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Abstract: This paper presents an adaptive technique for 
the estimation of the synchronizing and damping torque 
coefficients of a synchronous machine using a linear 
adaptive neuron (Adaline). The proposed technique is 
based on estimating the synchronizing and damping 
torque coefficients from online measurements of the 
changes of the rotor angle, rotor speed, and 
electromagnetic torque of the synchronous machine using 
Adaline architecture. These coefficients can be used as 
indices, which provide insight into the small-signal 
stability of power systems. The proposed approach can 
quickly predict the possible unstable conditions and hence 
help the operator to take the correct control action 
beforehand. The performance of the Adaline is compared 
with both Kalman filter and least-square error techniques. 
The Adaline offers several advantages including 
significant reduction in computer storage and remarkable 
reduction in the computational complexity, which is 
associated with Kalman filter. The simulation results over 
a wide range of operating conditions show that the 
Adaline can be used as efficient tool for either online or 
offline estimation of the synchronizing and damping 
torque coefficients. Therefore, it is believed that Adaline is 
a strong candidate for online monitoring of small-signal 
stability and security. 
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1.   Introduction 

Small-signal stability analysis is concerned with 
the behavior of power systems under small 
perturbations. Its main objective is to predict the low-
frequency electromechanical oscillations resulting 
from poorly damped rotor oscillations. The most 
critical types of these oscillations are the local-mode 
and interarea-mode oscillations [1]-[3]. The former 
occurs between one machine and the rest of the 
system, while the later occurs between 
interconnected machines. The study of these 
oscillations is very important to power system 
planning, operation, and control. The stability of 
these oscillations is a vital concern and essential for 
secure power system operation.  
 

 
It is known that operating conditions change with 

time in real-time situations. These operating 
conditions affect the stability of the synchronous 
machine. Therefore, a small-signal stability analysis 
must be repeatedly conducted in system operation 
and control to provide estimates of stability indices 
on basis of the given data that are obtained by either 
measurements or computer simulation, and provide 
new estimates as new data are received. 
Traditionally, small-signal stability analysis studies 
of power systems are carried out in frequency 
domain using modal analysis method. This method 
implies estimation of the characteristic modes of a 
linearized model of the system. It requires first load 
flow analysis, linearization of the power system 
around the operating point, developing a state-space 
model of the power system, then computing the 
eigenvalues, eigenvectors, and participation factors 
[4].  

Although eigenvalue analysis is powerful, 
however, it is not suitable for online application in 
power system operation, as it requires significantly 
large computational efforts. An alternative method to 
avoid the computational burden is to use online 
adaptive techniques that can quickly assess the 
stability of the power system on the basis of data 
samples obtained by measurements and 
automatically provides new estimates as new data 
samples are received. 

Alternative method based on electromagnetic 
torque deviation has been developed. Torque 
deviation can be decomposed into synchronizing and 
damping torques [5]-[7]. The synchronizing torque is 
responsible for restoring the rotor angle excursion. 
The damping torque damps out the speed deviations. 
The synchronizing and damping torques are usually 
expressed in terms of the torque coefficients Ks and 
Kd. These coefficients can be calculated repeatedly 
and this makes it suitable for online stability 
assessment. In terms of Ks and Kd, both coefficients 
must be positive for a stable operation of the 
machine.  
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A time-domain method based on least square 
error (LSE) minimization technique has been applied 
to compute Ks and Kd for a single-machine-infinite-
bus system (SMIBS) [7]. The LSE technique requires 
the time responses of the changes in rotor angle 
Δδ(t), rotor speed Δω(t), and electromagnetic torque 
ΔTe(t). These responses can be obtained, offline, by 
computer simulation or online from measured data. 
The significance of this method is that it permits the 
calculation of the torque coefficients for a machine of 
any degree of complexity and takes into 
consideration the effect of all system parameters and 
variables without the need for modeling assumption. 
This method has been extended to multimachine 
power systems [8], [9]. The variations of Ks and Kd 
over wide range of loading conditions were related to 
the movement of the low-frequency electrical mode. 
The LSE static estimation technique, however, is 
time consuming as it requires monitoring the entire 
period of oscillation.  

