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Abstract— This paper presents a novel multi-agent based 

control architecture for transient stability enhancement of 

distribution systems that contain distributed generators. The 

proposed control architecture is hierarchical with one supervisory 

agent that optimizes the overall process and a distributed number 

of local control agents associated with each distributed generator. 

Control and protection actions need a fast reaction time and are 

taken by the local control agents. Coordination, learning, 

modifications of the criteria and parameters for the control and 

protection equipment, are performed at the global control agent. 

The proposed control architecture is illustrated to enhance the 

transient stability of power distribution system with three 

microturbines as distributed generators. 

 
Index Terms— Multi-Agent system control, Distribution 

system stability, Distributed generators, Microturbine 

I. INTRODUCTION 

raditional electric power systems consist of large, power   

generating plants interconnected via high-voltage 

transmission circuits to load serving entities that deliver power 

to end-users at lower voltages using local distribution 

networks. However, interest in the use of distributed 

generators has increased significantly over the past few years 

because of the potential to increase reliability and lower the 

cost of power through the use of on-site generation. The 

initiation of competition in the electric power industry, in 

which customers have the choice to select their energy 

providers and to participate in production, has been an 

incentive for this increased interest. In addition, the 

development of small, modular generation technologies such 

as microturbines, photovoltaics, wind turbines, and fuel cells 

has also contributed to this trend. Distributed generators and 

storage devices can have many benefits. However, novel 

operational and control concepts are needed to properly 

integrate them into the power system. Control strategies must 

be further developed to achieve the targeted benefits while 

avoiding negative effects on system reliability and safety. The 

current power distribution system was not designed to 

accommodate active generation and storage devices at the 

distribution level. Compatibility, reliability, power quality, 

system protection, and many other issues must also be 

 
 

considered before the benefits of distributed generators can be 

fully obtained. 

Although existing literature addresses the requirements of 

distributed generators operation and interconnection to the 

distribution system, the cumulative effect of numerous types of 

distributed generators on a given feeder is less understood ‎[2]. 

The extent of the eventual integration of distributed generators 

into the electrical distribution system will depend on the 

constraints and standards imposed by the local utility. The 

impact of connecting small synchronous generators to a nine-

bus system has been analyzed in ‎[3] and it was concluded that 

increasing the perturbation rate tends towards instability. 

Transient stability characteristics of a distribution system 

consisting of five distributed generators, which are gas turbine 

driven synchronous generators of various sizes (5-25 MW), is 

analyzed in ‎[4]. Simulation results confirm that three phase 

faults can cause all of the generators to lose synchronism. This 

situation can even be worse if different distributed generators 

are used. Stability of the distribution system depends on the 

type and number of DGs. Instability may occur if the number 

of distributed generators increases ‎[5]. Machine time 

constants, size and inertia are important factors that affect 

system dynamics. Similar results have been achieved in ‎[6] 

while investigating effects of the number of microturbines on 

distribution system stability.  

Distributed control and Multi-Agent Systems (MAS) have 

been reported in several power system applications, with some 

success in several areas like operation, markets, diagnosis and 

protection. In ‎[14], an MAS is proposed for diagnostic and 

condition monitoring. The main task of the proposed MAS is 

integration of alarm interpretation, fault record classification 

and protection validation into flexible and scalable 

architecture. A multi-agent approach to decentralized power 

system restoration for a distribution system network is given in 

‎[15]. A multi agent system to control a fossil fuel power unit 

by synchronizes the slow response of the boiler with faster 

response of the turbine generator to achieve fast and stable 

response during load changes and disturbances is proposed in 

‎[16]. Another application of MAS in power system transient 

stability enhancement via turbine fast valving control is 

proposed in ‎[17]. The proposed scheme mainly consists of a 

prediction agent that will predict power system instability and 

a control agent that will initiate turbine fast valving. 
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This paper describes a novel control architecture based on 

