   

connected   in   series,   q   is   the   electron   

charge (1.60217646×10 
–19

 C),  k     is     the     

Boltzmann     constant (1.3806503×10
–23

   J/K)  

and  T  is  the  temperature  of  the  p-n 

junction  in  Kelvin.  Variable  a2  represents  

the  diode  ideality constant. Nss  and Npp  are 

the series and parallel PV modules, 

respectively. 
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Fig. 1 Series parallel (S-P) combination of PV array. 

Fig. 2  (a)  shows  a  more  practical  

arrangement  of  a  PV array,  in  which  two  

additional  diodes  are  connected.  First  is the  

bypass  diode  that  is  connected  in  parallel  

with  each  PV module  to  protect  modules  

from  hot-spot.  This  problem usually occurs 

when a number of the series PV cells modules 

are  less  illuminated  and  behave  as  a  load  

instead  of  a generator.  In  literature,  this  is  

known as  partial shading. The second is the 

blocking diode connected at the end of each 

PV string. It protects the array from being 

affected by the current imbalance between the 

strings. 
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Fig.2. (a) Operation of PV array partial shading: For 

uniform irradiation, the module has solar insolation 

G=1000W/m2, shaded module has G=500W/m2(b) P–V 

curves for each string. (c)  The resultant P–V curve for 

entire array 

When the PV array is operating under  uniform 

insolation, the resulting P–V characteristics 

curve of the array exhibit a single MPP.   

However,   during   partial   shading,   these   

additional diodes transform the P–V curves 

into more complicated shape–characterized  by  

several  local  and  one  global  peak.  This 

effect can be visualized by an SP configuration 

comprises of three strings, each having three 

set of PV modules, as shown in Fig. 2 (a). In 

this figure, each module has a nominal rating 

of 25W at standard testing conditions (STC). 

When the PV array receives  a  uniform  

insolation  of  1000W/m
2
   (string 3),  the 

parallel   diodes   are   reverse   biased;   

consequently  the  PV current flows  due  to  

the  series  PV  modules.  However,  when PV  

array  is  subjected  to  partial  shading  (string 

1  and  2),  the shaded   modules   receives   a   

reduced   solar   irradiance   of 500W/m
2
 .  The 

voltage difference between the two unequally 

irradiated  modules  activates  the  bypass  

diode  of  the  lower irradiated string. As a 

result, the resulting P–V curve for each shaded 

string is characterized by two peaks, namely 

PS2  (60W) for string 2 and PS1  (40W) for 

string 1 [14, 24]. By  investigating  Fig.  2(b),  

it  can  be  noted  that  the  peaks PS1 , PS2  

and PS3  occur at V1=24 V, V2=35 V, and 

V3=52 V, respectively.  The  key  point  to  

note  here  is  that  each  string exhibits  its  

maximum  peak  at  80%  of  open  circuit  

voltage (Voc ) of the unshaded modules. The 

resulting P–V curve for the entire array is 

shown in Fig. 2 (c). It can be observed that the 

position of PS1 , PS2 ,  and  PS3   govern  the  

position  of  the  peaks  P1 ,  P2  and  P3 , 

correspondingly.  Moreover,  these  Peaks  

occur  nearly  at  the voltages  V1 ,  V2   and  V3 

,respectively.  Furthermore, it  can  be deduced 

that all the local peaks are displaced to each 

other by an integral multiple of 80% of Voc 

(n×0.8×Voc) of a single PV  module,  where  

“n”  is  an  integer.  Since  the  minimum 

integral difference in the number of shaded 

modules between the series modules of two 

strings is one, the minimum possible 

displacement between two successive peaks is 

0.8×Vocmodule. These important  observations  

of partially shaded  PV array is described    in    

[14].  They    will   be    used    later   in   the 

implementation stage of the proposed MPPT 

method. 

3. CONVENTIONAL PARTICLE 

SWARM OPTIMIZATION 

(PSO) 

3.1. Brief introduction to PSO 

Particle   swarm   optimization   (PSO)   is   a   

stochastic, population-based   EA   search   

method,   modeled   after   the behavior  of  

bird  flocks  [32].  A  PSO  algorithm  

maintains  a swarm  of  individuals  (called  

particles),  where  each  particle represents  a  

candidate  solution.  Particles  follow  a  

simple behavior: emulate the success of 



neighboring particles and its own achieved 

successes. The position of a particle is 

therefore influenced by the best particle in a 

neighborhood, Pbest , as well as the best 

solution found by the particle itself, Gbest . 

