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Abstract: A very important matter of discussion in power 
system operation is the oscillation damping problem. Power 
System Stabilizers (PSSs) are used to generate 
supplementary control signals for the excitation system in 
order to damp the low frequency power system oscillations. 
To overcome the drawbacks of conventional PSS (CPSS), 
numerous techniques have been proposed in the literature. 
This article describes the design procedure for a fuzzy logic 
based PSS (FLPSS) and a self-learning adaptive network 
based fuzzy inference system (ANFIS) type PSS (ANFPSS) 
which provides supplementary signals thus extending the 
power stability limits. Speed deviation of a synchronous 
machine and its derivative are chosen as the input signals to 
the fuzzy logic controller. The proposed technique has the 
features of a simple structure, adaptivity and fast response 
and is evaluated on a multi-machine power system under 
different operating conditions to demonstrate its 
effectiveness and robustness. The effect of detuning of one 
of the generator parameters on the dynamic performance of 
the system is also analyzed. 
 
Key words: ANFPSS, CPSS, FLPSS, multi-machine power 
system, power system oscillations, PSS. 
 
1. Introduction 
 Power systems are usually large non-linear systems, 
which are often subjected to low frequency 
electromechanical oscillations. Power System 
Stabilizers (PSSs) are often used as an effective and 
economic means for damping the generators’ 
electromechanical oscillations [1] and enhance the 
overall stability of power systems. Power system 
stabilizers have been applied for several decades in 
utilities and they can extend power transfer stability 
limits by adding modulation signal through excitation 
control system. They provide good damping; thereby 
contribute in stability enhancement of the power 
systems. 
 Designing PSS is an important issue from the view 
point of power system stability. Conventional PSS 
(referred to as CPSS) controllers use transfer functions 
designed for linear models representing the generators 
at a certain operating point [2, 3]. However, as they 
work around a particular operating point of the system 
for which these transfer functions are obtained, they are 
not able to provide satisfactory results over wider 
ranges of operating conditions. In other words, 

according to the fact that the gains of the mentioned 
controller are determined only for a particular operating 
condition, they may not yet be valid for a wider range 
around or for other new conditions [4]. 
 This problem is overcome by using Fuzzy logic 
based technique for designing of PSSs. Fuzzy logic 
systems allow us to design a controller using linguistic 
rules without knowing the exact mathematical model of 
the plant [5, 6]. The application of Fuzzy logic based 
PSSs (FLPSSs) has been motivated because of some 
reasons such as improved robustness over that obtained 
using conventional linear control algorithm, simplified 
control design for difficult-to-be modeled systems and 
simplified implementation [4, 7]. Fuzzy logic 
controllers (FLCs) are very useful in the case a good 
mathematical model for the plant is not available, 
however, experienced human operators are available 
for providing qualitative rules to control the system. In 
some papers to improve the performance of FLPSS, a 
hybrid FLPSS has been presented. In [8, 9], a FLC is 
used with two CPSS controllers, also Hybrid PSSs 
using fuzzy logic and neural networks have been 
reported.. 
 However, there is no systematic procedure for 
designing FLCs. The most common approach is to 
define Membership Functions (MFs) and IF-THEN 
rules subjectively by studying an operating system or 
an existing controller. So, an adaptive network based 
approach has been presented in [10] to choose the 
parameters of fuzzy system using a training process. In 
this technique, an adaptive network is used to find the 
best parameter of fuzzy system. 
 In this paper, an adaptive neuro fuzzy inference 
system based PSS (ANFPSS) is developed, which uses 
the speed of a synchronous machine and its derivative 
as the inputs. The ANFPSS uses a first-order Sugeno-
type fuzzy logic controller whose membership 
functions and consequences are tuned by 
backpropagation algorithm alone, or in  combination 
with a least squares type of method.. Fuzzy rules and 
MFs of the controller can be tuned automatically by 
learning algorithm. 
 The proposed technique is illustrated on a 3-
machine, 9-bus power system. MATLAB/SIMULINK 
and fuzzy logic toolbox have been used for system 



 
  

simulation. The results demonstrate that the proposed 
self-learning ANFPSS provides a very good damping 
performance over a wide range of operating conditions 
and improves the stability margin of the system as well. 
 This paper is organized as follows. The single line 
diagram of a 3-machine 9-bus power system model is 
given in Section 2. The Conventional Power System 
Stabilizer is discussed in Section 3. FLPSS and 
ANFPSS controllers are described in Section 4. 
Simulation results and discussions are illustrated in 
Section 5. Some conclusions are given in Section 6. 
 
