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Abstract: Only based on the use of neural techniques: 
Artificial Neural Networks (ANNs), This paper presents a 
complete neural strategy for harmonics identification and 
control of a three-phase voltage inverter used for the 
power active filtering (APF), so our main motivation is to 
build a neural APF. This approach of compensation is 
done in three neural blocks. In The first one we propose a 
new neural approach based on Adalines for the online 
extraction of the symmetrical voltage components, i.e., 
Phase-Locked Loop (PLL) based on the Instantaneous 
Powers Theory (IPT), to recover a balanced and 
equilibrated voltage system. The second block extracts the 
harmonic currents with synchronized method by using 
Adaline neural networks. The third block injects the 
harmonic currents with opposite phase in the electrical 
supply network; it uses a PI-neural controller to control 
the inverter. To maintain the dc voltage capacitor 
constant and compensate the inverter losses a neural 
proportional integral voltage controller is used.  By their 
learning capabilities of ANNs, our approach is 
automatically able to adapt itself to any change of the 
non-linear and thus appreciably improve the performance 
of traditional compensating methods. Furthermore, The 
proposed neural compensation approach has been 
evaluated in simulations. The results show excellent 
behaviors and performance, as well as robustness and 
usefulness in terms of total harmonic THD distortion and 
power factor PF under various operating conditions. 
 
Key words: Active power filter (APF), Artificial Neural 

Networks (ANNs), PI-neural controller, neural 
synchronous method, power quality. 

 
1. Introduction 
  Nowadays, harmonic distortions generated by 
nonlinear loads which are more and more present in 
industrial and domestic electric installations. is 
becoming so serious, that the quality of the public 
supply is barely acceptable. due to time-varying 
non-linear loads such as rectifiers, variable speed 
transmissions, AC regulator, lighting, etc. Indeed, 
those nonlinear loads absorb non sinusoidal currents 
generating thus harmonics components and 
unbalanced voltages in the whole power system.  
Further, low frequency harmonics (5

th
, 7

th
 … 

harmonics) should be suppressed because they can 
excite resonance in the electric network and 
cause mechanical stress and additional  heating [1]. 

    For several years, Active Power Filters (APFs) 
have been recognized as advanced techniques for 
harmonic compensation in power distribution 
networks [2, 3]. Their objective is to recover 
balanced and sinusoidal source currents by injecting 
compensation currents.  APFs are very able to 
suppress the current harmonics and to compensate 
for the power factor, especially with fast-fluctuating 
loads, in comparison to other compensation devices. 
Thus, An APF is generally used to ensure a constant 
active power in the distribution system but also 
sinusoidal waveforms of the source currents [4]. 
    Since a few years, Artificial Neural Networks 
(ANNs) techniques have been applied with success 
in the control of APFs and are very promising in the 
field. Indeed, the learning capacities of the ANNs 
allow an on-line adaptation to every changing 
parameters of the electrical network, e.g., nonlinear 
and time-varying loads [5]. Inserted in an APF 
scheme, they can appreciably improve its 
performance compared to the one obtained with 
traditional compensating methods [3]. 
In this paper, an APF system only based on ANNs is 
proposed. The neural APF is composed of three 
parts that work independently. Each part, the online 
extract the direct and inverse voltage components 
(PLL-neural), the filtering of the harmonics and the 
control of the APF’s power circuit, are based on a 
unique and a simple type of ANN: the Adaline 
Neural Network.  
A neural method for harmonic identification and 
compensation was studied, i.e the synchronized 
method. In this harmonic compensation method, the 
disturbed currents were decomposed in a linear 
expression.  Using an on-line learning, the Adalines 
are thus able to approximate this expression and can 
thus estimate each harmonic component. The control 
of the inverter is carried out by a PI-neural controller 
able to adapt to every changing parameters of the 
electrical network. This control scheme shows the 
principle of a PI controller and employs an Adaline  
network to adjust the parameters proportional and 
integral [1].  
The PLL proposed in this paper is also based on the 
IPT of [6]. This approach has been derived leading 
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in a new formulation of the instantaneous powers 
which has been learned by an Adaline neural 
networks [7] followed by a phase detection based on 
an proposed VCO which inserted a PI-neural 
regulator.  
The performances of the proposed neural shunt 
active filter based on Adalines are evaluated using 
MATLAB-Simulink and power system Block Set 
Toolbox under unbalanced voltage conditions. The 
Total Harmonic Distortion (THD) and the Power 
Factor (PF) are therefore calculated and analyzed. 
The obtained results show that the APF-neural with 
the Adaline-based schemes is able to adapt itself to 
the variations of the nonlinear load currents. 
 