Particle position, xi , are adjusted using: 
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where w is the inertia weight, c1  and c2  are 

the acceleration  coefficients, r1 , r2 є U (0,1), 

Pbesti  is the personal best position  of particlei, 

and Gbest  is the best position of the particles. 

Note that  r1   and  r2   are  random  numbers.  

Fig. 3 shows  the  typical movement of 

particles in the optimization process.  

 

Fig. 3. Movement of particles in the optimization 

process[15] 

3.2. Brief introduction to CST 

Chaos is a kind of non periodic moving style. 

It exists widely in the  nonlinear  system  and  

is  unique  to  the  system.  It  appears 

stochastic  but  can  be  generated  through  

deterministic  means. Chaos is a kind of 

unshaped out-of-order state, which blends with 

specific  forms  relative  to  some  ‘‘immobile  

points’’,‘‘periodic points’’ [33]. Chaos has 

subtle internal structure and it is a kind of 

‘‘strange attractor’’, which can attract the 

movement of system and confine it within the 

specified range. The chaos searching technique 

(CST) is a new kind of searching method [33]. 

The basic idea of the algorithm is to transform 

the variable of problems from the solution 

space to chaos space and then  perform  search  

to  find  out  the  solution  by  virtue  of  the 

random city,  orderliness  and  ergodi city  of  

the  chaos  variable. Chaos searching 

technique includes two steps: firstly, search all 

the  points  in  turn  within  the  changing  

range  of  variables  and taking the better point 

as the current optimum point; then regard the 

current optimum point as the center, a tiny 

chaos disturbance is imposed and more careful 

search is performed to find out the optimum 

point. The chaos search technique has many 

advantages such as not sensitive to the initial 

value, easy to skip out of the locally minimum 

value, fast searching velocity and global 

gradual convergence. The  following  Logistic  

map  is  used  to  generate  the  chaos sequence 

because it is more convenient to use: 
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where    ,...)2,1(1,0  izi  is the chaos 

variable ,...)2,1( ii   is the times of iteration; 

and   is the control parameter. It is easy to 

testify that the system is entirely in chaos 

situation when 4 and the chaos space 

belongs to [0, 1]. The  flow  chart  of  the  

proposed  algorithm  is  shown  in  the 

following Fig. 4. 
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Fig4. The flow chart of the proposed hybrid intelligent algorithm 

 

4. THE PROPOSED CSTPSO 

A  basic  problem  with  the  conventional  

PSO  for  the  MPPT  system  can  be  traced  

to  its random  nature.  It  can  be  seen  that  

the  last  two  terms  in  (5)  is  totally  

dependent  on  random  numbers.  Two  

potential  problems  can  be  readily  observed  

by  investigating  (5).  First,  during  the  

exploring  phase  of  algorithm  (searching  

towards  the  GP),  the  particles  change  their  

positions  (in  this  case  duty  cycle)  based  on  

the  perturbation in the velocity.  Therefore, if 

the change in duty  cycle   in   two   successive   

iterations   is   very   low,   the corresponding 



change in array operating voltage will also be 

very  low.  Thus,  more  iteration  is  needed  

to  reach  the  final  solution.    Second,  the  

farther  the  particle  from  the  best position  

(based  on  its  own  experience  and  its  

neighbor),  a larger  change  in  the  velocity  is  

required  to  follow  the  best position.  

However,too  large  change  in  the  velocity  

might cause the particle to escape from the 

vicinity of the GP. This opens up the 

probability of converging to a local peak 

instead of the GP.However,  both  problems  

can  be  resolved  by  carefully observing the 

trends in P–V curves under partial shading and 

taking advantages of their properties described 

in Section 2. It   is   noted   that   the   

minimum   distance   between   two 

consecutive  peaks  are  displaced  by  80%  of  

the  Voc   of  the unshaded module. Thus, by 

removing the random factor in (5)  and  

limiting  the  velocity  factor  (Vmax)  according  

to  the  distance   between   two   peaks,   the   

conventional   PSO   is  transformed   to   a   

more   deterministic   structure.   The   key 

element  of  this  transformation  is  the  

possibility  of  removing the random numbers 

in (5).  Fittingly, the transformed equation is 

named as chaos searching  technique  PSO  

(CSTPSO).  It  can  be  seen  that  proposed  

modifications  offers several advantages:  1) 

Due  to  the  absence  of  randomness,  the  

particles  follow  a  deterministic  behavior.  