multi-agent system to resolve the transient stability problem of 

distribution system resulted from the integration of distributed 

generators. The paper is organized as follows. The research 

motivation is given in section II. Section III presents a brief 

introduction on MAS. The multi-agent control structure is 

presented in section IV. This section describes the 

incorporation of the developed MAS control architecture to 

distributed generators. Then, section V presents the 

implementation of the proposed control architecture to IEEE 

37 node distribution test feeder with three microturbines as 

distributed generators. The microturbine model has been 

developed by the authors and presented in ‎[7]. In section VI, 

two scenarios are being investigated and simulated using 

Power System Analysis Toolbox ‎[10] to illustrate the 

effectiveness of the proposed control algorithm. Conclusions 

are given in section VII of this paper. 

II. MOTIVATION 

While the penetration of distributed generators in power 

distribution systems is increased, these devices can be 

considered as a control path and can be used effectively to 

enhance the transient stability of distribution systems. Several 

efforts by many researchers have been published in control 

design of distributed generators ‎[4], ‎[6] and ‎[8] but most of 

these controllers are conventional, decentralized and of fixed 

structure type. In most cases the controllers’ parameters are 

designed by trial and error or tuned by optimization technique 

using linearized models. Since the distribution system may get 

vulnerable with the installed distributed generators such 

conventional fixed structure controllers does not guarantee 

stable operation of the distributed generators during large and 

severe disturbances. In most cases distributed generators get 

disconnected during disturbances ‎[18] as required by IEEE 

1547 Standard for interconnection of distributed generators 

with electric power systems. Based on these issues, it is clear 

that there is a need to find a novel control algorithm to 

overcome different tasks and restrictions. Such control 

architecture must have the following features:  

1. Coordinated control among the distributed generators, to 

avoid contradictive control actions. 

2. Adapted controllers, the control actions must adapt to 

different operating conditions. 

3. Self learning ability to end up with a robust and reliable 

system.  

4. Fast control and protection actions to avoid any damage to 

the distributed generators while keeping them in service.  

In this paper a new control algorithm based on multi-agent 

system that has the desired features is proposed.  

III. MULTI-AGENT SYSTEM 

An agent is defined as a computer system or software entity 

that is situated in some environment, perceiving that 

environment via sensors and acting autonomously in order to 

meet its design goals ‎[12]. A multi-agent system is a team of 

problem solving agents that can react intelligently and flexibly 

with changing operating conditions and demands from the 

surrounding processes. The multi-agent system processes an 

inquiry and generates an output in form of an activity or 

information. The inquiry is processed autonomously, 

depending on the process status and the boundary conditions. 

The agents are trained in a way that their behavior is following 

a global process goal. On the other hand each agent acts 

locally based as much as possible on local data, but despite of 

this, the global target is reached in the sense of an optimal 

global performance. In addition, the communication between 

the agents is used to avoid conflict actions. In this paper we 

will be dealing with multi-agent control systems since both the 

target definition and the resulting action of the system serve 

for controlling a process. The main advantage that can be 

drawn from such architecture is that it is expected to act over 

longer intervals and especially within broader boundaries, 

without having to intervene manually. Multi-agent systems are 

making sense in complex processes, such as power system, 

which are underlying high and flexible demands. This is 

closely related to the fact that actions must be taken regardless 

of little or prior knowledge. Intelligent talents, such as learning 

from experience, planning of actions or detection and 

identification of errors, used to be part of the process operator 

duties, are integrated into the multi-agent system. The 

advantages are reflected in the avoidance of human operating 

errors, the enhancement of the reaction rate and performance, 

and the reduction of the operator’s effort ‎[1]. 

IV. MULTI-AGENT APPROACH IN CONTROL OF DGS 

Operation and control of distributed generators (DGs) 

becomes a major concern as the number of distributed 

generators increases in electric power distribution systems. 

The main objective of having distributed generators in 

distribution systems is to supply on-site power to the load and 

reduce the dependency on main substation during steady state 

operation. However these distributed generators may have 

harmful impacts on the system during large disturbances. It 

becomes hard and difficult to come up with coordinated 

controllers for each distributed generator at every operating 

condition. A distributed generator is considered to be a control 

point or path that can be used to control and enhance the 

stability and reliability of electric power distribution systems. 