2. Power System Model 
 The single line diagram of a 3-machine 9-bus power 
system model shown in Fig.1, is used for the analysis 
and study of the inter-area oscillation control problem 
[1]. In Fig.1, the bus 1, to which the generator G1 is 
connected, is considered as reference bus. The base 
MVA is 100 and the system frequency is 50 Hz. This 
system exhibits inter-area mode of electromechanical 
oscillations whose frequency varies from 0.35 to 0.75 
Hz depending on the operating conditions. Two sets of 
conventional PSS controllers are used; one for the 
generator G2 and another one for the generator G3. 
The system data are given in Appendix. 
 

 
 

Fig.1 Single line diagram of a 3-machine 9-bus 
power system; All impedances are in per unit on  

100 MVA base 
 
3. Conventional Power System Stabilizer 
 The PSS is used to provide damping to 
electromechanical oscillations. The PSS counters the 
oscillations by forcing the change in excitation level 
appropriately. Without PSS, the reduced damping in 
power system is due to phase lags resulted by the field 
time constants and the phase lags in the normal voltage 
regulation loop. The PSS uses phase compensation by 
adjusting the timing of correction signal opposing the 

rotor oscillations. A PSS can therefore increase the 
generator’s damping coefficient. The conventional PSS 
(CPSS) shown in Fig.2 has three components; the 
phase compensation block, the signal washout block 
and gain block. The phase compensation block 
provides the appropriate phase lead characteristics to 
compensate for the phase lag between exciter input and 
generator electrical torque. The signal washout block 
serves as high pass filter, with time constant wT  high 
enough to allow signals associated with oscillations in 
ω  to pass unchanged. The stabilizer gain stabK  
determines the amount of damping introduced by PSS. 
For the conventional PSS, the following transfer 
functions are considered: 
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Fig.2 Conventional lead-lag PSS 
 
4. Fuzzy Logic based Power System Stabilizer 
 The initial step in designing the Fuzzy logic based 
power system stabilizer (FLPSS) is the determination 
of the state variables which represent the performance 
of the system. The input signals to the FLPSS are to be 
chosen from these variables. The input values are 
normalized and converted into fuzzy variables. Rules 
are executed to produce a consequent fuzzy region for 
each variable. The expected value for each variable is 
found by defuzzifying the fuzzy regions. The speed 
deviation ( ω∆ ) of the synchronous machine and its 

derivative (
•

∆ω  ) are chosen as inputs to the fuzzy 
logic controller and the output is the stabilizing signal 
UPSS. 
 The proposed controller uses seven linguistic 
variables such as: Positive Big (PB), Positive Medium 
(PM), Positive Small (PS), Zero (ZE), Negative Small 
(NS), Negative Medium (NM) and Negative Big (NB). 
The membership functions are chosen to be Gaussian 
as shown in Fig.3. The defuzzification of the variables 
into crisp outputs is tested by using the centroid  
method.  



 

 
 

Fig.3 Gaussian membership functions 
 

4.1 Training the PSS Controller 
 Physical domains can be calculated from the 
generated data for simulation by the conventional PSS 
controllers attached initially at both generators G2 and 
G3. For the rule-base, the relationship between the 
fuzzy controller inputs and its output can be extracted 
from the following algorithm: 
1. Simulate the conventional PSS controller. 

2. Save each sample value of ( ω∆ ,
•

∆ω , and UPSS). 
3. At each sample time t:  
    ω∆  belongs to the class with maximum 
membership among (NB,NM,NS,ZE,PS,PM,PB),  
so at sample time t,  ω∆  is ω _1.                     