Subsequently,  for  each  independent  run,  the  

obtained  final  solution  is  consistent  with  

respect  to iteration size. In the conventional 

PSO, this iteration number (final solution’s 

iteration) changes due to random number. 2) 

Tuning effort is greatly reduced; only one 

parameter i.e. the inertia weight, w, needs to 

be tuned. 3) The   method   significantly   

simplifies   the   optimization structure  

compared  to  the  conventional  PSO.  It  

lessens  the computation requirement and can 

be easily realized by a low cost 

microprocessor. 4) The limiting velocity 

factor, Vmax , can be very useful in the variation 

of environmental conditions; one such 

example is in the  tropical  countries.  The  

occurrences  of  clouds  in  tropical region  are  

very  common,  resulting  in  frequent  

alterations  in P–V curves. By manipulating 

the value of Vmax , the values of duty  cycles  

increase  or  decrease  slowly  in  two  

successive MPPT  cycles.    Although,  

searching  capability  tends  to  be slower, the 

GP tracking is guaranteed. 

5. THE CSTPSO MPPT  

5.1.  Direct Control Method  

Fig.5 (a) shows   a   boost   converter   used   

in  conjunction to a typical MPP controller. 

Fig.5(b) depicts the conventional  MPP  

tracking  scheme.  Typically  it  consists  of 

two  independent  control  loops [26,27].  With  

regards  to  the ease   of   design,   inexpensive   

maintenance   and   low   cost solution,  

implementation is  mostly  done using PI 

controllers. However,  due  to  the  

unpredictable  environmental  conditions and 

non-linear characteristics of PV system, the PI 

controllers tend to  lose  their  performance  

when employed in PV system [28].  

Alternatively, Fig. 5(c) shows the direct 

control scheme to track the GP [11].Both PI 

control loops are eliminated and duty   cycle   

is   computed   directly   in   the   MPP   

tracking algorithm.  This  scheme  offers  

number  of  advantages: (1)  it simplifies  the  

hierarchy  of  the  control  structure,  (2)  

reduces the  computation  time  and  (3)  

eliminates the  need to tune  the PI  gains.  In  

essence,  it  simplifies  the  implementation  of  

the conventional PI-based  MPPT  tracking  

while  maintaining  the similar optimal results. 
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Fig. 5. (a) MPPT boost converter (b) conventional MPPT 

structure and (c) proposed direct control structure 

5.2.  Implementation of Proposed 

Method  

To  illustrate  the  application  of  CSTPSO  to  

track  the  MPP  using  the  direct  control  

technique,  a  numerical  example  is used. 

First a solution vector of duty cycles with Np 

particles is defined: 
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The objective function is chosen to be: 
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The overall MPPT algorithm operates in two 

modes.  Under normal  condition,  i.e.  slow  

change  in  the  environmental variation,  the  

algorithm  operates  in  local  mode  where  it 

maintains the existing GP of the PV array. 

However, if partial shading occurs, the global 

mode is activated, i.e. the algorithm 

immediately jumps  to  the CSTPSO  

subroutine  where  the  GP  is computed. Once 

the GP is successfully located, the algorithm 

switches back to local mode. In this mode, hill 

climbing with variable step-size perturbation is 

employed. 

5.3.  Global Mode  

To implement the CSTPSO, the following 

parameters are used: NP=3 and ω=0.4. As 

discussed in section 3, during partial shading  

the  PV  curves  are  characterized  by  

multiple  peaks which are displaced with each 

other by an integral multiple of 80% of Voc  

(n×0.8×Voc). The objective function is 

defined to be  the  output  array  power.  

Furthermore,  Vmax   is  chosen  to  be 0.035;  

this  value  ensures  that  no  major  peak  is  

missed  when the algorithm operates in the 

global mode. The velocity vector is initialized 

to zero. The range of the duty cycle is 

calculated using [15]: 
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where,  ηbb  is  the  converter  efficiency  of  

the  converter,  RLmin  and  RLmax   are  the  

minimum  and  maximum  values  of  the 

connected  load  at  the  output,  respectively.  