An adaptive Kalman filter (KF) has been utilized 
to estimate Ks and Kd repeatedly [10]. Artificial 
neural network (ANN) based technique was proposed 
for online estimation of the synchronizing and 
damping torque coefficients Ks and Kd [11]. A static 
back propagation neural network (BPNN) has been 
used to associate the real and reactive power (P-Q) 
patterns with Ks and Kd. Although, the BPNN has 
very good learning ability, but it suffers from some 
drawbacks such as long offline training and the 
difficulty in determining the appropriate number of 
hidden layers and hidden neurons. Genetic algorithm 
(GA) and particle Swarm optimization (PSO) 
techniques have also been proposed for optimal 
estimation of Ks and Kd [12], [13]. Another online 
approach based on generalized least square (GLS) 
and robust fitting with bisquare weights has been 
proposed to estimate the synchronizing and damping 
torque coefficients [14]. Although the above 
techniques have demonstrated their effectiveness in 
accurate estimation of the torque coefficients, 
however it is believed that their computational 
burden makes it unsuitable for online application. 

This paper presents a new technique for fast 
online estimation of Ks and Kd using a single adaptive 
linear neuron (Adaline). The technique is based on 
estimating Ks and Kd from the time responses of 
Δδ(t), Δω(t), and ΔTe(t). Time-domain simulations 
are conducted over wide range of P-Q loading 
conditions using MATLAB. The performance of the 
Adaline is compared with LSE and KF techniques. 

 

2. Power system model 
In this work, the proposed method has been tested 

on a system comprising a single machine connected 
to infinite bus power system through a transmission 
line. The synchronous machine is equipped with an 
automatic voltage regulator (AVR) and IEEE ST1A 
static exciter. Customarily, for small-signal stability 
analysis, a fourth-order model is considered for the 
synchronous generator. The nonlinear equations 
describing the dynamic behavior of a synchronous 
generator connected to an infinite bus through an 
external reactance are given in Appendix A. The 
system parameters are given in Appendix B. The 
SMIBS model is linearized at a particular operating 
point to obtain the linearized power system model. 
Figure 1 shows the well-known Phillips-Hefferon 
block diagram of linearized model of the SMIBS, 
relating the pertinent variables such as electrical 
torque, rotor speed, rotor angle, terminal voltage, 
field voltage, and flux linkages [3].  
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Fig. 1: Block-diagram of Phillips-Hefferon model 

 
From the transfer function block diagram the 

following state-space form is developed. The system 
matrix A is a function of the system parameters, 
which depends on the operating conditions. The 
perturbation matrix B depends on the system 
parameters only. The perturbation signal U is either 
ΔTm or ΔVref. The output matrix C relates the desired 
output signals vector Y to the state variables vector X, 
as given by (1) and (2). 

The interaction among these variables is 
expressed in terms of the six constants K1-K6. These 
constants with the exception of K3, which is only a 
function of the ratio of impedance, are function of the 
operating real and reactive loading as well as the 
excitation levels in the generator. Calculations of the 
K1-K6 parameters and variables of the SMIBS are 
illustrated in Appendix C. 
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3. Small-signal stability assessment using modal 

analysis 
When a power system experiences a small 

disturbance as a result of small changes of loads, the 
system will be driven to an initial state X(to) = Xo at 
time to = 0. Then, if the input is removed at t = to, the 
system respond according to the state equations 

CXY
AXX

=
=

•

   (3) 

The state equations of the linearized model given in 
(3) can be used to determine the eigenvalues λi of the 
system matrix A, where λi = σi ± jωi are the distinct 
eigenvalues with a corresponding set of right and left 
eigenvectors Ui and Vi, respectively; σi is the 
damping factor and ωi is the damped angular 
frequency. The right and left eigenvectors are 
orthogonal, and are usually scaled to be orthonormal. 
The state equations of (3) can be expressed in terms 
of modal variables by using the modal transformation 
X = UZ, which leads to 

