# Egyptian Vulture Optimization For Combined Economic and Emission Dispatch New Meta-heuristic Algorithm

## Abdelkader Si tayeb1\*2 Hamid Bouzeboudja1

<sup>1</sup>Faculty of electrical engineering. USTO, B.P 1505 El M'naouar, Oran, 31000, Algeria sitayeb\_abdelkader@uraer.dz Phone (213)561017366 hbouzeboudja@yahoo.fr

## Benyekhlef Laroussé <sup>1</sup> Bakhta Naama <sup>1</sup> Daoud Rezzak <sup>2</sup>

<sup>1</sup>Faculty of electrical engineering, USTO, B.P 1505 El M'naouar, Oran, 31000, Algeria <sup>2</sup>Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, 47133, Ghardaïa, Algeria

> LDD EE. Laboratory of Sustainable Development of Electrical Energy larouci\_electric@outlook.fr naamasabah@yahoo.fr rezak\_daoud@uraer.dz

**Abstract:** Presently, No more possible to use fossil fuels to generate energy, according to its influences on all life forms, for this reason recent studies of combined economic and emissions dispatch It became concerned as well as cost reduction to other parameters emissions, losses, to keep the environmental balance.

Searchers use many processes to simulate the nature to achieve those objectives; this paper presents a recent method of Egyptian Vulture Optimization Algorithm (EVOA) for multi-objectives optimization problem in power system.

The Egyptian vulture needs during feeding to bird's eggs, which are protected with solid covers, the Egyptian vulture made many attempts using throwing gravels before succeeding in breaking egg's cover by changing randomly- in every attempt the throwing angle and/or the throwing force.

EVOA is among the most effective methods, easy to applied and able to search near total optimum solutions.

Key words: Egyptian Vulture, Optimization, Emission, Dispatch, New Meta- heuristic Algorithm

### 1. Introduction

It is known that power generators using fossil fuels to produce electricity, which is produced from burning emission of gas polluted air by unanimity of scientific organizations which is considered as the major emitters of gases like carbon dioxide(CO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>) and nitrogen oxide (NO<sub>x</sub>) into the atmosphere[1].

So it was imperative for the companies of energy production to change power generation strategy where proceeded to methods to reduce the level of emissions and cost, among them:

Particle Biogeography Based Optimization (BBO) [1], Differential Evolution (DE), Swarm Optimization (PSO) [2,3], Genetic Algorithm (GA) [4], Multi-Objective Evolutionary Algorithms (MOEA) , Refined Genetic Algorithm (RGA), Non-Dominated Sorting Genetic Algorithm (NSGA-II) [5-9], Artificial Bee Colony (ABC) [10], ABC-PSO Simple Recursive Approach, (SRA) [11], Gravitational Search Algorithm (GSA) [12-14]. Here, a new meta-heuristic technique Egyptian Vulture Optimization [15-21] is implemented to solve multi-objective CEED problem.

The aim of Egyptian Vultures suggested is to solve combined economic and emissions dispatch problems and present its effectiveness using three, six and ten generating units test systems. The result shows that the suggested methodology can reliably handle complex multi-objective optimization problem in strong and effective way.

In this paper we include for the first time the method Egyptian Vulture Optimization Algorithm in dispatching emission gas, we obtain very satisfactory results (emission, cost, total cost,  $P_{\rm L}$  ) compared with results of previous studies relied on other methods

#### 2. Mathematical formulation of the problem [22-30]:

The statement of the problem is to minimize two functions multi-objective interpreting the cost of fuel for the production of electrical energy and the rate of gas emission to the environment associated with this production.

The objective function of the economic cost of production is presented in the following form:

$$F_{i}(P_{gi}) = c_{i} + b_{i}P_{gi} + a_{i}P_{gi}^{2}$$
 (1)

where  $a_i$ ,  $b_i$  and  $c_i$  are the coefficients of own cost for each unit of production of electrical energy. The objective function of gas emission at the time of the production is the following:

where  $(f_i, e_i, d_i)$  are the coefficient emission characteristics attached to each group of production.

$$E_{\rm i}(P_{\rm gi}) = f_{\rm i} + e_{\rm i}P_{\rm gi} + d_{\rm i}P_{\rm gi}^2$$
 (2)