While,  RPVmin   and RPVmax    are   the   

reflective   impedances   of   the   PV   array, 

respectively. Let’s  assume  that  initially  the  

algorithm  is  settled  at  MPP (point A)  as  

shown  in  Fig.  6 (a).  Suddenly,  a  change  in 

environmental  condition  occurs;  it  results  in  

the  reduction  of the tracked power even 

though the duty cycle is not changed. Since  

CSTPSO  is  based  on  search  optimization,  

in  principle,  it should  be  able  to  locate  the  

GP  for  any  type  of  P–V  curve regardless    

of    environmental    variations.    However,    

to differentiate  between  the  change  in  

uniform  insolation  and occurrence   of   

partial   shading,   the   following   check   is 

performed [15]: 
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The  values  “0.1”  and  “0.2”  are  selected  

based  on  the observation that IMPP  and VMPP  

are about 90% and 80% of ISC  and  VOC   of  a  

single  peak  I–V  curve,  respectively.  If  the 

inequalities  in  (12)  and  (13)  are  fulfilled,  

the  occurrence  of partial  shading  is  

confirmed.  Accordingly,  proposed  method 

switches to global mode– the CSTPSO 

algorithm is activated. It can be also noted that 

the evidence of shading in (12) and (13)  are  

formulated  based  on  the  staircase  structure  

of   I–V curves  in  partial  shading–  the  

existence  of  staircase  confirm the shading. 



Therefore, the conditions in (12) and (13) are 

not restricted  to  only  three  particles.  It  can  

be  increased  to  any number of particles, in 

which the detection of stairs should be the 

main objective. More details for the usage of 

(12) and (13) can be found out in [15].   To 

start the optimization process, the algorithm 

transmits three duty cycles di  (i=1,2,3) to the 

power converter. In Fig. 6, d1 , d2  and d3  are 

marked by triangular, circular and square 

points, respectively.  These  duty  cycles  are  

computed  using  (10)  and (11) and serve as 

the Pbesti  in the first iteration. Among these, d2  

is the Gbest  that gives the best fitness value, as 

illustrated by Fig. 6 (a). In the second iteration, 

the resulting velocity is only due to the Gbest  

term as the (Pbesti –d (i)) factor in (5) is zero. 

Furthermore, it can be observed that d1  and d3  

are too far from d2 . This will result in a large 

change in v1  and v3  i.e. more than Vmax .   

However,   since   Vmax    has   been   set   to   

0.035,   the corresponding    velocities    are    

limited    to    this    value. Additionally, the 

velocity of Gbest for  d2  is zero. This is due to 

the fact that (Gbest  -d (2)) factor in (5) is zero. 

Hence the duty cycle  d2   is  unchanged.  As  a  

result,  this  particle  will  not contribute in the 

exploration process. To avoid such situation, a  

small  perturbation  in  duty  cycle  is  allowed  

to  ensure  the change in the fitness value, as 

depicted in Fig. 6 (b). It can be also seen that 

the change in array voltage does not exceed 

the minimum  possible  displacement  between  

the  two  successive peaks i.e. 80% of 

Voc_module . Fig.6(c)  shows  the  particles  

movement  in  the  third iteration.  Due  to  the  

fact  that  all  the  duty  cycles  in  the previous  

iteration  attain  improved  objective  function,  

the velocity   direction   of   these   particles   

is   unchanged   and subsequently they move 

towards Gbest  in the same direction. In this 

iteration, the operating power is not improved 

for the case of  d3   as  compared  to  its  

previous  Pbest3 .  Thus,  in  the  next iteration,  

previous  d3   still  serves  as  the  P best3 .  In  

the  fourth iteration, d1  and d2  arrive at the 

GP region having a very low value  of  

velocity.   In   most   applications,   this  

velocity  is sufficiently  small  enough  such  

that  the  corresponding  duty cycle can no 

longer improves the objective function. Thus, 

if any of the particle (di) does not exhibit 

further improvement in objective  function  

and  the  difference  between  the  voltage  of 

this  particle  to  the  other  particles  (dj , 

where i≠j)  is sufficiently  small,  the  GP  

region  is  assumed  to  be  found –both  di   

and  dj   lie  on  the  neighborhood  of  the  GP.    

