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ABSTRACT: The principal objective of this paper wasan lead power system to voltage collapse, angle
deeply described, discussed and studied an apptoacdivergence or voltage collapse with angle divergenc
chaotic oscillation in power systems and relatigmsh simultaneously when their stability conditions dfaos
between chaos and various power system instabiktye brokef?.

modes. The basics of the mathematical theory wer

introduced and then specific applications to pogystem fl. THREE BUS i\%\éVLIJEIGPST\I(gII\EM MODEL AND
engineering problems were discussed. The applitatio
were encompassed modelling and simulation, cordrad, Let us consider a three-bus power system modelhnikic
measurements where the Lyapunov exponents for ihestrated in Fig. 1. This model consists of twengrators
strange attractors were calculated. We have predenfeeding a load, which is represented by an induactio
illustrated and discussed that by using a threesimple motor in parallel with a capacitor andPf load. One
system, three routes i.e. route of cascading perigeherator is an infinite bus and the other genefzds a
doubling bifurcation, torus bifurcation route andgedtly constant voltage magnitudg, ¥

initiated by large disturbance route may cause €hao

power systems. This paper has showed us the tate th bus 1 z bus 1

chaos in power systems is in fact caused by thectieg
energy introduced by some kind of disturbancesaByp
using a simple system, we have illustrated thabshead
power system to voltage collapse, angle divergenc
voltage collapse with angle divergence oscillatidiis
paper has strongly showed us that chaos in povetersy Zia
is very likely to be an intergrade existing in tihansient
stage after a large disturbance. In order to pretea
happening of power system instability incidents
effectively, it was necessary to keep up on thdyshg of
chaotic phenomena in power systems. This papebdms
helpful to understand the mechanisms of various vLs bus 3
instability modes and to find effective anti-chabsitegies
in power systems. c

veo Vil 8m

!

Pi#jQ1

KEYWORDS: Chaos, Instability mode, torus bifurcatio 777
cascading period doubling bifurcation

[.INTRODUCTION Fig. 1 A three-bus power system

Chaos theory studies the behavior of dynamicalesyst
that are highly sensitive to initial conditions, affect
which is popularly referred to as the butterflyeetf The
phenomenon of chaos has attracted widespread iattent
amongst mathematicians, physicists, and engineeds a

has been also extensively studied in many fieldsh sas Where B and Q represent the constant real and the

chemical reactions, biological systems, information_~.. .
) o reactive powers of the motor, respectively, ancid Q
processing and secure communications

—  gj
Study on power system, chaotic phenomena is qe the P—Q load® Since we know thaiy, , 3, and v

important part of power system stability studiesisT & ¢ the state variables;, and are the power angles of
P P P y ity the machine and the load, respectivetyjs the radian

paper focuses on the cause of chaos in power S)eu’nelmfre uency of the machine; v is the load volt&eQ

the relationship of chaos and different instabilitypdes. q y f !

Since three routes may cause the power systemaismrscrplayS an important role in the dynamical behavioithe

) : . _entire power system and is usually taken as the
are enumerated, we will be able to discuss in dethe . ! Bin
effects of those routes in this paper. They arderaf b|fu_rcat|on parameter of the power syst€mit may be
cascading period doubling bifurcation (PDB), rowg egj&gr fogngt;rr:]z;t ngnertir;égetcismdﬁg;?gé Vaéu?;mic
torus bifurcation (TB), and route of directly imited by a Eifurcation{: This tﬁree bus oF\)/ver S ste)r/n is
large disturbance of enef§y. Another topic of this paper : : . P _system
: . : . approximately described by the following nonlinear
is concerning the relationship between power systed.%r

i i ] [7].
instability modes and chaos. This study reveal thabs ifferential equations!t;

The load model is described by:

Ps= P0+P1+pr6’+K p\,(V+TV’)
Qi= Qo+ Qu+Kgud +K g +K V2, (1)
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While discussing the stability properties of th&raators
as briefly as possible, let us now denote the stati@bles
together by E* = dm, w, 6, VL) . If the nominal

equilibrium points®® of attractors are E* = (8366 O,
O.qlsSQ 0_972p7)T_ (8368 Fig. 2The Matlab-Simulink model of the system for

Q1=11.3776 and the initial conditiond, J, V)t=0 =
(0.3,0.2,0.97).