The functions to minimize can be described in the following manner:

$$E_{\rm i}(P_{\rm gi}) = f_{\rm i} + e_{\rm i}P_{\rm gi} + d_{\rm i}P_{\rm gi}^2$$
 (3)

Under the following constraints:

$$\sum_{i}^{ng} P_{gi} - P_{ch} - P_{L} = 0$$

$$P_{gi}^{min} \le P_{gi} \le P_{gi}^{max}$$
(5)

$$P_{gi}^{\min} \le P_{gi} \le P_{gi}^{\max} \tag{5}$$

Expression of the loss of transmission as a function of the generated power is given by [31,36]:

$$P_{\rm L} = \sum_{\rm i=1}^{\rm ng} \sum_{\rm j=1}^{\rm ng} P_{\rm ig} B_{\rm ij} P_{\rm jg}$$
 (6)

where  $B_{ij}$  is the constant called the losses coefficient.

F: function of total cost.

 $F_i$ : cost function of the unit of production i.

E: A function of emission rate of the total gas.

 $E_i$ : function of the emission rates of the production unit

n<sub>g</sub>: number of generators of production.

 $P_{\rm gi}$ : active power produced by the unit i.

 $P_{\rm L}$ : total losses active in transmission.

The factor  $H_i$  of hybridization is exposed as follow [14]:

$$H_{i} = \left[\sum_{i}^{ng} F_{i}(P_{ig \max})\right] / \left[\sum_{i=1}^{ng} E_{i}(P_{ig \max})\right]$$

$$\boxed{\frac{ng}{ng}}$$

$$(7)$$

$$H_{i} = \frac{\left[\sum_{i=1}^{ng} F_{i}(c_{i} + bP_{gi \max} + a_{i}P_{ig \max}^{2})\right]}{\left[\sum_{i=1}^{ng} E_{i}(f_{i} + e_{i}P_{gi\max} + diP_{ig \max}^{2})\right]}$$
(8)

The functions to minimize can be described in the following manner:

$$\min \left[ f(P_{gi}) = \sum_{i}^{ng} F_{i}(P_{gi}) + H_{i} \sum_{i=1}^{ng} E_{i}(P_{gi}) \right]$$
 (9)

$$\operatorname{Min} \left[ f(P_{gi}) = \sum_{i}^{ng} F_{i}(c_{i} + b_{i}P_{gi} + a_{i}P_{gi}^{2}) + H_{i} \sum_{i=1}^{ng} E_{i}(f_{i} + e_{i}P_{gi} + d_{i}P_{gi}^{2}) \right] RS / H \quad (10)$$

#### 3. Description of EVOA [33].

The **EVOA** is a new member in the family of Meta-Heuristics, this method of some given phases, using representation by illustrations and explications. The two principal actions of the Egyptian Vulture, which are taken into account here or by preference to turn over into algorithm, are the throwing of gravel and the capacity of turn round and round objects with twigs.

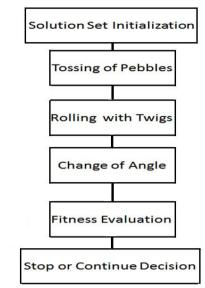



Fig.1. EVOA's organizational chart

The nature has developed many methods to protect it balance and elements, the Egyptian vulture is one of these elements, needs during feeding to bird's eggs, which are protected with solid covers, the Egyptian vulture made many attempts using throwing gravels before succeeding in breaking egg's cover by changing –randomly- in every attempt the throwing angle and/or the throwing force. The EVOA process is applied to minimize gas emissions in the electric power stations. Figure 1, illustrate the EVOA's organizational chart [15].

