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Abstract - This study deals with the application of sliding
mode control theory to wound rotor induction motor with
its rotor fed by current sources in which the system
operate in stator field oriented control. After determining
the model of the machine, a set of simple
surfaces have been applied to a cascade structure and the
associated control laws have been synthesised.
Furthermore, in order to reduce chattering phenomenon,
smooth control functions with appropriate threshold have
been chosen. Simulation study based on idealized motor is
conducted to show the effectiveness of the proposed
method.
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1. Introduction
In the area of the control of the electric machines,

the research works are oriented more and more
towards the application of the modern control
techniques. These techniques involve in a vertiginous
way with the evolution of the computers and power
electronics. This allows to lead to the industrial
processes of high performances. These techniques
are the fuzzy control, the adaptive control, the sliding
mode control etc. The recent interest accorded to the
latter is due primarily to the availability of the high
frequency commutation switches and of the
increasingly powerful microprocessors.
It is regarded as one of the simplest approaches for
the control of both non-linear systems and
unaccurate model systems.
A considerable attention was concentrated on the
control of the uncertain dynamic non-linear systems
which are subject to disturbances and variations of
the external parameters.
The sliding mode control concept consists of moving
the state trajectory of the system towards the sliding
surface and to maintain it around within with the
appropriate logic commutation. This latter gives birth

to a specific behaviour of the state trajectory in the
neighbourhood of the sliding surfaces known as
sliding regimes.
In this study, we suggest a control scheme to achieve
the goal of speed regulation with stator field oriented
DFIM drive and sliding mode control [4,5].

2. System description and machine modelling
Using the frequently adopted assumptions, like

assuming sinusoidally distributed air gap , flux
density distribution and linear magnetic conditions,
in the referential axis linked to rotating field, the
following electrical equations are deducted [1,2,3 ]:
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The torque is :
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Note that   rs , by introducing the latter
into the equation (1), the torque can be expressed by:
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By taking into account the following currents :

ir.j

is.j

e.IrIr

e.IsIs










The torque becomes :

isin.Ir.Is.M.p
3
2

e  (4)

where i : phase angle between Is and Ir

This model expressed in the synchronous reference
frame coordinates, the parameters are only function
of the module and the position of the vector
associated with the considered parameter.
The variables which appear in this model are the
currents  Ir,Is , the voltages  Vr,Vs , the flux

 r,s and pulsations  ,, rs .

Current Is and flux r are determinated by using
to the state variables Ir and s :
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Introducing equations (5) into the voltage equations
of the general mathematical model (1), we obtain:
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The choice of Ir and s as state variable allows a
simple representation of the machine.
The decomposition of the state equations for the rotor
currents gives:
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The flux derivatives are:
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The torque equation is given by :
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The position of the chosen reference frame is
obtained from the following law:
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The equations of the stator flux are determined from
equations (8):
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In this study, the stator is supplied by a voltage of
fixed amplitude and frequency voltage, and the rotor
by a three-phase current source.
This machine is controlled by acting on the rotor
parameters. The control laws are as follows :
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The projection of Vs on the d and q axes is given:
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In this research, we consider the orientation of stator
flux:

 sd
and 0sq  (14)

3. Sliding mode control
3.1. General concept

The variable structure and its associated sliding
regimes are characterised by a discontinuous nature
of the control action with which a desired dynamic of
the system is obtained by choosing appropriate
sliding surfaces. The control actions provide the
switching between subsystems which give a desired
behaviour of the closed loop system [6-16]. Figure 1
illustrates a sliding mode phenomenon, which
consists of an infinite switchings of the control action
within the neighbourhood of the sliding surface.

Fig.1 State trajectory in sliding mode regime

Assuming that the system is controllable and
observable, the sliding mode control objectives
consist of the following steps:

- Design of the switching surface xS so that the state
trajectories of the plant restricted to the equilibrium
surface have a desired behaviour such as tracking,
regulation and stability.
-Determine a switching control strategy, xU to drive
the state trajectory into the equilibrium surface and
maintain it on the surface.

This strategy has the form:
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where xS is the switching manifold; reduce the
chattering phenomenon due to discontinuous nature
of the control.

A well known surface chosen to obtain a sliding
mode regime which guarantees the convergence of
the state x to its reference refx is given as follows:
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Where r is the degree of the sliding surface.