In the area of distributed generators, the control process is 

organized in a multiple parallel but also hierarchical way. Each 

distributed generator is equipped with one intelligent 

controller. All agents are interconnected together via the 

information base to a global agent. A schematic diagram of the 

proposed multi-agent control architecture is shown in Fig. 1 

and has three different layers. The bottom layer represents the 

physical distribution network with distributed generators. The 

middle layer presents the control system layer which is 

basically one controller or more attached to each distributed 

generator. The top layer is the multi-agent system layer. In this 

layer there is a local control agent associated to each 



 

distributed generator and a global control agent that supervises 

and optimizes the overall process. The details of each agent 

structure and operation algorithm are presented below. 
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Fig. 1.  Multi-Agent based Controllers for Distributed Generators 

A. Local Control Agent 

A Local Control Agent (LCA) is an agent connected directly 

to a controller mounted on the distributed generator. It has a 

direct access to local measurements like information on the 

distributed generator’s bus or distributed generator’s operating 

status. Figure 2 illustrates the function of this agent. The state 

assessment section continuously evaluates the operating 

conditions of the distributed generator and compares them 

with predefined set points. Once a disturbance occurs, the 

distributed generator operating condition changes and based 

on that the disturbance can be detected. The execution and 

adaptation section represents the heart of the agent. It uses the 

disturbance detection results to execute the control actions. 

Each LCA is equipped with local data storage. Such feature is 

extremely useful, especially when the agent loses 

communication with the rest of the system. The agent will try 

to map the event with the best suitable controller setting 

available in the local data storage. 

1)  Local Control Agent Information Structure 

LCA has three types of inputs. The first type is online 

measurements from the physical layer through sensors as 

shown in Fig. 2. Some of these measurements are used for 

system monitoring and assessment to detect any changes or 

violations in the system, such as terminal voltage of the 

distributed generator. On the other hand some of these 

measurements used by the disturbance detection section as 

input to Neural Networks (NN) to classify the disturbance and 

based on that the execution control action and adaptation 

section generates the proper control action. The second type of 

input is information from the Global Control Agent (GCA), 

such as update for data base of a new controller setting or NN 

update for a new disturbance. This agent generates three types 

of outputs. The first type is control actions in term of adapting 

the setting of the controller in the control layer or 

disconnection of the distributed generator from the grid in case 

of unsuccessful controllers’ settings. The second output is 

information exchanged with the GCA like passing the Local 

Emergency Signal (LES) and request for updating the local 

data base. 
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Fig. 2. Local Control Agent 

2)  Local Control Agent Decision Process 

The LCA will follow the algorithm presented in Fig. 3, 

which has the following steps: 

1. The state assessment section continuously evaluates the 

operating conditions of the distributed generator, such as 

terminal voltage, shaft speed and generated power. Then it 

compares them with predefined set points. 

2. Once a violation is detected then the disturbance detection 

section which is equipped with up-to-date trained neural 

network will identify and classify the detected disturbance 

and pass the result to execution control action and 

adaptation section. 

3. If the disturbance detection fails, then the collected data is 

sent to the GCA to update the neural network with the new 

disturbance. 



 

4. The execution control action and adaptation section will use 

the disturbance detection section result to assign the proper 

setting of controller’s parameters from the local data base. 

5. If the problem is solved, system is stabilized after the 

disturbance; continue monitoring the system i.e. go to step 

# 1. 

6. If the problem still exists and the violation is driving the 

system to an instability state, then the execution control 

action section will disconnect the distributed generator 

from the grid and continues to supply the local load. The 

LCA will generate a Local Emergency Signal (LES) and 

pass it to the GCA. 

7. Go back to step # 1. 
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Fig. 3. Local Control Agent Algorithm 

3)  Local Control Agent Architecture 

 LCA processes the information measured from the physical 

layer and accordingly responds with the proper control action. 