## 3.1 A simplified explanation of the EVOA:

Phase 1: Initiation

**Phase 2**: Take randomly the maximum possible of value n which Achieve the condition

**Phase 3**: validation of value n in Function F

$$P_{\text{igmin}} \leq P_{\text{ig}} \leq P_{\text{ig max}}$$

**Phase 4**: Classification of solutions from the minimum till maximum

Phase 5: Take a certain Percentage xi of solutions

**Phase 6**: Creation of proximity solutions obtains from phase 5

Phase 7: Validation of solutions obtains from phase 6

**Phase 8**: Classification of solutions obtains from phase 6 from the minimum till maximum

**Phase 9:** The phases 5, 6, 7 and 8 are repeated till the end of iterations

Remark:

if 
$$P_i \le P_{\min}$$
 so  $P_i = P_{\min}$ 

$$P_{\rm i} \ge P_{\rm max}$$
so  $P_{\rm i} = P_{\rm max}$ 

n: number of solutions

x<sub>i</sub>: Percentage of a number of solutions

 $P_{ig}$ : number of generators

 $P_{\text{ig min}}$ : minimum power generates

 $P_{\text{ig max}}$ : maximum power generates

### 4. SIMULATION RESULTS

Experimentally, In order to evaluate the efficacy of EVOA, it utilizes a system composed firstly of three units, and the process is repeated with six units, and finally with ten units. The process proposed to perform Matlab to obtain solutions.

## **APPLICATION 1:**

The application of the EVOA has been made on an IEEE network of three generators of production; they have a cost function of fuel and a function of emission of exhaust gas to this production. The parameters related by the system composed of three units are indicated in the table 1 and table 2 below:

Table 1

Data of three generators of production

| Data of three generators of production |                                  |                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                    |  |  |  |
|----------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Fu                                     | $P_{gmin}$                       | $P_{gmax}$                                                                              |                                                                                                                                                                              |                                                                                                                                                                                                                                    |  |  |  |
| $a_{\rm i}$                            | $b_{ m i}$                       | $c_{ m i}$                                                                              | (MW)                                                                                                                                                                         | (MW)                                                                                                                                                                                                                               |  |  |  |
| .03546                                 | 38.30553                         | 1243.53110                                                                              | 35                                                                                                                                                                           | 210                                                                                                                                                                                                                                |  |  |  |
| .02111                                 | 36.32782                         | 1656.56960                                                                              | 130                                                                                                                                                                          | 325                                                                                                                                                                                                                                |  |  |  |
| .01799                                 | 38.27041                         | 1356.65920                                                                              | 125                                                                                                                                                                          | 315                                                                                                                                                                                                                                |  |  |  |
| ,                                      | Fu  a <sub>i</sub> .03546 .02111 | Fuel cost coeffi<br>a <sub>i</sub> b <sub>i</sub><br>.03546 38.30553<br>.02111 36.32782 | Fuel cost coefficient           a <sub>i</sub> b <sub>i</sub> c <sub>i</sub> .03546         38.30553         1243.53110           .02111         36.32782         1656.56960 | Fuel cost coefficient         P <sub>gmin</sub> a <sub>i</sub> b <sub>i</sub> c <sub>i</sub> (MW)           .03546         38.30553         1243.53110         35           .02111         36.32782         1656.56960         130 |  |  |  |

Table 2 Emission coefficients of three generators of production

| unit | Emission coefficient |         |          | $\mathbf{P}_{\mathrm{gmin}}$ | $P_{\text{gmax}}$ |
|------|----------------------|---------|----------|------------------------------|-------------------|
|      | di                   | ei      | fi       | (MW)                         | (MW)              |
| GI   | 0.00683              | -0.5455 | 40.26669 | 35                           | 210               |
| G2   | 0.00461              | -0.5116 | 42.89553 | 130                          | 325               |
| G3   | 0.00461              | -0.5116 | 42.89553 | 125                          | 315               |
|      |                      |         |          |                              |                   |

The transmission line losses coefficient of three generators of production:

$$Bmn = \begin{bmatrix} 0.000070 & 0.000025 & 0.000030 \\ 0.000030 & 0.000069 & 0.000032 \\ 0.000025 & 0.000032 & 0.000080 \end{bmatrix}$$

Table 3, contains an optimum simulation's results of generating system of three units given by EVOA for charge demand 400MW.

