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Abstract: This work demonstrates the feasibility of 

utilizing optical images of PV modules or arrays 

controlled by tracking systems to determine its tilt angle. 

The proposed novel method uses discrete wavelet 

transforms and artificial neural networks. The process can 

be accomplished remotely to reduce the need of manpower 

and time required to find the tracking systems inclination 

angle. Hardware and software needed is relatively simple. 

Application of this method can be extended to other 

systems such as solar thermal collectors. Proposed 

algorithms performance, using different artificial neural 

network parameters and families of wavelet transforms, is 

also investigated. All combinations illustrate the reliability 

and practicality of the proposed method. Moreover, in 

order to account for noisy images, the performance is 

examined under different values of signal to noise ratios, 

the method performed very well at all noise levels 

introduced. 
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Abbreviations and symbols 

PV  Photo Voltaic 

DWT  Discrete Wavelet Transform 

2-D DWT Two dimensional Discrete Wavelet 

Transform 

ANN  Artificial Neural networks 

i,  input fed to ANN 

w  ANN weights matrix 

b  ANN  bias vector 

f  activation function 

o  ANN output vector 

n  discrete functions index 

M   number of pints in a discrete signal J

   dilation or scaling coefficient 

 K   position or translation coefficient 

ψ   wavelet function 

 φ   dilation function. 

Dh  horizontal details coefficients in 2-D 

DWT 

Dv  vertical details coefficients in 2-D 

DWT 

Dd  diagonal details coefficients in 2-D 

DWT 

A   approximation coefficients in 2-D 

DWT 

db  Daubechies wavelet 

coif  Coiflets wavelet 

sym  Symlets  wavelet 

SNR  Signal to Noise Ratios 

MAE  Mean Absolute Error 

1. Introduction 
The growing use of renewable energy resources 

across the globe has improved the performance of 

renewable energy systems. Applications utilizing 

solar energy in particular, are increasingly deployed 

in many regions of the world [1]. One of its main 

drivers is the possibility of direct conversion of solar 

radiation into electricity using photo voltaic (PV) 

modules and arrays [2]. PV systems produce 

electrical energy by collecting solar radiation, thus 

are usually desired to be perpendicular to the sun [3]. 

This can be achieved by deploying solar tracking 

systems. Tracking systems can improve generated 

power by up to 30% to 40% , depending on the 

number of tracking axis used [4] and [5].  

Solar energy plants can host hundreds of PV 

modules, arrays and solar thermal collectors. The 

alignment and positioning of solar tracking systems 

should be regularly inspected to assure its proper and 

optimal functioning [6]. Inspecting tracking systems 

having a large number of elements requires verifying 

the arrays or modules tilt angles individually. This in 

turn requires dedicated manpower and time. The 

process can be automated using traditional sensors 

that feedback the tilt angles or positions to a central 

location. The size and cost of such sensors network 

could be significant. 

This work introduces a novel and cost effective 

method to determine the inclination or tilt angle of a 

solar tracking system by examining each module or 



array individually using optical images of the solar 

energy plant. Although the described application is 

PV oriented, the proposed method can be applied to 

solar thermal collectors and other applications. 

 The requirements of such a system are minimal, 

namely: a camera and a PC which can run the 

software implementing the proposed algorithms. 

Moreover, the proposed method allows remote 

monitoring of the tracking system, which is usually 

located at remote locations. This is possible if images 

are available. Images could be acquired by ordinary 

acquisition devices such as a web cam or satellite 

based optical imaging systems. 

2.Theory 
The present work utilizes the strength of both, the 

Discrete Wavelet Transform (DWT) and Artificial 

Neural networks (ANN) as discussed in the 

following sections. 

2.1 Artificial Neural Networks 
ANNs are algorithms that can learn in a self 

organizing way that emulates biological neural 

networks. ANNs can deal with noisy, inconsistent 

and fuzzy data [7].  