    
•

∆ω  belongs to the class with maximum 
membership among (NB,NM,NS,ZE,PS,PM,PB),  

so at sample time t, 
•

∆ω   is ωd _1.                   
This will form the contents of the rule-antecedent (If-
part of a rule). 
 UPSS belongs to the class with maximum 
membership among (NB,NM,NS,ZE,PS,PM,PB),  
so at sample time t, UPSS  is u_1        
This will form the contents of the rule-consequent 
(then-part of the rule). 
Thus the total rule can be formed as: 

“If ω∆  is ω _1 and 
•

∆ω   is ωd _1, then UPSS is u_1”. 
 After generating the rules, the tuning procedures are 
carried out manually by observation of the control 
surface relating to the controller. A sample of these 
rules is shown in Table 1. 
 
Table 1 Rules extracted from the conventional PSS 

controller 
Speed 
Dev. 

Acceleration 
NB NM NS ZE PS PM PB 

NB NB NB NB NB NM NS ZE 
NM NB NB NM NM NS ZE PS 
NS NB NM NS NS ZE PS PM 
ZE NM NM NS ZE ZE PM PM 
PS NM NS ZE ZE PS PM PB 
PM NS ZE PS PM PM PM PB 
PB ZE ZE PM PS PB PB PB 

 

4.2 ANFIS Controller for PSS 
 The proposed ANFIS controller also uses seven 
linguistic variables such as: Positive Big (PB), Positive 
Medium (PM), Positive Small (PS), Zero (ZE), 
Negative Small (NS), Negative Medium (NM) and 
Negative Big (NB). The membership functions are 
chosen to be Gaussian as shown in Fig.3. The 
defuzzification of the variables into crisp outputs is 
tested by using the weighted average method. 
 In MATLAB, the ANFIS editor graphics user 
interface is available in Fuzzy Logic Toolbox [11]. 
Using a given input/output data set, the toolbox 
constructs a fuzzy inference system (FIS) whose 
membership function parameters are adjusted using 
either a backpropagation algorithm alone, or in  
combination with a least squares type of method. This 
allows the fuzzy systems to learn from the data they are 
modeling. For the backpropagation-based neuro-fuzzy 
approach, it includes the Sugeno’s model with the 
following format: 
If the speed deviation error is ω∆  and the acceleration 

is 
•

∆ω , then  

UPSS = iriqip +
•

∆+∆ ωω                 (3)      

where,  =i {1, n*m} refers to the rule numbers, 
=j  {1, n} refers to the Speed deviation error terms in 

the fuzzy set, 
n, m refers to the number of terms generated, 
=k {1, m} refers to the acceleration terms in the fuzzy 

set, { iriqip ,, } are the ith consequent (PSS output) 
parameters. 
 The input signals to the ANFIS controller for the 

PSS are ω∆  and 
•

∆ω . In the ANFIS editor, the fuzzy 
inference can be generated using two partition 
methods; grid partitioning and subtractive clustering. 
Here, grid partitioning method is used. For grid 
partitioning, it uses the Fuzzy C-means (FCM) 
clustering data clustering technique. FCM is a data 
clustering algorithm in which each data point belongs 
to a cluster with a degree specified by a membership 
grade. 
 After generating the fuzzy inference, the generated 
information describing the model’s structure and 
parameters of both the input and output variables are 
used in the ANFIS training phase. This information 
will be fine-tuned by applying the hybrid learning or 
the backpropagation schemes. The generated model is 
of a first-order Sugeno’s form and the generated rules 
are in the form described by equation.(3). After this 
stage, the membership functions will be adjusted to 
optimize the controller action as shown in Fig.4. The 
scheme of proposed ANFIS based PSS (ANFPSS) is 
shown in Fig.5. 
 