1 T T T T T T T T

v
=

The Jacobean matrix will become:

J[0  1.0000 0 0;
-16.1025 -0.1667 16.1025 -1.9340:
46.4974 0 -95.9921 48893 098 1
-5.4656 0 56288 -4OA0]:

The eigenvalues are found by solving the charastieri 0.96
equation,|J — Al = 0, which is @*+240:°*+1.365x10\*
538(0.-1145200=0. The eigenvalues for attractors are
149.6200, -90.7900, and -0.1200 + 2.9000i hence t0%
equilibrium points of E* are seen to be locallytdéa

For the case when the fixed point are E*=(-0,3366,
0,1330, 0,9727)the jacobian matrix will change the value0.92r
signs due to -@366and O but the eigenvalues are foun
by solving the characteristic equatiqd,— Al|= 0, which
will remain the same as before [1], 09f

0A*+2403+1.365x100%-5380.-1145200=0
0.88}

The eigenvalues for the same attractors were dgaimd
to be -149.6200, -90.7900, and -0.1200 + 2.900®iickv
means that the equilibrium points of E* are agaiarsto 0.86 : . . . . .
be locally stable. Using a Matlab-Simulink model a 026 028 03 032 03 03% 038 04 042 044

shown in Fig 2; thed,,V and oV phase portraits of the _ ) _
system achieved are shown in Fig 3 and Fig 4. Fig .36m\/_ phase portrait of the system when Q1=11.3776
and the initial conditionsifn, J, V)t=0 = (03, 0.2, 0.97)
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From Fig. 3 and below Fig. 4, we can see that #ieevof

parameter Q1 depends on the type of bifurcatioriclhwh
satisfy the necessary andfficient conditions for the
existence of alsc]haoth attractor. Thereforg, cheagsts in R T
power systen'®. Taking the above mentioned analyse t
into consideration, the power system may undergo f

chaotic state and the typical chaotic attractostiswn 02 A T T
> T

again in Fig. 4.
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09} Fig. 5 Time series simulation result of the sysfenthe
' attractordm, o, 8 and V
09+ This Time series simulation above confirm the Calntr
chaotic power system to the equilibrium point Xeq =
(0.3366, 0, 0.1330, 0.9727), with uncontrolled dltao
088 evolution t includes between [0, 100] and contiblle
dynamics t between [100, 200]. Panel (a) shows the
dynamic responding curve ofmi?, panel (b) the

03_%4 _0f3 -0?2 _0f1 0 0f1 0?2 )3  dynamic responding curve of, panel (c) the dynamic
responding curve ofs, and panel (d) the dynamic
réesponding curve of V. Since the time series ingtud
powerful functions for the statistical analysis tfne
series, from this theory we can easily find theaator’s
ﬁpectral plots, correlations and histograms oftfstem.

Fig. 4®V phase portrait of the system when Q1=11.377
and the initial conditions(,, 4, V)t=0 = (03, 0.2, 0.97)

From the above results, we can strongly conclude t
when the power system falls into the chaotic behayi
the stable operation of power system is severetyplesed
[0 Therefore, it is necessary to control the chaothe
power system by using the finite-time stability theto
design two controllers? and make the power syste
asymptotically stable.

IV.THREE ROUTES TO CHAOS IN POWER
SYSTEMS

This paper prove that by using a three-bus simydéeem,
Mhree routes which may cause chaos in power systems
must be taken into account and discussed. Theyhare
route of cascading period doubling bifurcation (AD8
IL.TIME SERIES RESULTS OF THE SYSTEM 4 torus bifurcation route and directly initiated layge
disturbance route. PDB is caused by a real Floquet

In th|§ section, we give numerical simulations how the multiplier (FM) moving counter to the real axis agming
effectiveness of the proposed two control methdd® i of the unit circle from a point (-1,0) in theroplex

controlled system of the ordinary differential etjomls is plane. The route of cascading PDB is a typical edot
integrated by using the fourth-order Runge-Kuttdifie  cpa65 and has to be studied deeply in many nonlinea
steps of 0.001 s. In the numerical simulations,Se#tQ1 oy stems. Torus bifurcation (TB) is also a typiaaite to
=113376, with which the unstable equilibrium point ofh,55 T8 is caused by a couple of conjugate Floque
the system i%eq = (0.3366 0, 0.1330 0.9727). The initial 1) irinjiers (FM) going out of the unit circle witl
conditions o 9, V) o= (03,02, 0.97) are chosen in all y5n76r0 imaginary part in the complex pldie Chaos
simulations™, and the control parameters of the secopd seq by TB has some interesting features, susblfs
controller are taken to Hel = Q0667 andH2 = 15. POWer , qanizing phenomenon, coexistence of divergent
system has experienced chaqtlc behaviours beferénih subspace and chaotic subspace. These featureslpfil h
proposed controllers are carried out. TO Qemolr&slwity to deeply understand various modes of power system
the presented controllers are so effective in odlifig the jnqeapijity. Al studies told us that chaos in pavegstems
chaos N @ power system, we turn on the contr@eris in fact caused by some kind of external distndes.
t=100 7. This paper reports that when tligl set as different
values, power systems experience complicated dynami
bifurcations, as shown in fig. 6.
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Fig. 5 Bifurcation diagram