2. APF for harmonic compensation 

 
2.1. Principe of Shunt Active Filter 
 Nowadays, among all APF’s topologies, the shunt 
APF is the most widely used in industrial sites. It 
can be considered as the most basic configuration of 
APF, and includes the main critical issues associated 
with APF control [2, 3]. The APF’s rule consists in 
identifying all the present harmonic components and 
to separate the fundamental component from other 
harmonic components which are converted in 
resulting reference currents. A control strategy uses 
these reference currents to inject them in real-time 
into the utility source with opposite phase through a 
power circuit, i.e., an inverter and an output filter. 
This principle is showed in Fig.1.  
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

2.2. Neural Architecture for  APF 
    The architecture of the APF-neural can be 
decomposed in three blocks detailed an shown in 
Fig.2. In the first block, Adalines are used to online 
extract the direct and inverse voltage components 
from the composite voltage, and thus to determine 
the sinusoidal and equilibrated voltages required by 
some harmonic detection algorithms. a neural 
method, based on a specific decomposition of the 
currents are proposed for the second block which 
identifies the harmonic currents by Adalines. The 
learning algorithm, thus, determines the 
compensation currents from the identified distortion 
harmonics. The third block uses Adalines to control 

the inverter of the APF in order to properly inject the 
compensation currents.  
 
3. The Adaline neural network 
3.1 Architecture 
    Since a few years, Artificial Neural Networks 
(ANNs) techniques have been applied with success 
in the control of APFs [8] . 
The Adaline (ADAptive LInear NEuron) is basically 
a linear combiner that uses the LMS algorithm for its 
operation. Fig. 3 shows the general network 
topology of an Adaline, where    is an input vector 
of dimension n,      is an adjustable weight vector 
of dimension n, and    is the scalar output. Indeed, 
without loss of generality multiple outputs can be 
handled by multiple Adalines with the same input 
vector. The output of the Adaline can be calculated 
for any input     at sample time k as follow: 

         
 
              

                           (1)                   
This relationship between its input and output 
signals is linear at any given time, but because of its 
adaptive nature, the weights are adjusted on-line and 
are thus a function of time. 
The major advantage of the Adaline is the ability to 
interpret its parameters, which is not generally the 
case of multilayer neural networks (MLP). The 
simplicity of its architecture is advantage when a 
hardware implementation is envisaged [9]. 
 
3.2 Learning rules 
    Widrow (and Walach, 1996) proposed the LMS 
algorithm, which has been extensively applied in 
adaptive signal processing and adaptive control [10,  
11]. The Adaline network uses a supervised learning 
process, a desired output     is provided with each 
input       during the training. The LMS algorithm 
is based on the minimum mean squares error. The 
learning process uses this error to adjust the weights:                          

                    
                                (2)     

              
The next weight vector      equals the present 
weight vector     plus a change     based on the 
error       at sample time k.   

                                                               (3)                      
 
 
 
 
 
 
 
 
 
 
 
 
In our work, All Adalines weights are iteratively 
adapted with the Widrow-Hoff learning rule called  
 

Fig.1. Basic configuration of a shunt active filter.  
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Fig. 3.   The general network topology of an Adaline. 
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the µ-LMS learning rule (Least-Mean-Squares), 
which is given by: 

   
      

  
   

                                                                   

Where µ  is the learning rate parameter µ∈[0,1].  
 
4. Novel three-phase PLL-neural      
    In such applications, the excessive fluctuations of 
the signal parameters adversely affect the quality of 
the power in the distribution system, particularly in 
terms of frequency and voltage [6, 7].  
Because, some of a neural harmonics identification 
schemes are sensitive to this frequency fluctuations, 
our APF is thus enhanced with a voltage component  
Extraction strategy (PLL-neural) and aim to be 
universal compensator able to cancel the harmonics 
currents, the reactive power and imbalances of the 
voltages and currents.  
The proposed approach, illustrated by Fig. 4, is  
composed of two blocks: at first a symmetrical  
 
 
 
 
 
 
 
 
 
 
 

 
voltage components extraction followed by a 
instantaneous phase detection algorithm. For 
each block, the expressions can be learned by 
Adaline neural networks. The whole approach is 
adaptive and able to take into account changing 
parameters. 
 
