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ABSTRACT: The principal objective of this paper was 
deeply described, discussed and studied an approach to 
chaotic oscillation in power systems and relationships 
between chaos and various power system instability 
modes. The basics of the mathematical theory were 
introduced and then specific applications to power system 
engineering problems were discussed. The applications 
were encompassed modelling and simulation, control, and 
measurements where the Lyapunov exponents for the 
strange attractors were calculated. We have presented, 
illustrated and discussed that by using a three-bus simple 
system, three routes i.e. route of cascading period 
doubling bifurcation, torus bifurcation route and directly 
initiated by large disturbance route may cause chaos in 
power systems. This paper has showed us the true that 
chaos in power systems is in fact caused by the injected 
energy introduced by some kind of disturbances. By also 
using a simple system, we have illustrated that chaos lead 
power system to voltage collapse, angle divergence, or 
voltage collapse with angle divergence oscillation. This 
paper has strongly showed us that chaos in power system 
is very likely to be an intergrade existing in the transient 
stage after a large disturbance. In order to prevent the 
happening of power system instability incidents 
effectively, it was necessary to keep up on the studying of 
chaotic phenomena in power systems. This paper has been 
helpful to understand the mechanisms of various 
instability modes and to find effective anti-chaos strategies 
in power systems. 
 
KEYWORDS: Chaos, Instability mode, torus bifurcation, 
cascading period doubling bifurcation. 

I.INTRODUCTION 

Chaos theory studies the behavior of dynamical systems 
that are highly sensitive to initial conditions, an effect 
which is popularly referred to as the butterfly effect. The 
phenomenon of chaos has attracted widespread attention 
amongst mathematicians, physicists, and engineers and 
has been also extensively studied in many fields, such as 
chemical reactions, biological systems, information 
processing and secure communications [1]. 
Study on power system, chaotic phenomena is one 
important part of power system stability studies. This 
paper focuses on the cause of chaos in power system and 
the relationship of chaos and different instability modes. 
Since three routes may cause the power system to chaos 
are enumerated, we will be able to discuss in details the 
effects of those routes in this paper. They are route of 
cascading period doubling bifurcation (PDB), route of 
torus bifurcation (TB), and route of directly initiated by a 
large disturbance of energy[11]. Another topic of this paper 
is concerning the relationship between power system 
instability modes and chaos. This study reveal that chaos  

can lead power system to voltage collapse, angle 
divergence or voltage collapse with angle divergence 
simultaneously when their stability conditions of chaos 
are broken[18]. 

II. THREE BUS POWER SYSTEM MODEL AND 
ASSUMPTIONS 

Let us consider a three-bus power system model which is 
illustrated in Fig. 1. This model consists of two generators 
feeding a load, which is represented by an induction 
motor in parallel with a capacitor and a PQ load. One 
generator is an infinite bus and the other generator has a 
constant voltage magnitude Vm [3] [4].  
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Fig. 1 A three-bus power system 
 

The load model is described by: 
                                                    
Pd=P0+P1+Kpwδ’+K pV(V+TV’) 
Qd=Q0+Q1+Kqwδ’+K qv+Kqv2V

2, (1) 
 

Where P0 and Q0 represent the constant real and the 
reactive powers of the motor, respectively, and P1 and Q1 
are the P–Q loads [4]. Since we know that δm, ω, δ, and v 
are the state variables; δm and δ are the power angles of 
the machine and the load, respectively; ω is the radian 
frequency of the machine; v is the load voltage [6]; Q1 
plays an important role in the dynamical behaviour of the 
entire power system and is usually taken as the 
bifurcation parameter of the power system [8]. It may be 
easily found that when the Q1 set as different values, 
power systems experience complicated dynamic 
bifurcations. This three bus power system is 
approximately described by the following nonlinear 
differential equations [5] [7]; 
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δm� =ω 
 
ω�  = 16.6667sin (δ-δm+0.0873) V-0.1667ω+1.8807 
 
δ�=496.8718V2-166.6667cos(δ-δm-0.0873)V-666.6667cos 
(δ-0.2094) V-93.3333V+33.3333Q1+43.333, 
 
V�=-78.7638V2+26.2172cos (δ-δm-0.0124) V+104.8689cos 
(δ-0.1346) V+14.5229V-5.2288Q1-7.0327 
 