The intelligence of this agent appears in control decisions; the 

identification of the disturbance according to the local data 

base by using up to date NN, adaptive control action, and self-

learning. This agent adapts the controller’s parameters setting 

to the classified disturbance from the local data base. If the 

controller setting is unsuccessful a fast control action is passed 

to the control layer to disconnect the distributed generator 

from the grid. This action will protect the distributed generator 

while prevents the propagation of stability problem to the rest 

of the system. After sending the LES to GCA, the latter will 

provide the proper controller parameters to that disturbance as 

well as updating the NN. The LCA can use this particular 

controller and NN in the future for all similar situations and 

therefore it has learned and extended the capability of the 

control layer. 

B. Global Control Agent 

Fig. 4 illustrates the structure of the Global Control Agent 

(GCA). It represents the brain of a multi-agent control system. 

This agent contains three main parts: overall system evaluation 

and supervision, coordination and learning, and emergency 

signal section. The main target of the GCA is to keep the 

system running within the predefined operating conditions, 

such as known stability margins (voltage stability, 

synchronization, etc.) during any possible large disturbances. 

The overall system evaluation and supervision section 

provides continuous assessment of the system based on LCAs’ 

performance. The emergency section processes the generated 

LES from LCAs. In addition it is responsible for initiating the 

Global Emergency Signal (GES). Both cases are reported to 

coordination and learning section.  
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Fig. 4.  Global Control Agent 

The coordination and learning section is equipped with Guided 

Particle Optimization technique (GPSO) for controller design 

and Neural Network (NN) training section to update the LCAs 

networks with the new reported disturbances. GPSO is a new 

optimization technique developed by the authors and presented 

in ‎[8] and ‎[13]. The coordination and learning section process 

the reported LES or GES and conducts off-line study to design 

and coordinate new controller’s settings to the associated 

faulted LCAs. In addition it runs NN training to include the 

new disturbance in the local networks. The designed settings 

and trained networks will be passed to LCAs via information 

base and stored in a local data base so that the LCAs can use 

designs for future similar situations. Therefore it has learned 

and extended the capability of the LCAs. Then, it will initiate a 

request to restore the disconnected distributed generators and 

bring them back to the grid. 

1)  Global Control Agent Information structure 

 Unlike the LCA, GCA exchanges information with local 

control agents only and does not interfere with the other layers. 

The input to this agent is the local emergency signals from 

local control agents and requests to update the local control 

agents’ data base with controller’s settings or neural networks 



 

updates. The GCA generates output which is either GES or 

updates to local control agents data base. 

2)  Global Control Agent Decision Process 

 The GCA will follow the algorithm presented in the 

flowchart in Fig. 5; the algorithm can be summarized as 

follow: 

1. The GCA will continuously process the signals and 

requests from the LCAs in order to update their data bases. 

2. Once the GCA receives an LES from any LCA then it 

conducts a GPSO search to find a new setting for the new 

disturbance. Then, it will send the new design back to the 

LCA data base. 
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Fig. 5.  Global Control Agent Algorithm 

3. GCA will also run NN training to update the network with 

the new disturbance either while receiving LES or 

individual request. The result will be sent back to LCA. 

4. If all LCAs send LESs, then the GCA send a GES to LCA 

to disconnect all DGs from the grid and supply the 

remaining loads from the main substation. The GCA will 

conduct both GPSO search and NN training for the new 

disturbance, then, send the results back to LCAs. 

5. GCA will initiate a request to restore the disconnected DGs 

and brings them back to service. 

6. Go back to step # 1.  

3)  Global Control Agent Architecture 

 GCA is responsible for evaluation and supervision of the 

performance of local control agents by processing the 

incoming local emergency signals. The most important job of 

this agent is to perform coordination between the designed 

controllers at each LCA. This coordination appears in the 

optimization process (GPSO) either while processing single 

LES or during generation of GES. GPSO designs the 

controller in the first case, while considering the setting of the 

remaining controllers. In the second case, all the controllers 

are tuned simultaneously and in a coordinated way. The 

process of finding the proper controllers’ setup and updating 

the neural networks is a main participation of this agent to the 

self-learning feature of the MAS based controller. 