From Fig. 5, we can see that the value of paranigter
depends on the type of bifurcation, which is
summarized as follows:

(i) Periodic doubling bifurcation &1 = 108859;
(i) Subcritical Hopf bifurcation a1 = 109461,

(iii) Periodic doubling bifurcation &1 =113776;
(iv) Subcritical Hopf bifurcation a1 = 114066;
(v) saddle-node bifurcation g1 = 114106.

We calculate the Lyapunov exponents by using t
method of singular-value decomposition with settipiy=
11.3776 and choosing initial conditiody( 6, V)t=0 =
(0.3, 0.2, 0.97). The four Lyapunov exponents ofv@o
system are obtained to b4 = 0.3136,,2 = 0,A3 = -
3.7496, and\4 = -93.0108, which satisfy the necessal
and sufficient conditions for the existence of aaalic
attractor. Therefore, chaos exists in power sysfém
Taking the above mentioned analyses into considerat
the power system undergoes the chaotic state amd
typical chaotic attractor is again shown in figuedsove.
We confirm that when the power system falls inte tt
chaotic behaviour, the stable operation of powstesy is
severely hamperdtf!. Therefore, it is necessary to contrc
the chaos in the power system.

V. INSTABILITY MODES AND CHAOS

Chaos is very sensitive to initial condition andsteyn
parameters. Any small changing to them stronglyakre
their stable oscillations. Previous studies haveored
that the broken of chaos can lead power systemwgltage
collapse™®. This paper report that chaos can lead pow
systems to voltage collapse, angle divergence otiage
collapse with angle divergence simultaneously. Base
these researches, it is derived that chaos possxidys in
power system as an intermediate stage of the iitigtab
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incident after large disturband®. When disturbance
happens, power system comes into transient sthgfee |
disturbances are small, Hopf Bifurcation (HB) may
happen and continuous oscillation follows. If the
disturbance is large, system may come into chaosl, A
when the disturbance becomes larger, the chaosbmay
broken. Voltage collapse, angle instability or agh
collapse and angle divergence simultaneously may
happer™® ¢l If the disturbance is very large, system may
directly come into the above three instability citiods
over the stages of HB, chaos and chaos breaking.

wo (rad/s) | Simulation Time| Final state Phase diagrg
0.50 300 A equilibrium point Fig.6a
1.3024478 1200 A equilibrium point Fig.6b
1.3024479 15000 Chaos Fig.6c
1.40 15000 Chaos Fig.6d
1.5980378 15000 Chaos Fig.6e
1.5980379 100 Monotonic divergence Fig.6f

Tablel: Different system conditions with differenitial
angle speeds

There also exists another type of route to chagmimer
system. It is the route of initiated directly bylarge
disturbance of energy. By selecting initial values:
Q1=10.894, 5,(0)=0.3, §(0)=0.2, V(0.97), slowly
increasing the initial angle speed in the range of 0 to
1.7 rad/s, we can yield the following results:
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due to the different initial disturbed energiesafs the
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reason why we classified the initial disturbances o
energy into a new type route to chaos. It tellsthe
chaos of power system is in fact caused by injected
energy introduced by unexpected disturbaH&e¥!.

wrad/s

VI.CONCLUSION

Chaos is the science of surprises, of the nonliaadrthe
unpredictable. It teaches us to expect the uneagect

2 500 . 1000 150 While most traditional science deals with suppoged|
(d) predictable phenomena like gravity, electricity, or
2 ' chemical reactions, Chaos Theory deals with noaline

15l _ things that are effectively impossible to predictontrol,

like turbulence, weather, the stock market, ourirbra
I, states, and so on. These phenomena are often lkzhcri
05} . by fractal mathematics, which captures the infinite
complexity of nature. Many natural objects exhfhdgictal
properties, including landscapes, clouds, treegarns,
05} | rivers etc, and many of the systems in which we liv
exhibit complex, chaotic behaviour. In the field of
electrical power systems, this paper has provetdctieaos
51 1 can induce voltage collapse, angle divergence tiag®

, , collapse with angle instability simultaneously whigs

0 500 1000 1500 stable condition is broken. It shows us that chaos
(e) power systems is very likely to be an intermed&tege

in the transient after a large disturbance. Ald&s are
helpful to understand the various instability modes to
find effective anti-chaos strategies in power syste

v radfs
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