4.1. Neural symmetrical components 
extraction     method  
    A neural approach is proposed to extract the 
symmetrical components of the voltages of the 
power distribution system. This approach relies on a 
new formulation of the Instantaneous Powers 
Theory (IPT) which is learned by Adaline neural 
networks and is unbalanced conditions. 
The principle of the symmetrical components 
extraction is based on the IPT (p-q theory) [6]. 
According to this theory, the pq−powers are 
calculated and their AC and DC-terms are 
instantaneously separated. Thence, the DC-terms are 
converted in the current reference frame as shown 
by Fig. 5 in order to compute the direct voltage 
components. In the IPT, the instantaneous powers 
are calculated from the αβ-frame with [6, 12, 7, 13].  

   
 
        

    
      

     
  
  

                                        (5)                                                                                                               

The supply voltage in the αβ-frame can be deduced : 

  
  
  

     
 

  
     

      
    
     

     
 
                           (6)                                             

Expression (6) is a general formulation that allows 
to determine the αβ−voltages. This expression can 
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Fig. 2. Architecture of the proposed neural APF’s  

 

Fig. 4. Basic principle of the PLL-neural  with 
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be used to determine the fundamental direct voltage 
components by using currents issued from a direct 
fundamental system and DC-terms of the associated 
powers. Therefore: 

      
     

     
     

 

   
      

       
      
       

       
    

    
          (7)                                  

The auxiliary currents      and     correspond to the 
fundamental direct currents with an amplitude which 
is unit and a phase which is null in the αβ-frame  

  
      

       
         

         
         

        with……            (8)                                

These currents are also used to compute the fictitious 
powers    and    . These powers do not have a real 
physical meaning, they are based on the        and   
      currents and on the measured voltages        

 
   

   
      

              
              

                                   (9)                               

With        =             
            

       
the fictitious active power can be detailed as 
follows:  
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                                                                              (10) 
Expression (10) is a sum of harmonic components 
which can be rewritten with a linearly separable 
equation: 
                                                              (11)       
 with            

     

 
 
 
 

 

          

          

          

          

 

 
 
 
 

     

 
 
 
 
 
                   

                

                

                   
 
 
 
 

 

                       (12) 
Expression (10) is learned and approximated by an 
Adaline neural network. This Adaline is based on a 
supervised learning; its output      is compared to 
an example, i.e., a desired value which is    obtained 
with the fictitious currents and the measured 
voltages      when learning (10). The error 
       is used by an optimal LMS (Least Mean 
Square) learning algorithm to correct the Adaline 
weights   for the next sampling time. Under these 
conditions, the Adaline weights   are enforced to 
converge. After training, the elements of   represent 
Power amplitudes resulting from the direct voltages 
at frequency      and the currents given by (8).  

Finally, the fundamental direct voltages         of 
the three-phase system is obtained by using the first 
two elements of the weight vector. Indeed,    and 
   correspond to the fundamental component 
      and represent respectively the DC-parts of 
the instantaneous powers     and        he voltage 
        are recovered by converting these 
continuous powers in the αβ−voltage space with (7) 
and by multiplying them with the Concordia 
transform     .  
The fictitious reactive power    is developed with the 
same principle by using the currents defined in  (13). 
The resulting expression is learned by an Adaline 
and the fundamental inverse voltage components 
        can be deduced from its two first weights. 

  
      

       
         

        
       

                                          (13)              

The fundamental direct and inverse voltage 

components         and         can be used to 

deduced the zero-sequence voltage components 

          They can also be used by a phase detection 

algorithm in  order to estimate the frequency of the 
power system in real-time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2. Proposed VCO (instantaneous phase 
detection) 
    In [12, 7, 13], an alternative solution that is an 
enhanced instantaneous phase detection algorithm 
which can be applied to all unbalanced disturbed 
three-phase system. It can be applied to every 
generic input signal, i.e., either voltages or currents 
issued from a three-phase system. Like a single 
phase VCO (Voltage Controlled Oscillator), the  

Fig. 5. Symmetrical components extraction 
system based on the IPT. 
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proposed approach tries to keep the term         

     close to zero, where    is the phase angle of the 

system and     its estimation. The development of 
this term leads to: 

            =                                 (14)  
                                                                        

Where, the term       can be associated to   , the 
fundamental voltage of phase a, and       can be 

associated to the voltage        between phases b 
and c. In the case of unbalanced and distorted 
systems, this VCO uses a PI regulator and is based 

on a nominal         . It outputs the estimation 

of    is      . 
In our work, we are proposed to replace the PI 
regulator by a PI-neural regulator able to adapt to 
every changing parameters of the electrical   
network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.   Proposed (VCO) instantaneous  phase  detection 

based of The neural PI regulator. 
 