The initial conditions assumed to be (δm, δ, V)t=0 = (0.3, 
0.2, 0.97).The state variables of the system are δm, ω, δ 
and V. This system equations has four equilibrium points 

[9].From our knowledge of engineering mathematics, the 
Jacobean matrix of the system has to be written as 
follows: 
 
J= [0, 1, 0, 0; 

-16.667Vcos (δ- δm+0.0873), -0.1667, 16.667Vcos (δ- 
δm+0.0873), 16.667sin (δ- δm+0.0873);             
-166.6667V sin (δ- δm-0.0873), 0, 166.6667Vsin (δ- 
δm-0.0873) +666.6667Vsin (δ-0.2094), 
 2496.871V-166.6667cos (δ- δm-0.0873) - 666.6667cos 
(δ-0.2094) -93.3333; 
26.2172Vsin(δ- δm-0.0124), 0, -26.2172Vsin (δ- δm-
0.0124)-104.8689Vsin (δ-0.1346) ,  
-157.5276V+26.2172sin(δ-δm-0.0124)+104.8689sin (δ-
0.1346) +14.5229];  
 

While discussing the stability properties of the attractors 
as briefly as possible, let us now denote the state variables 
together by E* = (δm, ω, δ, VL)  T. If the nominal 
equilibrium points [13] of attractors are E* = (0.3366, 0, 
0.1330, 0.9727) T. 
 

The Jacobean matrix will become:  
 
J=[ 0         1.0000             0              0; 
    -16.1025    -0.1667    16.1025   -1.9340; 
     46.4974         0            -95.9921   48.8932; 
    -5.4656           0             5.6288    -144.4910]; 
 
The eigenvalues are found by solving the characteristic 
equation, |J − λI| = 0, which is 0λ4+240λ3+1.365x104λ2-
5380λ-1145200=0. The eigenvalues for attractors are -
149.6200, -90.7900, and -0.1200 + 2.9000i hence the 
equilibrium points of E* are seen to be locally stable.  
For the case when the fixed point are E*=(-0,3366, 0, 
0,1330, 0,9727)T the jacobian matrix will change the value 
signs due to -0,3366 and 0 but the eigenvalues are found 
by solving the characteristic equation, |J − λI|= 0, which 
will remain the same as before [1], 
 

0λ4+240λ3+1.365x104λ2-5380λ-1145200=0 
 

The eigenvalues for the same attractors were again found 
to be -149.6200, -90.7900, and -0.1200 + 2.9000i  which 
means that the equilibrium points of E* are again seen to 
be locally stable. Using a Matlab-Simulink model, as 
shown in Fig 2; the δmV and ωV phase portraits of the 
system achieved are shown in Fig 3 and Fig 4. 
 

 
Fig. 2The Matlab-Simulink model of the system for 

Q1=11.3776 and  the initial conditions (δm, δ, V)t=0 = 
(0.3, 0.2, 0.97). 

 
 

Fig .3 δmV phase portrait of the system when Q1=11.3776 
and the initial conditions (δm, δ, V)t=0 = (0.3, 0.2, 0.97) 
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From Fig. 3 and below Fig. 4, we can see that the value of 
parameter Q1 depends on the type of bifurcation, which 
satisfy the necessary and sufficient conditions for the 
existence of a chaotic attractor. Therefore, chaos exists in 
power system [15]. Taking the above mentioned analyses 
into consideration, the power system may undergo the 
chaotic state and the typical chaotic attractor is shown 
again in Fig. 4. 
 

 
 

Fig. 4 ωV phase portrait of the system when Q1=11.3776 
and the initial conditions (δm, δ, V)t=0 = (0.3, 0.2, 0.97) 

 
From the above results, we can strongly conclude that 
when the power system falls into the chaotic behaviour, 
the stable operation of power system is severely hampered 
[10]. Therefore, it is necessary to control the chaos in the 
power system by using the finite-time stability theory to 
design two controllers [2] and make the power system 
asymptotically stable. 
 