This scenario is illustrated in Fig. 6(d). 

Generally,  the  proposed  method  exhibits  a  

very  good performance  by  selecting  NP=3  

and  Vmax=0.035.  However, more accurate 

results can be achieved either by increasing NP  

or decreasing Vmax . Both options yield better 

results but at the expense  of  more  number  of  

iterations.  It  can  be  seen  in  Fig. 6(e) that 

when Vmax  is reduced to 0.02, the resulting 

transitions of particles are very small and final 

convergence towards the GP is very smooth.   
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Fig. 6. Working principle of CSTPSO. (a) – (d) Particle movements in searching for the GP. (e) The effect of low value of V 

max . (f) The effect of large value of Vmax . 

Fig  6(f)  illustrates  the  consequence  of  

selecting  a  large  value  of  Vmax . When the 

optimization starts,  the two  extreme Pbest  

particles (d1  and d3 ) are  too far from Gbest  

(d2). In  order for  them  to  reach  closer  to  d2 

, a  large  change  in  velocity  is required. This 

is more crucial for d3 ; it changes from 28V to 

49V–  more  than  80%  of  Voc_module . It  

has  to  be  noted  that despite the successful 

tracking of the GP, there exists areas in the  P-

V  curve  that  could  not  be  explored,  due  to  

the  large change in array voltage. Such region 

is enclosed by the dotted lines in Fig. 6(f). If 

this region contains a higher peak than the 

previously found GP, the consequence would 

be that the final tracked MPP will be a local 

instead of the global. This  important  fact  is  

highlighted  by  another  numerical example, 

depicted in Fig. 7. The GP is located at the 

extreme left  of  the  P–V  curve.  Among  the  

first  three  duty  cycles,  d1  turns out to be the 

Gbest. Consequently, d2  and d3  require large 

change in duty cycles to move towards d1 . It 

can be seen that this variation results in d3  

falling directly into the vicinity of a local peak. 

Hence the information on the GP is totally 

lost. 
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Fig. 7. Illustration of condition when the GP lies at the 

extreme P–V curve. 

As a result, instead of searching the GP, the 

algorithm eventually tracks the local peak, 

resulting in lower power output from the PV  

array.   

5.4.  Global Mode  

    Because  Once  the  GP  is  located,  the  

algorithm  exits  the CSTPSO and switches to 

the local mode operation. In this mode, a  

conventional  hill  climbing  (HC)  method  is  

employed.  To minimize the energy loss due to 

oscillations in the vicinity of MPP, the variable 

step-size perturbation technique is applied. 



The  local  mode  is  activated  by  either  of  

the  following conditions:  1) In  the  case  of  

uniform  insolation,  the  local  mode  is 

activated  when  inequalities  (12)  and  (13)  

are  not  met.  In  the local  mode,  the  best  

duty  cycle  (Dref ),  which  produces  the 

maximum  power,  is  used  as  a  reference  

for  the  subsequent perturbation process. 2)  

The   local   mode   is   also   activated   once   

the   stopping condition in the global mode is 

reached. The algorithm stops exploring  the  

P–V  curve  and  switches  to  local  mode.    

The stopping condition occurs when the 

change in the velocity of any  particle  di ,  

reaches  a  (predefined)  small  value  and  the 

difference  between  the  voltages  of  di   

particle  to  the  other particle  (dj ,where  i ≠ j)  

is  sufficiently  small.  The  difference could  

be  selected  between  30–60  percent  of  Voc 

module .  The resulting  voltage  due  to  di   

and  dj   is  relatively  small  which implies that 

both particles have successfully reached at the 

GP region.  Fig.8  shows  the  complete  flow  

chart  of  the  proposed method  that  covers  

the  operation  in  both  global  and  local 

modes.  In  this  flow  diagram,  if  ΔP  is  

greater  than  a  certain threshold value (Pthr), 

then the tracking process starts to search for 

the new GP (in the main program). 
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Fig. 8. Complete flow chart of the proposed MPPT method. 