This PI-neural employs an Adaline network to adjust 
the parameters proportional and integral. Complete 
functional block diagram of this VCO-neural is 
shown by Fig. 6 [12, 7, 13].  
This PLL is not sensitive to the distortions in the 
voltage waveforms and is able to operate under 
unbalanced and distorted conditions.   
 
5. Harmonic currents identification:  the Neural 
Synchronous Method   
       Since the last decade, different ANNs 
identification and filtering techniques have been 
applied in power systems and Adaline networks are 
actually widely used [1].     
In this paper, neural scheme for harmonic currents 
identification is developed and work in a current 
space. The method is based on synchronized 
currents and allows to clearly identifying the 
harmonic terms and thus to compensate for them 
with different objectives: full compensation, 
selective harmonic compensation, power factor 
correction, unbalance correction, and power flow 
control.  
This approach is valid under balanced conditions. In 
the case of unbalanced nonlinear loads or 

unbalanced voltage system, a symmetrical 
component extraction algorithm is necessary in 
order to estimate the Instantaneous phase 
(frequency) and the direct voltage components and , 
this can be achieved by our  PLL-neural proposed in 
this paper and schematized by the fig.4.  
 
5. 1. Principle  
     The Neural Synchronous Method relies on the 
idea of synchronizing the identified fundamental 
current with the direct voltage component of the 
power system in order to maintain a unit power 
factor. A neural network is used to learn the load 
current decomposition and allows to extract the 
frequency and the phase-shift angle from the 
fundamental current. The references currents are 
then deduced and synchronized with the main source 
voltage through a PLL extracting the phase and the 
frequency of the positive voltage component. These 
reference currents represent the input for the control 
loop of an inverter and are therefore injected phase-
opposite in the power system [10]. The principle of 
this method is described by Fig.7. 
The current synchronization is achieved by a PLL. 
In this paper, Our PLL-neural proposed (fig.4) is 
used instead of the conventional PLL under 
unbalanced conditions.  
The objective of the compensation is to recover 
sinusoidal current waveforms which are in phase 
with the direct voltage components. As a 
consequence, the total free and available power 
transmitted from the source to the load will be at its 
maximum.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The three-phase current with only the direct 
components can be written by [12]:  

  
   
   
   

       

           

                

                
   

                

            

                  

                 
   

        (15)                              

Where    is the phase of harmonic term of rank n 

    

    

PI-neural 
neural 

 Integrator 

      

      
+ 

- 

⅀ 

+ 

 
+ 

+ 

      

⅀

  
   

   

 

   
 

           

      

      

 

 

   
 

         

Fig.7.  Principle of  the neural Synchronous 
method. 
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expressed between the voltage and the current 
components. On the other hand, the first element 
represents the currents issued from the fundamental 
frequency and the second element the currents 
issued from all the other harmonics.   
Multiplying the measured load current of the first 
phase with only one term, either        or        
issued from the symmetrical components extraction 
algorithm gives, if we show        : 

             
  
 

 

   

                  

                                  
 

  
  
 
                         

 

   

                                                                          

  
  
 

                        

 

   
                    
 
5.2 Adaline neural networks to identify 
harmonics distortions  
    The Neural Synchronous Method uses one 
Adaline instead of the low-pass filter utilized in the 
previous developments. Fig. 8 describes the Adaline  
structure with the input vector being the AC 
components developed in (16). This expression (16) 
is a weighted sum of harmonic terms which can be 
decomposed with the following generic vectors:    

      
  

 
      

  

 
            

  

 
        

                  2    N                                                
(17)              
        

     

 
 
 
 
 

          
       

 
                        

                        

  

 
 
 
 
 

     (18)                                                  

The fundamental current is thus obtained by 

multiplying        by          with        : 

           
  
 

                     

  
  
 
                                 

                                                                              (19)          
 Expression (16) is learned with one Adaline using 

      as an input              its desired output. 
    is estimated by symmetrical components 
extraction algorithm. The learning therefore enforces 

the weights vector to converge toward  . The 
values of the two first weights (the DC components): 