III.TIME SERIES RESULTS OF THE SYSTEM 

In this section, we give numerical simulations to show the 
effectiveness of the proposed two control methods. The 
controlled system of the ordinary differential equations is 
integrated by using the fourth-order Runge–Kutta in time 
steps of 0.001 s. In the numerical simulations, we set Q1 
=11.3376, with which the unstable equilibrium point of 
the system is Xeq = (0.3366, 0, 0.1330, 0.9727). The initial 
conditions (δm, δ, V) t=0= (0.3, 0.2, 0.97) are chosen in all 
simulations [9], and the control parameters of the second 
controller are taken to be H1 = 0.0667 and H2 = 15. Power 
system has experienced chaotic behaviours before the two 
proposed controllers are carried out. To demonstrate why 
the presented controllers are so effective in controlling the 
chaos in a power system, we turn on the controller at 
t=100 s[12]. 
 
 
 

 
 
Fig. 5 Time series simulation result of the system for the 

attractor δm, ω, δ and V 
 
This Time series simulation above confirm the Control 
chaotic power system to the equilibrium point Xeq = 
(0.3366, 0, 0.1330, 0.9727), with uncontrolled chaotic 
evolution t includes between [0, 100] and controlled 
dynamics t between [100, 200]. Panel (a) shows the 
dynamic responding curve of δm[12], panel (b) the 
dynamic responding curve of ω, panel (c) the dynamic 
responding curve of δ, and panel (d) the dynamic 
responding curve of V. Since the time series includes 
powerful functions for the statistical analysis of time 
series, from this theory we can easily find the attractor’s 
spectral plots, correlations and histograms of the system. 
 

IV.THREE ROUTES TO CHAOS IN POWER 
SYSTEMS 

 
This paper prove that by using a three-bus simple system, 
three routes which may cause chaos in power systems 
must be taken into account and discussed. They are the 
route of cascading period doubling bifurcation (PDB) [11] 

[14], torus bifurcation route and directly initiated by large 
disturbance route. PDB is caused by a real Floquet 
multiplier (FM) moving counter to the real axis and going 
out of the unit circle from a point (-1,0) in the complex 
plane. The route of cascading PDB is a typical route to 
chaos and has to be studied deeply in many nonlinear 
systems. Torus bifurcation (TB) is also a typical route to 
chaos. TB is caused by a couple of conjugate Floquet 
multipliers (FM) going out of the unit circle with a 
nonzero imaginary part in the complex plane [11]. Chaos 
caused by TB has some interesting features, such as self-
organizing phenomenon, coexistence of divergent 
subspace and chaotic subspace. These features are helpful 
to deeply understand various modes of power system 
instability. All studies told us that chaos in power systems 
is in fact caused by some kind of external disturbances. 
This paper reports that when the Q1 set as different 
values, power systems experience complicated dynamic 
bifurcations, as shown in fig. 6. 
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Fig. 5 Bifurcation diagram 
 

From Fig. 5, we can see that the value of parameter Q1 
depends on the type of bifurcation, which is 
summarized as follows: 
 

(i) Periodic doubling bifurcation at Q1 = 10.8859; 
(ii) Subcritical Hopf bifurcation at Q1 = 10.9461; 
(iii) Periodic doubling bifurcation at Q1 =11.3776; 
(iv) Subcritical Hopf bifurcation at Q1 = 11.4066; 
(v) saddle-node bifurcation at Q1 = 11.4106. 

 
We calculate the Lyapunov exponents by using the 
method of singular-value decomposition with setting Q1 = 
11.3776 and choosing initial condition (δm, δ, V)t=0 = 
(0.3, 0.2, 0.97). The four Lyapunov exponents of power 
system are obtained to be λ1 = 0.3136, λ2 = 0, λ3 = -
3.7496, and λ4 = -93.0108, which satisfy the necessary 
and sufficient conditions for the existence of a chaotic 
attractor. Therefore, chaos exists in power system [17]. 
Taking the above mentioned analyses into consideration, 
the power system undergoes the chaotic state and the 
typical chaotic attractor is again shown in figures above. 
We confirm that when the power system falls into the 
chaotic behaviour, the stable operation of power system is 
severely hampered [16]. Therefore, it is necessary to control 
the chaos in the power system. 
 