V. IMPLEMENTATION 

The IEEE 37 node distribution test feeder with three 

microturbines as distributed generators is selected to 

implement the proposed MAS control algorithm. The average 

balanced single-phase IEEE 37 nodes system is obtained from 

unbalanced three-phase system ‎[8]. As shown in Fig. 7, the 

microturbines rated 160 kW are connected to buses # 5, # 12 

and # 36 respectively. The total loading of this feeder is 819 

kW. The microturbines provide up to 58% of the total load. 

They are equipped with Power System Stabilizer (PSS) ‎[8]. If 

a large disturbance takes the system far away from the 

operating condition used to tune the controllers, this could 

have a negative impact and would be no longer effective or 

even harmful. However, with the proposed MAS based 

controller such an issue is no longer a problem. The objective 

here is to use the MAS based control algorithm to enhance the 

transient stability of the distribution network. 

A. Microturbine’s Controller. 

Microturbine can be controlled via two paths, mainly the 

mechanical power from the turbine to generator and 

microturbine’s terminal voltage via excitation system, Power 

System Stabilizer (PSS), see Fig. 6. 
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Fig. 6.  Microturbine’s Control-Loops 

The mechanical power controllers are used to match the 

generated electric power with the load. If a fast disturbance 

occurred such as short circuit fault, the mechanical power 

control will be slow and will not be effective. On the other 

hand, fast action can be taken with a proper excitation control 

design. The PSS controller is of a fixed-structure type that 

consists of a stabilizing gain, washout stage and three lead-lag 

stages as shown in Equation (1). 
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Fig. 7.  MAS Based Controller for IEEE 37 Node Feeder with Three Microturbines 
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A. Guided Particle Swarm Optimization Setting. 

The coordination and learning section in the GCA is 
equipped with Guided Particle Swarm Optimization ‎[13] to 
tune microturbine’s controller. Table 1 presents the PSO 
parameters. During the search procedures, GPSO constraint in 

this case are the microturbine’s speed deviations, , and rotor 

angle, . 

Equation (3) presents the optimization performance index used 

in this study.  

TABLE 1 

PARTICLE SWARM OPTIMIZATION TECHNIQUE PARAMETERS 

Bounds Ks min Ks max min max min max 

0 400 0.1 10 1 12 

Weighting factors C1 C2 

2 2.01 

Number of population 50 

Maximum # of unchanged solution 10 

Maximum # of iterations 50 
 

The dynamics of the overall system can be expressed by a set 

of nonlinear differential equations of the following form: 

      

m...,1j

n...,1i

Ku,txftx ji







        (2) 

The equations are simulated using PAT. The objective is for 

each controller to minimize: 

  

t

0

iii dt.Jmin                     

Subject to  Control Constraints:       

maxjjminj KKK        

Variables Constraints:         (3) 

maxtitiminti

maxiimini

maxiimini

VVV 





         

 Where,  

x: state variables that includes i and i 

, , and Vt: Generator’s speed, power angle and terminal 

voltage respectively 

n: number of controllers “populations or particles” 

m: number of parameters to be found “controller’s parameters 

of i-th controller” 

Kj: the controller’s parameters Ks, Tw, T1, T2, T3, and T4 

B. Neural Network Setting. 

The MATLAB Neural Network toolbox is used in this 
analysis as a part of the GCA coordination and learning NN 
training section to update the LCAs networks with any new 
reported disturbances. The following MATLAB functions are 
used for this purpose: 



 

newff: to create a feed-forward backpropagation network. 
train:  to train a neural network. 
Table 2 presents the NN training section parameters. A 
MATLAB m-file is written to collect training data from PAT 
simulations for all possible three-phase-to-ground fault 
locations in the test system. The voltage magnitude at 
microturbine’s terminal is selected to be the collected training 
data. The trained network has been tested and proved the 
ability to classify all possible faults and map them with proper 
setting of microturbine’s controller. 