ANNs are described mainly by their architectures, 

training algorithms and activation functions as shown 

in figure 1. The architecture illustrates a typical layer 

of neurons. Three neurons are shown in this example, 

the same number of neurons used in the 

implementation of this work. The interconnections 

layer is also know as the hidden layer. In addition to 

the hidden layer, the network consists of an input and 

an output layer. The training algorithms determine 

weights or significance of information passing 

through each of these interconnections. These 

weights could be fixed values or could be based on a 

series of updated data. ANNs with the later type of 

weights is known as an unsupervised network. The 

weights can be determined by training the network 

using series of input and output data. The present 

work depends on this category of ANNs known as 

supervised networks. Activation functions explain 

the dependence of a neurons output on its input. 

Activation functions can also be associated with 

weights known as biases. In general, for an input 

vector i, fed to an ANN with weights matrix w and 

bias vector b where w and b are determined by a 

certain training algorithm, and an activation function 

f; the output vector, o, of such a system is given by: 

� = �(�� + �)             (1)  

 

Figure1. ANN architecture with 3 neurons in the hidden 

layer 

 

A common application of ANNs is recognition of 

certain shapes or patterns it was taught in advance to 

identify [8]. The network is trained using a set of 

input and output data prior to the application. 

Performance of such networks can be evaluated by 

introducing inputs of known outputs known as 

validation data. Differences between outputs 

predicted by the ANN and validation data can be 

then used to evaluate the network performance [9]. 

2.2. Wavelet Transforms 
Wavelet transforms were discovered by a French 

engineer, Jean Morlet, in 1982 [10]. It offers the 

possibility of reliable parameter estimation when 

used as a multi-resolution analysis technique [11]. 

Wavelet transforms can also be considered as an 

extension to the Fourier transform which is limited to 

only time and frequency scales. In this work, DWT 

was used and will be explained below. For 

information on continues wavelet transforms and its 

relation to DWT and Fourier transform refer to [10] 

and [12]. 

Applying DWT to a signal implies applying band 

pass filtering several times. The signal is 

decomposed into a low pass component known as 

approximations and a high pass component known as 

details [13]. The filtering is followed by down 

sampling. Subsequent stages repeat, this two 

component filtering, on the approximations at each 

level. Figure 2 illustrates the DWT implementation 

process. 
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Figure2. DWT process for discrete signal x(n), h(n) and 

g(n) are high pass and low pass filters respectively, d: 

details and a: approximations. 

 

The wavelet transform can be mathematically be 

expressed as [14]: 


[�] =
�

√�
∑ �∅[��, �]∅��,�[�] +�

�

√�
∑ ∑ �ψ[�, �]ψ�,�[�]�
�
����

      (2) 

Where all functions containing variable [n] are 

discrete functions defined in [0, M-1], for a total of M 

points, j: dilation or scaling coefficient, k: position or 

translation coefficient, W: wavelet coefficients span, 

ψ: wavelet function and φ: dilation function. 

The approximations and details can also be found 

using the following two equations respectively:  

�∅[��, �] =
�

√�
∑ 
[�]∅��,�[�]�          

 (3) 

�ψ[��, �] =
�

√�
∑ 
[�]ψ�,�[�]� 	� ≥ ��   (4) 

Since images are 2-D data representations, assuming 

a single color processing, a 2D-DWT is required to 

process images. The filtering possibilities are not just 

high pass (H) or low pass (L) as shown in figure 2, it 

could be (L) then (L), (L) then (H), (H) then (L) or 

(H) then (H) again. Therefore, in 2D decompositions, 

images are transformed into four sub sets. The 

subsets are the approximation coefficients, which 

represent a lower resolution of the original image, 

and three details coefficients representing horizontal, 

vertical and diagonal coefficients of the image. 

3. Material and Methods 

Images of PV modules at different tilt angles were 

used to determine the modules inclination angles. 

Due to ANN’s forgiving nature, the camera can be 

placed at many possible points as long as it can 

provide decent images. The ANN should still be able 

to determine the inclination, if it was trained on 

images acquired from the same shooting angle. 

Processing large images is a burden from 

computational and time requirement points of view. 

Therefore, the main objective of this work is to 

demonstrate the possibility of using a reasonably 

small ANN that has few neurons but can still perform 

the required task of determining PV modules tilt 

angles. Moreover, In order to minimize the size of 

the data to be processed, yet retain the main features 

of the image, wavelet transforms were implemented 

prior to the ANN stage. Features extracted by the 

DWT, namely, the approximations and details of the 

PV images, were used to train the ANN. 