ΛZzAUVZ ii ==   (4) 
where Λ=diag(λi) [15]. Following small disturbance, 
the dynamic response of the system states can be 
described as a linear summation of various modes of 
oscillations  
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The number of the characteristic modes tieλ  equals 
to the number of states of the linearized power 
system model. Real eigenvalues indicate modes, 
which are aperiodic. Complex eigenvalues indicate 
modes, which are oscillatory. For a complex 
eigenvalue λi = σi ± jωi, the amplitude of the mode 
varies with as tieσ  and frequency of the oscillation, f 
= ω/2π. Accordingly, by expanding (5), the 
individual state response x(t) can be computed as 
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where Ai, σi, fi,and φi are the ith mode amplitude, 
damping factor, frequency, and phase angle, 
respectively, and n is the number of modes.  

Next, a modal analysis based on the participation 
factors can be performed to find the specific 
electromechanical mode that provides the largest 
contribution to the low frequency oscillation [16], 
[17]. The participation factors provide a measure of 
association between the state variables and the 
oscillatory modes.  

 
4. Small-signal stability assessment using 

synchronizing and damping torques 
The dynamic response of a single machine 

connected to an infinite bus comprises various modes 
of oscillations. These modes of oscillations can be 
classified into, field and rotor circuits modes and 
low-frequency electromechanical modes. The 
oscillations of the electromagnetic torque and, 
consequently, the rotor oscillations are dominated by 
the low-frequency electromechanical modes, λi = σi 
± jωi. Various methods have been proposed to break 
the electromagnetic torque variations into two 
components; the synchronizing torque component is 
in phase and proportional with )(tδΔ , and the 
damping torque is in phase and proportional with 

)(tωΔ  [5]. Accordingly, the estimated torque can be 
written as: 

 )()()(ˆ tKtKtT dse ωδ Δ+Δ=Δ        (7) 
 

4.1 Estimation of Ks and Kd using LSE technique  
For the reader convenience, the method of 

calculating the torque coefficients Ks and Kd using 
LSE technique is summarized. Following a small 
disturbance, the time responses of Δδ(t), Δω(t), and 
ΔTe(t), which can be obtained from either off-line 
simulation or on-line measurements, are recorded as 
shown in Fig. 2.  
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Fig. 2. Synchronous machine response. 

 
The torque coefficients Ks and Kd are calculated 
using LSE by minimizing the sum of the error 
squared between the electric torque )(tTeΔ and the 

estimated torque )(ˆ tTeΔ  over the entire interval of 
oscillation T, where, T = NΔT ( N is the number of 
samples and ΔT is the sampling period). In matrix 
notation, the problem can be described by over-
determined discrete system of linear equations as 
follows: 

)(=)( kEAXkTe +Δ   (8) 
   X = A†·ΔTe   (9) 

where [ ])()( kkA ωδ ΔΔ= , and X=[ Ks  Kd]T. 
Solving (9) using the left pseudo inverse of matrix A 
gives the values of Ks and Kd for the corresponding 
operating point. 
 
4.2 Estimation of Ks and Kd using KF technique  

The Kalman filter is a recursive optimal estimator 
that is well suited to on-line digital processing as the 
data are processed recursively. It has been used 
extensively in estimation problems for dynamic 
systems. Its advantage is in its ability to handle 
measurements that change with time [18], [19]. 
Kalman filter is implemented by writing a state 

equation for the parameters to be estimated in the 
form: 
  kkkk wxφx +=+1    (10) 

      kkkk vxHz +=      (11) 
where  
xk is nx1 state vector at step k, [x1   x2]T = [Ks    Kd]T. 
φk is nxn state transition matrix 
vk is nx1 discrete-time random signal representing 
state noise 
zk is mx1 measurement vector at step k 
Hk is mxn measurement matrix 
wk is nx1 discrete-time random signal representing 
measurement errors. 
Equations (10) and (11) represent the state equation 
of the parameters to be estimated in time, and the 
measurements which refer to the samples of the 
electromagnetic torque at step k, respectively. The 
measurement equation of the electromagnetic torque 
can be written as: 
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ΔΔ=Δ ωδ              (12) 