TABLE 2  

NN BACKPROPAGATION TRAINING PARAMETERS 

Backpropagation network description Parameters 

Training performance function sse (Sum-Squared Error) 

Training parameter goal 0.1 

# of hidden layers 3 

# of neurons in hidden layers [200 300 200] 

# of neurons in output layer 22 

Transfer function logsig (in all layers) 

training function traingd 

Maximum number of epochs to train 100000 

Momentum constant 0.95 

Minimum performance gradient 1e-10 

VI. CASE STUDY 

Two scenarios are given below to demonstrate the 

effectiveness of the proposed MAS control algorithm using the 

IEEE 37 node feeder as shown in Fig. 11.  

A. Case 1, Fault near bus # 1: 

 

                Fig. 8.  Three-Phase to Ground Fault Close at bus # 1 

In the first scenario: three phase-to-ground fault occurs near 

bus # 1, close to main substation, at t = 0.1 sec and is cleared 

at t= 0.20 sec. The second scenario: three phase-to-ground 

fault occurs near bus # 8, close to DGs, at t = 0.1 sec and is 

cleared at t= 0.20 sec. The proposed control algorithm is 

implemented and nonlinear simulations are performed for the 

following cases: 

 Disturbance occurred and there is no suitable controller 

available in the data base for both microturbines. LCAs 

disconnect the microturbines and send a LES to GCA, 

which generate or design controllers for this specific 

disturbance and update the LCAs NN. [No suitable 

controller is found]. 

 Disturbance occurred, classified by NN and LCAs adapted 

the controller to cope the disturbance [LCA found suitable 

controller]. 

B. Case 1, Fault near bus # 8: 

 

 
                      Fig. 8.  Three-Phase to Ground Fault Close at bus # 8 

From the simulation results, it is clear that the proposed 
controller extends the operation range of the conventional 
distributed generator controller. It was impossible to tolerate 
such disturbances without adapting the setting of the 
controller. The amount of load and distance between the 
disturbance and DGs are the main factors to be considered 
during the design stage. 



 

VII. CONCLUSION 

This paper presents an implementation of intelligent control 

agent approach as a novel control algorithm for distributed 

generators. The control approach has distributed local control 

agents and a global control agent. The functions and 

integration of both types of agents have been explained. Each 

LCA will try to keep its distributed generator in service (local 

goal) according to local operation restrictions. It will also try 

to regulate the overall system (global goal) according to given 

set-points, which are stored locally in the data base. If a 

particular agent fails to satisfy the local goal, the associated 

distributed generator gets disconnected from the grid and 

continuously supply the local load and LES will be initiated 

and sent to the GCA. The remaining agents will try to adapt 

themselves to the new situation. The GCA will conduct an off-

line GPSO search to design new controller settings as well as 

NN training considering the failure situation and will pass 

them to the information base. Then, a restoration of the 

disconnected distributed generator will be processed (self-

healing). If the global goal is violated then a global emergency 

signal will be initiated. All distributed generators get 

disconnected from the grid while loads will have the main 

substation as the sole source of power. Again the GCA will 

conduct an off-line learning optimization and training. The 

system is ready either for manual or automated DG restoration. 

The IEEE 37 node distribution feeder with three microturbines 

as distributed generator has been used to illustrate the 

proposed method. The simulation results demonstrate the 

effectiveness of the proposed algorithm; system stability is 

achieved for all the tested cases.  

The above summary describes the implementation of multi-

agent approach to control of distributed generators. The 

algorithm can be applied regardless of the number or type of 

distributed generators. It has the ability of self-learning, so 

after adequate training, the system should reach a high level of 

robustness. The MAS based control architecture while 

extending the controllers’ range of operation is still keeping 

the basic conventional control structure. Another advantage of 

this approach is that it is not unique and accepts adds-on tasks. 

Depending on system complexity, other features may be 

added. 
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