3.1 Image processing and DWT implementation 
Images were processed in the following order 

(summarized by figure 3): 

(i) Acquire the PV module images at known 

inclination angles. 

(ii) Separate modules images from the 

surroundings and background. 

(iii) Resize images to have 256*265 points. This 

unifies images sizes. 

(iv) Convert images to gray scale with values 

normalized to fall in the range of 0 to 1 

ignoring other colors and apply a threshold. 

(v) Apply 2D DWT to images to reach a 

decomposition level having only 8*8 

elements in each of the three details 

coefficients, (horizontal: Dh, vertical: Dv & 

diagonal: Dd) and the approximation 

coefficient (A) as illustrated in figure 3. 

Several trials were performed to select the 

minimum usable coefficients size. 

 

 Commonly used wavelet transforms that are 

available in Matlab were selected to demonstrate the 

proposed method. In particular, Haar, Daubechies 4 

(db4), Coiflets (coif1) and Symlets (sym3) wavelets 

were selected to carry out the implementation. 

Figures 4a, b, c and d are examples of such 

approximation and details images. In order to have 

an 8*8 size details and coefficients; different 

decomposition levels were applied in Matlab to the 

different wavelet families above.  



 

Figure3. Image processing and DWT stage 

 

 

(a) Approximation coefficients  

 

(b) Horizontal details coefficients 

 

(c) Vertical details coefficients 

 

(d) Diagonal details coefficients 

Figure4. Level 7, db4 coefficients for a PV module at an 

inclination angle of 60° and a SNR=3 

3.2 ANN implementation 

A total of 5 sets of images were used. Each set 

consisted of 9 images representing a PV module 

tilted at angles 10°, 20°, … & 90°. 90° correspond to 

the case where the PV surface plane is perpendicular 

to a ray extending from the camera lens, which is far 

enough to be assumed as a point source, to the PV 

module. 0° on the other hand means the PV surface is 

parallel to the ray and cannot be seen by the camera. 

In order to account for different image qualities and 

test the performance of the ANN at more challenging 

conditions, noise was introduced to 4 of the 5 sets 

(36 of the 45 images). The Signal to Noise Ratios 

(SNRs) of the sets were adjusted to be 3, 6, 9 and 12. 

Figure 5 illustrates a processed image of size 

256*256 points at a SNR=12 and an inclination angle 

of 30°. 

 

Figure5. A processed 256*256 image of a PV module at 

an inclination angle of 30° and a SNR=12. 

A feed forward back propagation ANN was used 

(newff function in Matlab). In order to satisfy the 

requirement of a small number of neurons, only one 
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hidden layer with three neurons was used. Matlab 

transfer function (tansig), training function (trainlm) 

were used to construct and training the network.  

Inputs to the ANN were A, Dh, Dv and Dd, whereas 

the output was the PV modules tilt or inclination 

angle. Fifteen combinations of the 45 images were 

used for training and validation trials. Each time, 7 

tilt angles images were used for training and 2 angles 

images, not seen before by the ANN were used for 

validation. Every training and validation run for each 

set was repeated 100 times. The previous steps were 

repeated for 4 different values of training goals. This 

was repeated for Haar, db4, coif1 and sym3 wavelets.  

4. Results and discussion of results 
Tables 1 to 4 illustrate the Mean Absolute Error 

(MAE) values using different wavelets. The error is 

the difference between the actual inclination angle, 

and the angle predicted by the ANN. Each set of the 

15 sets corresponds to a certain combination of data 

used for training and validation. Each entry is based 

on data obtained from 100 runs of the algorithm. 

MAE for four different values of training goals are 

tabulated. 

Table1. MAE values using Haar wavelet with different 

goal values and different training/validation images 

combinations. 