 
 



 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 ANFIS design procedure for PSS 
 

 
 

Fig.5 Proposed ANFPSS structure for multi-machine 
power system 

 
5. Simulation Results and Discussion 
 In order to test the robustness of the proposed 
ANFIS based PSS (ANFPSS) controllers to improve 
the stability of multi-machine power systems, the 3-
machine 9-bus power system model shown in Fig.1 is 
considered. Each machine can be represented by a 
fourth order two-axis nonlinear model. The simulation 
block diagram for low frequency oscillation studies 
using PSS controllers in the system under consideration 
is shown in Fig.6. Details of the system data [12, 13]  
are given in Appendix. To evaluate the performance of 
the proposed ANFPSS scheme, the system response is 
compared with the cases: (i). with no PSS controllers, 
(ii). with conventional PSS (CPSS) controllers. The 
comparison is carried out under different kinds of 
operating points ((i).Total Real power of load P=0.7 
p.u, Total Reactive power of load Q=0.8 p.u, Terminal 
voltage Vt =1.05 p.u and (ii).Total Real power of load 
P=0.5 p.u, Total Reactive power of load Q=0.6 p.u, 
Terminal voltage Vt =1.05 p.u) and power disturbances. 
The power disturbance is applied in the form of a step 
signal as shown in Fig.6. Without PSS, the system 
response curves due to a power disturbance of 0.006 
p.u and disturbance clearing time of 50 seconds are 

shown in Figs.7 - 14. From these Figures, it is observed 
that the system damping is poor and the system is 
highly oscillatory. Therefore, it is necessary to install 
stabilizers in order to have good dynamic performance. 
The generators G2 (Area 1) and G3 (Area 2) are 
equipped with two of the proposed ANFPSS 
controllers. 
 
5.1 Case 1: P = 0.7 p.u, Q = 0.8 p.u, Vt = 1.05 p.u 
 A step power disturbance of 0.006 p.u was applied 
and it was cleared in 50 seconds. From the Figs.7 - 10, 
it can be seen that CPSS provides better damping of the 
speed deviation and power angle oscillations than when 
there is no CPSS in the system, however ANFPSS 
provides the best damping of oscillations in the form of 
reduced amplitude and settling times. 
 
5.2 Case 2: P = 0.5 p.u, Q = 0.6 p.u, Vt = 1.05 p.u 
 A step power disturbance of 0.006 p.u was applied 
and it was cleared in 50 seconds. From the Figs.11 - 
14, it can be seen that CPSS provides better damping 
of the speed deviation and power angle oscillations 
than when there is no CPSS in the system, however 
ANFPSS provides the best damping. The ANFPSS 
scheme shows improved damping performance even 
though the operating point is different. The adaptive 
fuzzy PSS controller is able to track the system 
operating conditions, and thus, as seen from the results 
shown in Figs.7 - 14, it is able to adjust and provide a 
uniformly good performance over a wide range of 
operating conditions and disturbances. For Case 1 and 
Case 2 considered above, the per unit inertia constant 
(M) of generator G2 is taken as 12.8 and that of 
generator G3 is taken as 6.02. 
 The control surface for the proposed ANFPSS 
scheme is shown in Fig.15. There is a small flat region 
in the origin to guarantee equilibrium. The small flat 
region in the origin is followed by sharp slopes in all 
direction to reflect non-linearity and to provide a quick 
response from the controller to even small deviations in 
the speed or acceleration of the rotor. 
 
5.3 Effects of Detuning of one of the Generator 
Parameters 
 In order to analyze the effect of detuning of one of 
the generator parameters on dynamic performance of 
the system, the per unit inertia constant (M) of 
generator G2 is taken as 7.0 and that of generator G3 is 
taken as 4.02. The Case 1 operating point shown in 
section 5.1 is considered for the analysis and the 
corresponding graphs are shown in Figs.16 – 19. From 
the Figures, it is clear that due to the reduction of 
inertia constants of G2 and G3, the amplitude and 
settling times of oscillations are slightly increased for 
Area 1, whereas changes in amplitude of oscillations 
and settling times are very less for Area 2 as compared 
to Area 1. 
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Fig.6 Simulation block diagram for low frequency oscillation studies using PSS controllers 
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Fig.7 Dynamic response for Speed deviation for 
Power disturbance of 0.006 p.u with ANFPSS  

for Area 1 (P = 0.7 p.u, Q = 0.8 p.u) 
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Fig.8 Dynamic response for Power angle for Power 

disturbance of 0.006 p.u with ANFPSS  
for Area 1 (P = 0.7 p.u, Q = 0.8 p.u) 
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Fig.9 Dynamic response for Speed deviation for 
Power disturbance of 0.006 p.u  with ANFPSS  