To  determine  ΔP,  the  array’s  output  power  

at  two  different sampling instants,0.05 s 

apart, is considered. It was stated in [14] that 

the sudden variations in insolation are usually 

small in  magnitude  (smaller  than 

G=0.027kW/m
2
)  and  occurs within 1s. Based 

on this fact, (ΔG < 0.027 kW/m
2
), Pthr  can be 

fine-tuned accordingly. Moreover, the initial 

duty cycles (in this case three) for the power 

converter are selected between dmin   and  dmax .  

However,  as  stated  earlier,  the  position  of  

the duty  cycle  signals  should  be  able  to  

detect  the  staircase P–V curves during partial 

shading. 

6. SIMULATION OF PROPOSED 

MPPT METHOD  

6.1.  Simulation Model  

    



 

Fig.9. PV system with boost converter 

Fig. 9 shows the simulation model for the  

converter with the MPPT  implemented in  this  

work. The following  specifications  for  the  

boost  converter  are used: C1=470μF, 

C2=220μF and L=1mH. The converter  

switching frequency is set to 50 kHz. 

Furthermore, to ensure the  system attains 

steady state  before another MPPT cycle is 

initiated, the sampling interval is chosen as 

0.05s.  To evaluate the effectiveness of the 

tracking algorithm, the CSTPSO is compared 

with the conventional P&O method [9]. The 

P&O periodically updates the duty cycle d(k) 

by a fixed step-size with the direction of 

increasing power. Since, it was clear in section 

V that three particles can effectively track the 

GP; accordingly, this  value  will  be  used  for  

simulation  and hardware  implementation.  

The  Simulations  are  carried  out using  the  

comprehensive  PV  system  simulator  

developed  in [8].   
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Fig. 10. 10× 5 PV array configuration with shading 

patterns 

The  PV  array  is  connected  in  S-P  

configuration,  which consists  of  five  strings  

with  ten  modules  per  string.  For simplicity, 

the array is represented in Fig. 10. Each block 

in the figure represents a PV module, rated (at 

STC) at PMAX  = 20W, IMPP=1.21 A, VMPP=16.8 

V, ISC =1.29 A, and VOC =21V at STC. For the 

non shaded module, the full insolation is 

defined to be at 1000W/m
2
  while the shaded 

receives 600W/m
2
  (60% of  insolation). An  

overall  hypothetical  shading  pattern  is 

suggested in Fig. 10.   

6.2.   Partial Shading simulation   

Fig. 11 shows the resulting I–V and P–V 

curves for the two cases: (1) when the whole 

PV array attains full insolation, i.e. non-

presence  of  Partial  shading  and  (2)  when  

the  array  is being partially shaded with the 

pattern shown in Fig. 10. It can be  seen  that  

the  P–V  curve  for  partial  shading  condition 

exhibits  five  local  peaks  labeled  by  A–E.  

Clearly, Peak  E  is the desired global maxima. 

These curves (cases 1 and 2) will be imposed 

on the CSTPSO (in simulation) to evaluate 

their respective  Performances.  The  transition  

rate,  i.e.  the changes of one insolation level to 

another is set to 2s. 
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Fig. 12  shows  the  tracked  voltage,  current  

and  duty cycle  for  CSTPSO.  Initially,  the  

PV  array  uniformly  receives 50%  of  full  

insolation,  i.e. 500W/m
2
 .  The  operating  

power (PMPP) is  approximately  500 W,  

which  corresponds  to  VMPP=168V and 

IMP=3A. At t=2 s, the insolation is stepped 

from 500W/m
2
   to  full  insolation,  i.e.  1000  

W/m
2
 .  This  action forces  the  CSTPSO  

algorithm  to  search  for  the  new  maximum 

operating  power  (GP1)  at  PMPP=1000  W.  

To  cater  for  this change,  the CSTPSO 

algorithm  first  transmits three duty cycles to  

the  power  converter  at  t=2  s  to  identify  

the  insolation condition.  This  is  shown  by  

the  variation  in  the  duty  cycle plot, d in Fig. 

12.Using the computed values of these duty 

cycles and checking them with (12) and (13), 

the existence of uniform  insolation  is  

confirmed.  Accordingly,  at  the  fourth 

sampling  cycle,  it  begins  to  search  for  the  
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global  maxima using  the  local  mode  

algorithm. It  correctly  tracks  the 

corresponding  GP1  at  VMPP=168V  and  

IMP=6A  within  8 sampling  cycles.  