Goal .0001 .001 .01 .1 

Set# 

1 2.24 1.55 2.22 4.50 

2 2.40 1.57 2.45 4.86 

3 1.78 1.96 2.15 5.11 

4 2.22 1.80 2.97 3.63 

5 2.29 2.70 2.43 3.95 

6 4.72 3.25 5.02 4.67 

7 0.63 3.34 1.66 1.25 

8 1.00 0.67 1.03 1.82 

9 2.46 1.24 2.26 0.65 

10 2.12 0.99 2.38 0.86 

11 1.52 1.85 1.30 1.06 

12 3.66 2.35 3.55 0.70 

13 3.80 4.06 4.34 3.92 

14 0.99 3.86 0.36 2.58 

15 3.59 1.48 3.04 2.53 

 

 

 

 

Table2. MAE values using db4 wavelet with different 

goal values and different training/validation images 

combinations. 

 

Goal .0001 .001 .01 .1 

Set# 

1 2.22 2.03 2.20 1.89 

2 2.55 3.19 2.64 1.65 

3 5.75 5.85 4.31 3.02 

4 4.40 3.75 6.38 4.21 

5 2.41 2.30 2.68 3.60 

6 4.25 3.73 3.49 4.37 

7 4.27 3.89 3.78 4.93 

8 4.27 6.70 3.74 5.99 

9 2.79 2.57 3.90 4.23 

10 2.50 2.07 1.12 1.72 

11 3.22 3.03 2.47 2.13 

12 1.27 1.09 1.27 5.66 

13 6.60 7.90 7.35 7.00 

14 2.94 1.76 2.53 3.05 

15 1.65 3.24 2.46 2.36 

 

Table3. MAE values using coif1 wavelet with different 

goal values and different training/validation images 

combinations. 
Goal .0001 .001 .01 .1 

Set# 

1 1.76 1.49 1.46 1.78 

2 4.40 4.56 4.64 5.17 

3 2.09 2.54 1.51 1.89 

4 2.58 2.79 2.49 5.14 

5 2.36 1.14 1.19 4.41 

6 8.11 8.98 7.95 5.99 

7 4.84 4.38 3.21 5.03 

8 4.90 5.23 4.19 6.84 

9 4.36 4.87 3.91 5.11 

10 1.34 1.24 0.64 1.28 

11 1.81 0.64 1.90 1.88 

12 0.75 0.62 1.43 2.95 

13 4.02 3.33 3.10 4.99 

14 3.80 4.04 3.94 6.13 

15 0.77 2.31 1.78 3.13 
 

Table4. MAE values using sym3 wavelet with different 

goal values and different training/validation images 

combinations. 
Goal .0001 .001 .01 .1 

Set# 

1 1.71 2.66 2.03 2.10 

2 3.04 4.09 3.85 5.03 

3 2.19 3.57 2.73 2.72 

4 3.77 5.18 3.88 5.72 

5 3.72 2.06 2.83 2.13 

6 7.85 8.25 8.30 8.31 



7 5.40 4.84 3.99 3.05 

8 6.11 5.39 4.92 5.45 

9 5.85 4.58 4.44 3.03 

10 1.47 2.43 3.14 2.06 

11 3.68 3.96 4.39 4.67 

12 2.14 4.73 2.40 1.68 

13 5.59 6.08 6.56 8.00 

14 4.63 5.35 5.32 3.27 

15 3.79 1.76 3.81 3.50 

 

The minimum overall MAE=0.36 was achieved 

when Haar wavelet and a training goal value of 0.01 

was used. This corresponds to a training combination 

using images of tilt angles 50° and 80° as validation 

images and the remaining images as training images. 

MAE values found using db4 are tabulated in Table 

2. Again MAE for four different values of training 

goals are shown. The minimum MAE=1.09 

corresponds to a goal value of 0.001 and a training 

combination using images of inclination angles of 

40° and 80° as validation images and the remaining 

images as training images. Minimum MAE value 

found for coif1 is 0.62 at a goal of 0.001 and a 

training combination using images of inclination 

angles of 40° and 80° as validation images. For sym3 

using tilt angles of 40° and 60° as validation angles 

with a goal of 0.0001 resulted in a minimum MAE of 

1.47. 

The minimum MAE obtained using Haar wavelet is 

smaller than the corresponding values for db4, coif1 

and sym3 by several folds. 