for Area 2 (P = 0.7 p.u, Q = 0.8 p.u) 
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Fig.10 Dynamic response for Power angle for Power 

disturbance of 0.006 p.u with ANFPSS  
for Area 2 (P = 0.7 p.u, Q = 0.8 p.u) 
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Fig.11 Dynamic response for Speed deviation for 
Power disturbance of 0.006 p.u with ANFPSS  

for Area 1 (P = 0.5 p.u, Q = 0.6 p.u) 
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Fig.12 Dynamic response for Power angle for Power 

disturbance of 0.006 p.u with ANFPSS  
for Area 1 (P = 0.5 p.u, Q = 0.6 p.u) 
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Fig.13 Dynamic response for Speed deviation for 
Power disturbance of 0.006 p.u with ANFPSS  

for Area 2 (P = 0.5 p.u, Q = 0.6 p.u) 
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Fig.14 Dynamic response for Power angle for Power 

disturbance of 0.006 p.u with ANFPSS  
for Area 2 (P = 0.5 p.u, Q = 0.6 p.u) 

 



 

 
 
Fig.15 Surface plot of proposed ANFPSS scheme 
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Fig.16 Effect of change in inertia constant of 
generators on Speed deviation for Area 1 
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Fig.17 Effect of change in inertia constant of 

generators on Power angle for Area 1 
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Fig.18 Effect of change in inertia constant of 
generators on Speed deviation for Area 2 
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Fig.19 Effect of change in inertia constant of 

generators on Power angle for Area 2 
 

6. Conclusion 
 An ANFIS based power system stabilizer is 
presented in this paper in order to overcome the 
drawbacks of conventional power system stabilizers. 
The proposed method is evaluated on a multi-machine 
power system to demonstrate its effectiveness and 
robustness. Simulation studies described in this paper 
demonstrate that the adaptive neuro-fuzzy based PSS 
can provide very good damping performance over a 
wide range of operating conditions. Such a nonlinear 
adaptive PSS control scheme will yield better and fast 
damping under small and large disturbances even with 
changes in system operating conditions. Better and fast 
damping means that generators can operate more close 
to their maximum generation capacity. The effect of 
detuning of one of the generator parameters on 
damping performance of the system has also been 
analyzed. The proposed technique has the features of 
simple structure, adaptivity and fast response and easy 
to be realized in power systems. 
 



 
  

Appendix 
 
(1).  Reduced Y Matrix : 

















−++

+−+

++−

368.2277.0088.1213.0226.1210.0

088.1213.0724.2420.0513.1287.0

226.1210.0513.1287.0988.2846.0

jjj

jjj

jjj
 

(2).  Generators data : 
Data      G2     G3 

Rated MVA 

kV 

H (s) 

D 

TQdo 

TQqo 

xd 
xQd 

xq 
xQq 

192 

18 

6.4 

0.0 

6 

0.535 

0.8958 

0.1198 

0.8645 

0.1969 

128 

13.80 

3.01 

0.0 

5.89 

0.6 

1.3125 

0.1813 

1.2578 

0.25 
 
 (3).  Transmission line data: 

Bus No. 
Impedance 

R X 

1 - 4       0 0.1184 

2 - 7       0 0.1823 

3 - 9       0 0.2399 

4 – 5 0.0100 0.0850 

4 – 6 0.0170 0.0920 

5 – 7 0.0320 0.1610 

6 – 9 0.0390 0.1700 

7 – 8 0.0085 0.0720 

8 – 9 0.0119 0.1008 
(4).  Shunt admittances data: 

Bus No. Admittance 

G B 

4 – 0      0 0.1670 

5 – 0 1.2610 -0.2634 

6 – 0 0.8777 -0.0346 

7 – 0      0 0.2275 

8 – 0 0.9690 -0.1601 

9 – 0      0 0.2835 

(5).  Generator exciter details: 
For G2 & G3: Ka = 400, Ta = 0.05 sec. 
 
(6).  PSS data : 
Kstab = 400, Tw = 3 sec., T1  = 0.1537 sec., T2 = 0.1 sec. 

Note :  All impedance and admittance values are in 
per unit (pu)  on a 100 MVA base.  All time constants 
are in seconds. 
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