Two parts have to be distinguished in the control
design procedure. The first one concerns the
attractivity of the state trajectory to the sliding
surface and the second represents the dynamic
response of the representative point in the sliding
mode. This latter is very important in terms of
application of non-linear control techniques. Because
it eliminates the uncertain effect of the model and the
external disturbance. Among the strategies of the
sliding mode control available in the literature, we
can choose for the controller the following
expression:

neqc UUU  (17)

Where eqU is the control function defined by Utkin,

and noted equivalent control, for which the trajectory
response remains on the sliding surface [3-4]. In this
case, the condition of invariance is expressed as:
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The equivalent control can be interpreted as the
average value of control switching representing
the successive commutation in the range
 maxmin U,U , [1-2].

Let us consider the system described by equation (7),
when the sliding mode regime arise, the dynamic of
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the system in sliding mode is subject to the following
equation 0)x(S  thus for the ideal sliding mode,
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when 0)x(Son(0Un  , we obtain:
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by replacing eqU , in equation (19) we obtain:
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The term nU is added to the global function of the
controller in order to guarantee the attractiveness of
the chosen sliding surface. This latter is achieved by
the condition:
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A simple form of the control action using sliding
mode theory is a relay function (fig.2). However, this
latter produces a drawback in the performances of a
control system, which is known as a chattering
phenomenon,
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The term )x(g).xS(  is negative for the class of
the system considered, whereas the gain K is chosen
positive to satisfy attractivity and stability conditions.
In this context, we can verify the stability of the

sliding surface by using Lyapunov theorem. Let’s
choose the following positive function (V(x)>0) such
us:
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Its derivative is given by:
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We must decrease of the Lyapunov function to zero.
For this purpose it is sufficient to assure that its
derivative is negative.

In order to reduce the chattering phenomenon due to
the discontinuous nature of the controller, a smooth
function is defined in some neighbourhood of the
sliding surface with a threshold (fig.3). If a
representative point of the state trajectory moves
within this interval, a smooth function replaces the
discontinuous part of the control action. Thus, the
controller becomes:
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where K takes an admissible value.
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Fig.2. Relay control function.
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3.2 Application to the DFIM
The surface of speed regulation has the DFIM

following form :
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The derivative of the surface is:
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During the sliding mode and steady state, we have
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we obtain the equivalent control formula for eqIrq :
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During the convergence mode, the condition
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must be checked. By replacing eqIrq
formula into equation (31), we obtain:
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Figure 4 shows the block diagram of the sliding
mode control of the DFIM.
From the choice of the smoothed control we can
write:
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For attenuating all the overshoot of the current Irq ,

we bound the reference current *Irq . The bounded

current limIrq has the following expression:

 *
maxlim Irqsign.IrqIrq  (35)

From these equations we can simulate the sliding
mode control ; note we are in the case of setting by
the sliding mode with a non linear surface, only one
surface is sufficient for setting the speed with direct
bounding of the rotoric current in quadrature.

4. Results and discussions
A sliding mode control of the stator flux oriented

control has been simulated using the parameters:

A)2.2/8.3(;V)380/220( ; kW8.0 ; rpm1500 ;
2p  ; ;H0605.0Ls  H0736.0Lr  ;

98.11Rs  ; 08.9Rr  ; H209.0M  .

Thus, the speed regulation is obtained using such
a controller in spite of the presence of stern
disturbances such as reference speed variation and
step changing of the load torque.

Figure 5 shows the dynamic responses of the speed
and the electromagnetic torque when a load torque
perturbation is imposed in the system at t=2s and at
t=3s an application of speed reference change with
step changing load torque. It is clearly shown from
the results that the input reference is perfectly tracked
by the speed and the introduced disturbance is
immediately rejected by the control system.

The control by the sliding mode of the D.F.I.M. gives
high dynamic and static performances. It offers a
good poursuit and a rejection of disturbances.



5.Conclusion
In this study, a sliding mode control of the stator

field oriented doubly fed induction machine is
proposed. Satisfying results are obtained. In order to
reduce the chattering phenomenon, a smooth
function has been applied. The robustness quality of
the proposed controllers appears clearly in the test
results by changing machine operations and
especially the load torque variation.
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Fig.5 Simulation results.
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