Furthermore,  it  can  be  observed  that  the 

steady  state  oscillation  around  GP1 is  very  

small  due  to  the small  perturbation  step  

size,  once  the  CSTPSO  algorithm  has 

located the MPP.   

 

Fig. 12. Tracking voltage, current, duty cycle and power  

CSTPSO 

At t=4s, the array is subjected to partial 

shading. For this condition  the  normal  

(single  peak)  P–V  curve  is  replaced  by the 

curves with multiple peaks (case 2). This in 

turn, changes the operating point from 1 to 2 

as shown in Fig. 11. As before, the  CSTPSO  

starts  the  tracking  process  by  sending  three  

duty cycles.  Once  the  information  obtained  

from  (12)  and  (13) confirms the occurrence 

of partial shading, it kicks-in into the global  

mode  algorithm.  During  the  search  for  the  

GP, the exploration   of   P–V   curves   results   

in   operating   point fluctuations as can be 

clearly observed by the rapid variation in  d  as  

shown  in  Fig.12.  At  the  ninth  cycle,  the  

CSTPSO algorithm    successfully    locates    

the    new    maxima,    i.e. GP2=722.4W,  

which  corresponds  to  VMPP = 172  V  and  

IMP = 4.2  A.   Once   GP2   is   found,   the   

algorithm   immediately switches to the local 

mode to maintain that operating point. It can 

also be seen that the fluctuations in operating 

voltage and current consistently decreases  

with  the  increment  in  iteration number. This 

can be attributed to the fact that the Vmax  factor 

does not allow the particles to move very fast 

towards the GP.   For the case of P&O, when 

the operating point shifts from 1 to 2, it enters 

the vicinity of the local peak (point D).  Since 

the  previous  sampled  power  P(k–1)  is  

greater  than  current value  P(k),  the  duty  

cycle  decreases–causing  the  operating point  

moves  toward  the  right  side  of  MPP .  

However,  in  the next  successive  samples,  if  

P(k–1)  is  found  to  be  less  than P(k),  the  

operating  point  will  move  toward  the  right  

side  of MPP .Eventually,  the  P&O algorithm  

will  force  the  operating point to go forward 

and backward around point D, resulting in a   

sustainable   oscillation   around   that   point.   

Clearly   the operating  point  will  never  be  

able  leave  the  vicinity of  point D, i.e. the 

algorithm is always trapped in local maxima. 
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Fig. 13.Change in the PV characteristic 

6.3.   Tracking    under    slowly    

varying    partial    shading 

conditions  

   In  certain  environmental  conditions,  the  

shading  can  vary slowly  [8].  Examples  of  

such  situation  are  sticking  dirt  and shadow 

from cloud. To emulate the slow shading 

condition, a set  of  8  P–V  curves  are  

updated  one  by  one  at  a  transition rate  of  

7.5  minutes,  as  shown  in  Fig.  13.  Both  

CSTPSO  and  P&O  are evaluated  under  this  

gradual  change  in  insolation  and  their 

tracking paths are shown in the same figure. It 

can be clearly seen that the CSTPSO follows 

the tracking path ABCDE, which tracks  the  

GP  for  every  P–V  curve.  On  the  other  

hand,  the tracking path of P&O is seriously 

compromised; this is reflected by  its  

transverse  path  (ABFD).  In  this  path,  for  

several  P–V curves,  P&O  fails  to  track  the  



true  GP,  thus  confirming  the drawback of 

this method.   Table  I  shows  the  comparison  

of  the  tracked  energy  and  the  array  

utilization  of    methods  for  the complete  

two  hours  testing  duration(in simulation).It  

can  be  seen  that  the energy yield by the 

CSTPSO is exceptionally near to 100%. It is 

worth  noting  that  the  extracted power  and  

energy  yield  with proposed CSTPSO will be 

much higher than other  methods, if the 

difference  in  local  peak  and  GP  is  higher  

and  the  shading continues for longer 

duration. Based on the simulation studies 

described above, the performance comparison 

between the proposed and existing methods is 

carried  out  and  is  given  in  table  1.  Here  

tracking  efficiency  is calculated by taking the 

ratio between averaged output power obtained 

under steady state and maximum available 

power of the PV array under certain shading 

pattern in Figure 14 . This table clearly  

illustrates  the  superiority  of  the  CSTPSO  

based  algorithm  in  tracking  the  GMPP  in  

comparison  with  the  methods  available  in  

the literature. 