    
  

 
      and      

  

 
      are thus 

associated to the direct fundamental sinusoidal term 
of the load currents and can be used to calculate 

    and     : 

         
     

                                                 (20)                            
              

         
   

     
        

In the same way, it is possible to calculate the 

amplitude and phase of each harmonic term,    and 
  , by using the corresponding Adaline weights 

harmonic term can thus       
  

 
      and  

    
  

 
         Each be taken into account 

individually.  
As shown by Fig. 8, the fundamental current      is 
extracted from the Adaline’s weights. This current is 
then synchronized with the source voltage        
through the PLL. The synchronized reference 
current is obtained with                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In fact, the reference current for compensating for of 
all harmonics at once can be calculated by the sum 
of the higher-order harmonics or more simply by: 
                                                       (22)    

                                   
With               is an active current in phase 
with the direct voltage component and represents the 
active fundamental term of the load current. As a 
consequence, a compensation scheme with reference 
currents provided by (22) inherently maintains the 
power factor to unity. 
 
6. Neuro-control of the inverter  
    After having identified the distortion harmonics, 

  

Fig. 8. Adaline for harmonics identification with the 

synchronous method. 
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the resulting reference currents have to be injected 
phase-opposite in the electrical power systems. This 
is generally done with an inverter and a supply filter 
implemented by analog circuits. Different algorithm 
strategies can be applied to control the inverter and 
inject suitable signals in regard to reference signals 
estimated previously. Hysteresis band controller, 
PID controller, and also RST controller are widely 
used in recent literature [3].   
 The control block of an inverter can be devised into 
two under blocks: the first one known as rapid which 
is related to the currents, and another known as slow 
which is associated to the DC-link voltage. So, one 
can synthesize two controllers, one for the internal 
loop of the currents and another for the external loop 
of the DC-link voltage. 
 
6.1. PI-Neural control of inverter 
     For a few years, ANN techniques have been 
applied with success in control of APF and are very 
promising in the field. Indeed, the learning 
capabilities of the ANNs allow an online adaptation 
to every changing parameter of the electrical 
network, e.g., nonlinear and time-varying loads [9].  
In this paper, we propose to determine the 
proportional and integrator parameters (respectively 
P and I) with the learning capabilities of neural 
networks. The principle is detailed by Fig. 9 where 
an Adaline neural network with two weights is used, 

the first one       as the proportional parameter (P), 
and the second one        as the integral parameter 
(I). These weights relate the errors     and       at 

time   and      to the output      in a linear 
combination. This error is defined between the 
reference signal delivered to the regulator and the 
output of the system to be controlled. This error is 
used to update the weights of the Adaline and is at a 

given sample time                            . 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this neural architecture, the PI parameters are 
adapted and learned on-line to converge toward 
optimal values. The neural PI controller, enhanced 
with this learning process is able to handle every 
changing parameters [8]. 
  
6.2. DC voltage control   
    In this work, To compensate the inverter losses 
and maintain the DC-link  voltage      constant,  a 
neural proportional  integral controller (PI-neural) is 
used to obtain the compensation current         The 
control loop compares the measured voltage     

with  the  reference  voltage    
   

 and  generates 

corresponding current       
 
7. Computer Simulation results 
    In order  to test the performance and the 
robustness of the proposed neural active filter (APF-
neural) based on a complete neural strategy for the 
harmonic distortions compensation under industrial 
operating conditions, i.e. unbalanced load and 
unbalanced voltage supply, the system of Fig.2, was 
simulated in MATLAB-SIMULINK. Simulation 
parameters used in this paper are summarized in 
Table 1.  

Table 1.  Parameters of Simulat ion 
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7.1.  Harmonics detection block 
    The APF-neural inserted in the power system 
described above in order to compensate for the 
harmonic distortions induced by the nonlinear load 
which is an unbalanced system. The previous neural 
approach called the neural synchronous method 
(fig.7) is used to identify the harmonics and to 
compute the APF’s reference currents. This neural 
approach uses one Adaline per phase. By 
considering the fundamental current and the 
harmonics of row 3, 5, 7, 11, These Adalines will 
have 10 inputs. During the training, the choice of the 
constant learning is µ = 0.0001. The neural 
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Fig.9.  The neural PI regulator scheme applied to the 
control of an inverter. 