 
4.3 Estimation of Ks and Kd using Adaline 

The Adaline is introduced in [20] as a powerful 
harmonics tracking technique. It produces a linear 
combination of its input vector X(k) = [x1, x2, …, xn] 
at time k. After, the input vector is multiplied by the 
weight vector W(k) = [w1, w2, …, wn], the weight 
inputs are combined to produce the linear output 

)(.)()(ˆ kXkWky T= . The weight vector is adjusted 
by an adaptation rule so that the output from the 
Adaline algorithm )(ˆ ky  is close to the desired value 
y(k). The least mean square (LMS) algorithm, known 
as the modified Widrow-Hoff delta rule, is usually 
used as the adaptation rule. This rule is given by: 

)()(
)()()()1(

kXkX
kXkekWkW T+

+=+
λ

α         (13) 

where )(ˆ)()( ky-kyke =  is the prediction error at 
time k, )(ˆ ky  is the estimated signal magnitude, and 
α is the learning parameter (reduction factor), and λ 
is a parameter to be suitably chosen to avoid division 
by zero. Perfect training is attained when the error is 
brought to zero. The numerical values of α and λ 
greatly affects the performance of the estimation, 
which is demonstrated in the simulation. 

Alternatively, a modified Widrow-Hoff delta rule 
is used to produce fast convergence for estimating Ks 
and Kd. The Adaline weight vector is adapted as 
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where the sgn function is given by  
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The Adaline algorithm is characterized by simple 
calculations, which lead to a fast execution 
processing time of the algorithm, a property, which is 
essential for online application [21]. 

 
5. Adaline training 

The Adaline algorithm is utilized in this study to 
approximate the torque deviation )(ˆ kTeΔ  as a linear 
combination of the synchronizing torque KsΔδ(k) and 
the damping torque KdΔω(k): 

[ ] ⎥
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Δ
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)()()(ˆΔ 21 k
k

kwkwkTe ω
δ
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Figure 3 shows the Adaline block diagram based 
estimator of Ks and Kd, where Δδ(k) and Δω(k) are 
given as inputs to the single neuron, )(ˆ kTeΔ  is the 
output of the Adaline, )(kTeΔ  is desired output 
torque and w1(k)=Ks and w2(k)=Kd [21]. 
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Fig. 3. A schematic diagram of Adaline-based estimator  

             of Ks and Kd of a SMIBS. 
 
6. Simulation results 

This paper is an extension of the work presented 
in [21]. Performance evaluation of both Adaline 
schemes, for the estimation of Ks and Kd, is compared 
with LSE and KF estimation techniques. The 
evaluation is carried out by conducting several 
offline simulation cases on the linearized model of 
the SMIBS. Either the state-space model or the 
Phillips-Hefferon block diagram implemented in 
SIMULINK can be used for offline simulation. The 
system input is a 0.1 pu mechanical torque pulse 

(ΔTm) for 10 ms. The system output vector comprises 
the rotor speed, rotor angle, and electromagnetic 
torque. A sampling rate of 100 samples per second, 
over a window size of 10 seconds, is set for all 
simulation cases. Starting with zero initial weighs 
W(k), the rotor angle Δδ(k) and rotor speed Δω(k) are 
fed to the Adaline as input signals, whereas the 
developed torque ΔTe(k) is introduced to the Adaline 
as the desired signal. The output of the Adaline is 
given as )()()()()(ˆ

21 kkwkδkwkTe ωΔ+Δ=Δ . 
Figures 4-5 and Figures 6-7 show the results of 

Adaline estimation using equations (13) and (14), 
respectively, for stable and unstable operating 
conditions. The Adaline performance is compared 
with KF and LSE estimation. It can be seen that 
Kalman filter gives faster convergence and rigid 
tracking, in particular for Ks, without overshoot. 
However, the accurate estimation of Ks and  Kd and 
the light computational burden of the Adaline 
algorithms make its implementation easier than KF. 
It is crucial to tune the parameters α and λ for the 
Adaline using trial and error to achieve a high online 
tracking accuracy of Ks and  Kd.  The final estimates 
of Ks and  Kd for stable and unstable operating points 
are given in Table 1.  
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Fig. 4-a  
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Fig. 4-b 