6.4. Tracking under extreme partial 

shading  

   

 

Fig. 14. 6S PV configuration a) Pattern-1, b) Pattern-2 

The transition rate is set to 2s. It can be noted 

that the global peaks GP2 and GP3 lie at the 

right and left extreme of P–V curves, 

respectively. For  the  conventional  MPPT  

method,  if  the  new  operating point (due  to 

partial shading) is  too far from the current GP, 

either of the following will results: (1) it will 

most likely being  trapped  at  local  peak  [15]  

or  (2)  it  will  require  many  MPPT cycles to 

reach at GP [15]. For instance, in Fig. 15, due 

to the partial shading, when the PV array curve 

changes from curve 1 to 2, the operating point 

shifts from point A (previous) to A′ (present). 

If  the  P&O  method  is  employed,  the  

algorithm incrementally moves towards the 

MPP region  and  finally  tracks  a  peak  at  

the  neighborhood  of  A′.   

 

 

Table1. Comparison of the CSTPSO and PSO , P&O ,Fuzzy methods 

Shading 

pattern 

MPPT 

Method 

Power 

(watt) 

Voltage  

(volts)  

 

Current  

(amperes) 

Tracking 

Speed  

(seconds) 

Array 

utilization 

 

1   

CSTPSO 52.2 83 0.628 5.05 99.80 

PSO  52.22 83.7 0.624 6.87 99.65 

P&O 26.76 106.2 0.252 2.02 51.23 

Fuzzy 49.76 98.5 0.598 6.97 99.54 

 

2 

CSTPSO 39.3 34 1.156 3.97 99.97 

PSO  39.3 33.8 1.163 10.02 99.95 

P&O 24.428 98.9 0.247 2.34 62.21 

Fuzzy 38.67 39.08 1.098 11.90 99.78 
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Fig. 15. P–V curves used to test the performance of the CSTPSO under the extreme partial shading conditions 

However,  it  has  no  means  of  knowing  

whether  the  tracked MPP is a local or global 

peak. Clearly it is the former and it is worth 

noting that the difference in power between 

the two is 50W,  i.e.  7%  of  the  output  

power.  This  is  a  very  significant loss for a 

PV system. For  CSTPSO,  when  the  

operating  point  shifts  from  A  to  A', and 

once the algorithm realize the sudden 

reduction in power using (12) and (13), it 

immediately initiates the global mode. It  

begins  the  exploring  phase  of  the  

CSTPSO.  Thereafter,  the movements of 

particles are marked by the triangular points 

on curve 2.  It  can  be  observed  that  the  

scattered  particles  cover all  the  major  peaks  

on  this  curve  and  finally  it  reaches GP2, i.e. 

point B. In the next case, another partial 

shading pattern (curve 3) is imposed; the 

operating point now shifts from B to B’.  Note  

that  the  latter  is  very  far  from  the  MPP  of  

curve  3 (GP3).  Despite  this  extreme  

condition, the  CSTPSO  again searches the 

new MPP and tracks GP3 without any 

difficulty. Similar  scenario  can  be  observed  

when  the  operating  point changes from C to 

C'; accordingly the CSTPSO searches for the 

peak  in  curve  4  and  successfully  tracks  its  

MPP  (GP4)  too. Furthermore,  it  can  be  

noticed  that  for  all  the  curves  under 

simulation, GP exists in a certain region i.e. 

60–180V.  This also  confirms  the  validity  of  

eq. (11)  and  (12)  for  calculating dmin  and 

dmax . 

7. CONCLUSION 

In  this  paper,  a  hybrid intelligent algorithm 

by combining particle swarm optimization 

with chaos searching technique (CSTPSO) 

structure, the proposed method  offers  

remarkable  accuracy  and  speed  compared  

to conventional  other methods.  Furthermore,  

due  to  the  simplicity  of  the proposed  

method,  it  can  be  easily  implemented  using  

a  low-cost microcontroller. It  overcomes  the  

weaknesses  of  conventional  direct control 

method particularly in partial shading 

conditions. Simulation results have shown that 

the proposed method outperforms the 

conventional method in terms of tracking 

performance under Several different irradiance 

conditions, including various patterns for 

partial shading. 
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