 



 

 

synchronous method is sensitive to the frequency 
fluctuations, thus with an unbalanced distorted  
supply voltage, our harmonics identification 
schemes need the direct voltage components and the 
instantaneous phase, As a consequence, the insertion 
of PLL scheme is necessary. 
 
7.2. Performance of the proposed PLL-neural    
    In this paper, the proposed PLL-neural is also 
based on the IPT with a PI–neural regulator have 
been implemented in order to estimate 
instantaneously the direct voltage components and 
the frequency (fig.4). The direct and inverse voltage 
components extractor is evaluated by simulations. 
With a constant learning rate µ = 0.0001, we used 
two Adalines with 16 inputs for find the direct 
voltage components, and two others for extracted the 
inverse voltage components (Fig.5).  
The robustness of our approach is now valuated for 
estimating the voltage components in a simulated 

electrical network with time varying parameters. At 
starting, our PLL is tested with voltages polluted by 
the 3

rd 
and 5

th
 harmonics (Fig.11) and then with 

unbalanced voltage (Fig.12). Compared with the 
conventional PLL the direct voltage components 
estimated by the two methods, the conventional PLL 
and the PLL-neural with 2 Adalines (based on the 
IPT), are depicted by Fig. 11.b, c, e, and Fig.12.b, c, 
e.  
By visualizing table 2, After compensation, with the 
APF-neural controlled by a PI-neural, the THD is 
significantly reduced from 25.04% to 1.99% using 
the conventional PLL, to 0.30% using the PLL-
neural proposed and the power factor PF is increased  
from 0.7067 to 0.9992. Indeed we can clearly see 
that the PLL-neural is faster than the conventional 
PLL.  Our proposed PLL-neural based on the IPT 
with a PI-neural controller, serves as a reference in 
term of performance. 

 
Table. 2. Comparison between the PLL conventional / PLL neural and hysteresis controller / PI-neural controller 
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Fig.11. a.b.c.d.e. Comparison of the performance between 

the PLL conventional and the proposed (PLL-neural) 

under polluted supply voltage with the 3
rd 

and 5
th

 

harmonics . 



 

 

 
 

  

  

  

 
Fig.12. a.b.c.d.e. Comparison of the performance between 

the PLL conventional and the proposed (PLL-neural), 

under unbalanced supply voltage. 
 
8. Comparative results 
    The efficiency and the robustness of the proposed 
neural active power filter (APF-neural) using the 
neural synchronous method associated to a PI-neural 
control scheme is demonstrated with simulation.  
 
8.1 Results without and with compensation 
    Under balanced load, the insertion of our 
proposed APF-neural is done after t = 0.1 s so, we 
can easily compared the results without and with 
compensation (Fig.13). As illustrated in Figure 13.b 
shows the variation of active and reactive power 
before and after filtering without and with APF-
neural. It  can  be  seen  that  the  active  power  is 
relatively  constant,  but  the  reactive  power  is  
approximately equal  to  zero  after  compensation. 
The results clearly illustrate the successful and 
effectiveness elimination of reactive power. From 
Fig.13.d we can see as well that that the current 
source after active filter application is approximately 
sinusoidal and in phase with the voltage source. As 

consequence, the power factor PF converges to the 
unity (Fig.13.c). Fig.13.a, shows simulation results 
for three-phase three-wire system, where the 
nonlinear load draws distorted currents from the 
source (it is highly distorted and rich on harmonics), 
After APF injects compensating currents then source 
currents become nearly sinusoidal with low THD.  
 

a. Evolution of three-phase line currents. 

 b. Evolution of the instantaneous powers  supply. 

 

c. Evolution of the power factor.  

 

 d. Evolution of supply voltage and currents (phase-a). 

 
Fig. 13.a.b.c.d. Response of the neural APF without and 

with compensation, under balanced load, when the APF is 
inserted at time t=0.1s. 



 

 

8.2 Effect of the online varying load (unbalanced 
load) 
    We proposed a simulation with an on-line varying 
load, i.e., a sudden change of the linear load in order 
to evaluate the dynamic responses and test the 
robustness of the proposed techniques (APF-neural). 
The amplitude of the harmonic components are 
modulate by changing of value of     from 
                               
 

 
Fig. 14. Evolution of the currents without compensation 
when the nonlinear load is simulated and changed at time 

t=0.1s. 

 
 

Fig.15. Evolution of three-phase currents     with 
compensation when the nonlinear load is simulated and 

changed at time t=0.1s. 
 