Fig. 4. Adaline-1 and KF estimation of Ks and Kd. Vto=1.05  
            pu; Pe=0.8 pu;Qe=-0.6 pu. 
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Fig. 5-a 
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Fig. 5-b 

Fig. 5. Adaline-1 and KF estimation of Ks and Kd. Vto=1.05  
            pu; Pe=0.8 pu;Qe=0.60 pu. 
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Fig. 6-a  
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Fig. 6-b 

Fig. 6. Adaline-2 and KF estimation of Ks and Kd. Vto=1.05  
            pu; Pe=0.8 pu;Qe=-0.6 pu. 
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Fig. 7-a 
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Fig. 7-b 

 
Fig.7. Adaline-2 and KF estimation of Ks and Kd. Vto=1.05  
          pu; Pe=0.8 pu;Qe=0.60 pu. 
 
As can be seen in Table 1 both Adaline schemes give 
more accurate estimation of Kd in comparison with 
KF estimation. The estimation of Ks and Kd over a 
wide range of operating conditions using Adaline-1 
is shown in Fig. 8. It is observed from Fig. 8 that Ks 
and Kd varies with the Pe and Qe which characterize 
the generator loading conditions. In the estimation 
process of Ks and Kd indices, the values of α and λ 
are fixed at α =1.98 and λ =0.0001. Therefore, the 
proposed Adaline can be employed to yield the 
estimates of Ks and Kd for any monitored loading 
condition (Pe and Qe) at any terminal voltage Vt in 
real-time based on measurements of rotor angle, rotor 
speed, and electromagnetic torque time responses. 
 
Table 1: Final estimates of Ks and Kd 

Estimates of Torque Coefficients Rotor 
Mode Ki LSE 

 
KF 

 
Adaline1 
 α =1.98 

Adaline2 
α =1.50 

Ks 1.667 1.667 1.679 1.675 -0.188 
±j8.257 
stable 

Kd 3.389 2.566 3.375 3.478 

Ks 1.832 1.832 1.832 1.832 0.009 
±j8.635 
unstable 

Kd -0.168 -0.156 -0.169 -0.169 
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Fig. 8. Estimated value of Ks and Kd over a wide range of  
           operating condition (Pe and Qe) 
 
7. Conclusion 

An online adaptive technique for accurate 
estimation of the synchronizing and damping torque 
coefficients, Ks and Kd, using Adaline is presented in 
this paper. The performance of the technique has 
been compared with KF and LSE techniques. 
Simulation results have shown that Adaline 
technique is accurate and can be implemented with 
small computing time and storage. It is believed, that 
Adaline is a good candidate for online estimation of 
small signal stability indices. 
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Appendix A 
The dynamical nonlinear differential equations of the 
SMIBS are given below [4]: 
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where Tm and Te are the mechanical input and 
electrical output torques of the generator, 
respectively; M is inertia constant. Efd is the field 
voltage; T`do is the open circuit field time constant; xd 
and x`d are the d-axis and transient reactances of the 
generator, respectively. KA and TA are the gain and 
time constant of the excitation system, respectively. 
Vref is the reference voltage. 

Appendix B 
The parameters of the synchronous generator and 
transmission line are given below [4].  
Machine Parameters (pu) 
x d = 0.973, x q = 0.550, x′d = 0.190 
M = 9.26, T′do = 7.76 s, D = 0, ωb=377 rad/s  
Exciter: 
KA = 50, TA = 0.05 s 
Transmission Line (pu) 
re = 0.0, xe = 0.40 
Nominal Operating Point (pu) 
Peo = 0.9, Qeo = 0.1, Vto = 1.05 
 
Appendix C 
For a SMIBS the following relationships apply with 
all the variables with subscript o are calculated at 
their pre-disturbance operating values corresponding 
to the operating conditions Po, Qo, and Vto.[5]: 
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For the case re = 0, K1-K6 constants are calculated as: 
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