V. INSTABILITY MODES AND CHAOS 
 

Chaos is very sensitive to initial condition and system 
parameters. Any small changing to them strongly break 
their stable oscillations. Previous studies have reported 
that the broken of chaos can lead power systems to voltage 
collapse [18]. This paper report that chaos can lead power 
systems to voltage collapse, angle divergence, or voltage 
collapse with angle divergence simultaneously. Based on 
these researches, it is derived that chaos possibly exists in 
power system as an intermediate stage of the instability 

wo (rad/s) Simulation Time Final state Phase diagram 
0.50 300 A equilibrium point Fig.6a 

1.3024478 1200 A equilibrium point Fig.6b 
1.3024479 15000 Chaos Fig.6c 

1.40 15000 Chaos Fig.6d 
1.5980378 15000 Chaos Fig.6e 
1.5980379 100 Monotonic divergence Fig.6f 

incident after large disturbance [16]. When disturbance 
happens, power system comes into transient stage. If the 
disturbances are small, Hopf Bifurcation (HB) may 
happen and continuous oscillation follows. If the 
disturbance is large, system may come into chaos. And, 
when the disturbance becomes larger, the chaos may be 
broken. Voltage collapse, angle instability or voltage 
collapse and angle divergence simultaneously may 
happen [10] [16]. If the disturbance is very large, system may 
directly come into the above three instability conditions 
over the stages of HB, chaos and chaos breaking. 

 
Table1: Different system conditions with different initial 

angle speeds 
 
There also exists another type of route to chaos in power 
system. It is the route of initiated directly by a large 
disturbance of energy. By selecting initial values: 
Q1=10.894, δm(0)=0.3, δ(0)=0.2, V(0.97), slowly 
increasing the initial angle speed ωo in the range of 0 to 
1.7 rad/s, we can yield the following results: 
 

 
(a) 

 
(b) 

 
(c) 
due to the different initial disturbed energies. That is the 
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(d) 

 
(e)                                                                                          

 
(f) 
 
Fig. 6 Simulation results with different initial angle speed 
 
Since except the initial angle speed ωo all the other 
parameters are same for the six cases shown in Fig.6, 
hence we define the disturbed energies (DEs) of the above 
initial points as the disturbance of kinetic energy which 
are only related to the associate ωo

[15] [16]
. The larger ωo is, 

the larger DE will be. When DE is smaller (ωo=1.3024478 
rad/s), power system can converge to a stable equilibrium 
point just as shown in Fig.6a and Fig.6b. 
When DE increases, the convergence becomes more and 
more difficult. At about ωo=1.3024479rad/s, power system 
converges to a chaos after a long time transient oscillation 
(Fig.6c). At the range of 1.3024479 and 1.5980378(rad/s), 
the final states are controlled by a chaotic condition. 
While at ωo=1.5980378(rad/s), the system appears a 
monotonic divergence [18]. Comparing Fig.6b with Fig.6c 
(or Fig.6e with Fig.6f), it is found that the ωo value of 
Fig.6c (or Fig.6f) is only 10-7 larger than Fig.6b (Fig.6e). 
Between them, neither period doubling bifurcation nor 
torus bifurcation exists.  
The appearance (or dissolve) of the chaotic state is just  

reason why we classified the initial disturbances of 
energy into a new type route to chaos. It tells us that 
chaos of power system is in fact caused by injected 
energy introduced by unexpected disturbances [16] [18]. 
 

VI.CONCLUSION  
 
Chaos is the science of surprises, of the nonlinear and the 
unpredictable. It teaches us to expect the unexpected. 
While most traditional science deals with supposedly 
predictable phenomena like gravity, electricity, or 
chemical reactions, Chaos Theory deals with nonlinear 
things that are effectively impossible to predict or control, 
like turbulence, weather, the stock market, our brain 
states, and so on. These phenomena are often described 
by fractal mathematics, which captures the infinite 
complexity of nature. Many natural objects exhibit fractal 
properties, including landscapes, clouds, trees, organs, 
rivers etc, and many of the systems in which we live 
exhibit complex, chaotic behaviour. In the field of 
electrical power systems, this paper has proved that chaos 
can induce voltage collapse, angle divergence or voltage 
collapse with angle instability simultaneously when its 
stable condition is broken. It shows us that chaos in 
power systems is very likely to be an intermediate stage 
in the transient after a large disturbance. All studies are 
helpful to understand the various instability modes and to 
find effective anti-chaos strategies in power systems. 
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