The proposed Adaline strategy succeeded in 
detecting the transients and in identifying the effects 
resulting from the nonlinear load changes. Also  as  
can  be  seen  from  Fig. 15, the  line  current  takes  
a  form  very  close  to  a sinusoidal and from Figure 
16.d, the injected currents harmonic into the line by 
the active filter  modules  follow  their  references.  
The waveforms clearly illustrate the successful 
elimination of the selected harmonics from the line 
current.  From Fig. 16.a we can see the phase shift 
between current and voltage source, this phase shift 
make a degradation of power factor that we want to 
make very closer to unity (Fig. 16.e).   
The Fig.16.c shows the transients of the reference 

current of one phase and of the current injected into 
this phase by using the neural PI approach. As can 
be seen, the PI- neural regulator is efficient. Indeed, 
the current estimation error, called the static current 
error (Fig. 16.d), has converged to 9.36 % after 40 
ms (response time of the PI-neural regulator). Also, 
the Figure17 shows the performance of this PI-
neuro-control approach to stabilize the dc voltage to 

its reference      
   

         

 
 

 
 

 
 

 
 

 
Fig. 16.a.b.c.d.e.f. Dynamic response of the neural APF 

when the nonlinear load is simulated and changed at time 
t=0.1s. 



 

8.3. Results under unbalanced / polluted supply 
voltage 
    Under unbalanced supply voltage, Fig.18 show 
the harmonic spectrum of the waveforms distorted 
(phase-a) current with a Total Harmonic Distortion 
rate equal to 25.04% before filtering. After filtering 
with the neural synchronous method, this THD is 
decreased to a value of 0.30% (Fig.19) and the 
power factor PF is 0.9992 (Tab.2). 
On the other hand, under polluted supply voltage 
with the 3

rd 
and 5

th
 harmonics, the  waveforms  of  

the  current  (phase-a)   and  its  harmonic  spectrum  
is showed by Fig.20.a and Fig.20.b. That the THD 
equal to 0.95% (before filtering), and the power 
factor is 0.9898 (Tab.2).  
 

 
Fig. 17. DC voltage capacitor using PI-neural controller. 

 

 
Fig. 18. The Harmonic Spectrum of the Distorted Current 

of the phase-a before compensation. 

 

 
Fig. 19. The Harmonic Spectrum of the Current of the 
phase-a after compensation: under unbalanced supply 

voltage. 

 

 
Fig. 20. a. Current of the phase-a.  b. Its Harmonic 

Spectrum  after compensation: under polluted supply 
voltage with the 3

rd 
and 5

th
 harmonics. 

 

8.4. Discussion  
    Static and dynamics tests show that the 
performance of our APF-neural is quantified through 
Tab.2 which gives the THD and the PF resulting 
from different Consideration. i.e., PLL- conventional 
/PLL-neural, hysteresis controller/PI-neural 
controller, under unbalanced/polluted supply voltage 
and balanced/unbalanced nonlinear load. As 
consequence, all the results show that the neural 
approach is very fast, efficient and robust.  
 
9. Conclusion     
    In this paper, we are succeed to build an 
intelligent active power filter (APF) control unit for 
harmonics current  elimination , reactive power 
compensation (power factor correction) and 
selective harmonic compensation. This filter is 
completely based only of Adaptive Neural Networks 
(Adalines), indeed, our main motivation remains of 
tending toward a “complete neuromimetic” strategy 
was achieved. that the Adalines are involved in 
identification of harmonic currents, as well as in the 
control scheme of the inverter, in the regulation of 
the dc voltage and  in the one-line extraction of the 
direct and inverse voltage components (PLL).  
The Simulation results obtained on transient and 
steady states show the effectiveness of the proposed 
shunt APF-neural in different operation conditions. 
It is able to compensate for the disturbances even 
while the nonlinear load changes and even while the 
system is unbalanced and it  is able to adapt itself in 
real-time to any changes of the power supply 
network parameters. After compensation the source 



 

 

current is balanced, sinusoidal and in phase with line 
voltage source. The harmonic spectrum shows that 
the THD using PI-neural controller is very 
acceptable and respect IEEE standard Norms (THD 
≤5). As consequences, this proposed neural 
compensation technique (APF-neural) is better than 
the conventional APF for the determination and for 
the reduction of the harmonic distortions. Moreover, 
results show excellent behaviors and performances, 
as well as robustness and usefulness. 
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