Tables 5 to 8  show MAE values found for the sets 

with best MAEs at different levels of SNR. In the 

Haar wavelet case, the best combination, at a goal 

value of 0.01, is very clearly superior to other goal 

values for all SNR values. However, such superiority 

is not noticed with other wavelets. 

Table5. MAE for different goal values and minimum Haar 

overall MAE for different SNRs. 
Goal 0.0001 0.001 0.01 0.1 

SNR 

3 0.62 3.38 0.23 2.21 

6 1.00 3.78 0.34 2.38 

9 1.17 3.69 0.53 2.50 

12 1.09 4.44 0.33 3.12 

∞ 1.05 4.04 0.38 2.66 

average 0.99 3.86 0.36 2.58 

 

 

 
Table6. MAE for different goal values and minimum db4 

overall MAE for different SNRs. 

Goal 0.0001 0.001 0.01 0.1 

SNR 

3 1.88 0.73 0.55 5.66 

6 2.47 2.22 2.10 6.33 

9 0.38 0.90 1.32 5.21 

12 1.20 0.92 1.70 6.19 

∞ 0.42 0.67 0.68 4.92 

average 1.27 1.09 1.27 5.66 
 

Table7. MAE for different goal values and minimum coif1 

overall MAE for different SNRs. 

Goal 0.0001 0.001 0.01 0.1 

SNR 

3 0.45 0.35 0.40 1.44 

6 1.42 0.61 0.32 1.15 

9 1.19 0.46 1.54 1.44 

12 0.29 1.15 0.64 1.46 

∞ 0.40 0.51 0.33 0.92 

average 0.75 0.62 0.64 1.28 

 

Table8. MAE for different goal values and minimum 

sym3 overall MAE for different SNRs. 

Goal 0.0001 0.001 0.01 0.1 

SNR 

3 2.15 1.16 1.31 0.79 

6 1.75 2.06 2.77 1.41 

9 1.45 1.57 2.45 2.64 

12 1.04 2.62 1.85 2.36 

∞ 0.95 1.41 1.76 1.20 

average 1.47 1.76 2.03 1.68 
 

Based on the above findings, it is obvious that Haar 

wavelet with a goal value of 0.01 should be used in 

the present work for a minimum MAE value in 

determining tilt angles of PV modules. 

Tables 9 to 12 show values obtained using the best 

training and validation pairs found for each wavelet. 

As can be seen, the systems estimations are very 



close to the actual inclination angles for all wavelets 

and at all SNR values considered. However, the Haar 

wavelet’s better performance is obvious again. 

 

Table9. Predicted inclination angles in (°) for different 

SNRs using Haar wavelet minimum MAE settings. 

SNR 3 6 9 12 ∞ 

Actual 

50 50.28 49.54 48.98 49.36 49.35 

80 79.82 80.21 79.95 80.01 80.12 

 

Table10. Predicted inclination angles in (°) for different 

SNRs using db4 wavelet minimum MAE settings. 
SNR 3 6 9 12 ∞ 

Actual 

40 41.10 36.18 39.58 39.45 40.10 

80 79.65 78.76 78.63 78.71 78.75 
 

Table11. Predicted inclination angles in (°) for different 

SNRs using coif1 wavelet minimum MAE settings. 
SNR 3 6 9 12 ∞ 

Actual 

40 39.32 39.54 39.08 38.50 39.06 

80 80.02 79.23 80.00 79.2 79.91 
 

Table12. Predicted inclination angles in (°) for different 

SNRs using sym3 wavelet minimum MAE settings. 
SNR 3 6 9 12 ∞ 

Actual 

40 42.45 38.90 40.63 41.59 38.85 

60 58.16 57.61 57.73 59.51 60.76 
 

5. Conclusion 

A novel method to determine the inclination of PV 

tracking systems was introduced. The method utilizes 

optical images that can be acquired remotely to 

determine a PV module or array tilt angle. The image 

is preprocessed, followed by a 2D-DWT and an 

ANN processing. The results obtained using different 

ANN parameters and DWT families indicate the 

possibility of accurately detecting tilt angles. Haar 

wavelet seems to perform much better than the other 

wavelets considered in the work over a large range of 

SNR values. 
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