Table 3

System of three units simulated by EVOA and four other processes  $P_{\text{ch}}\!\!=\!\!400MW$ 

| P <sub>Ch</sub> (MW) |         | 400MW            |                     |
|----------------------|---------|------------------|---------------------|
| Performance          | PL (MW) | Fuel cost(RS/hr) | Emission<br>(Kg/hr) |
| PSPSO[14]            | 7.412   | 20837.605        | 200.230             |
| PSO[25]              | NR      | 20838.313        | 201.5               |
| GA[25]               | NR      | 20839.146        | 201.35              |
| CS [35]              | 7.41434 | 20837.4857       | 200.23984           |

| GA [38]          | 7.41324 | 20840.1    | 200.256  |
|------------------|---------|------------|----------|
| PSO [38]         | 7.41173 | 20838.3    | 200.221  |
| FPA[39]          | 7.4126  | 20838.1    | 200.2238 |
| Proposed<br>EVOA | 7.3490  | 20837.2961 | 200.2075 |

The table 3 presented an optimum simulation results of EAOA (emission, Fuel cost, total cost, losses) compared with simulation results of PSPSO[14],PSO[25], GA[25], CS[35], GA [38], PSO [38] and FPA[39] where the charge is modified as follows:  $P_{ch}$ =400MW.The results obtained by EVOA are satisfactory when compared with four other processes.

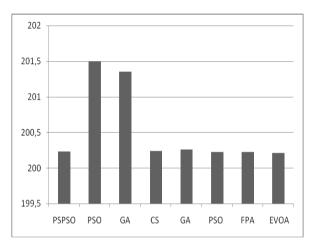



Fig.2. Illustration of emission by FPA, PSO, GA, CS, GA, PSO, PSPSO and EVOA of three generators of production  $P_{ch}$ =400MMW.

Variations of fuel cost in terms of number of iterations with EVOA for power demand of 400MW are plotted in figure 5, the proposed EVOA reduces the cost of electrical power generate.

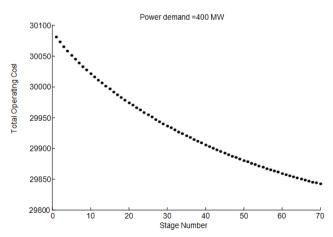



Fig. 5. Convergence of three generating unit system for  $P_{ch}$ =400MW

Table 4, contains an optimum simulation's results of generating system of three units given by EVOA for charge demand 550MW and 700MW.

Table 4 System of three units simulated by EVOA and four other process  $P_{ch}$ =550MW and 700MW.

| P <sub>Ch</sub> (MW) | Performance          | PSPSO<br>[14] | PSO [25] | GA [25]  | CS [35]   | Proposed<br>EVOA |
|----------------------|----------------------|---------------|----------|----------|-----------|------------------|
| 550                  | Fuel cost<br>(RS/hr) | 27904.35      | 27907.31 | 27905.10 | 27903.980 | 27903.48         |
|                      | Emission<br>(Kg/hr)  | 381.210       | 384.361  | 383.614  | 381.21735 | 381.17           |
| PL(N                 | PL(MW)               | 14.214        | NR       | NR       | 14.21671  | 14.181           |
| 700                  | Fuel cost<br>(RS/hr) | 35463.66      | 35467.06 | 35465.94 | 35463.579 | 35461.605        |
|                      | Emission<br>(Kg/hr)  | 651.585       | 653.504  | 653.267  | 651.58841 | 651.4962         |
|                      | PL(MW)               | 23.638        | NR       | NR       | 23.36862  | 23.3069          |

NR means not reported in the refereed literature.

The table 4 presented an optimum simulation results of EAOA (emission, Fuel cost, total cost, losses) compared with simulation results of PSPSO[14],PSO[25], GA[25], and CS[35], where the charge is modified as follows:  $P_{ch}$ =550MW and  $P_{ch}$ =700MW.The results obtained by EVOA are satisfactory when compared with four other processes.

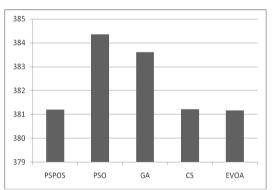



Fig .3. Illustration of emission by CS, GA, PSO, PSPSO and EVOA of three generators of production  $P_{ch}$ =550MMW

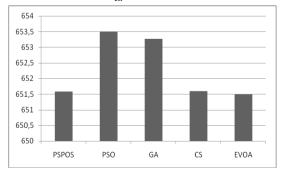



Fig.4. Illustration of emission by CS, GA, PSO, PSPSO and EVOA of three generators of production Pch=700MMW.

Table 5
Optimal results of generating system of three units given by EVOA

| Unit Power          | Load Demand (MW) |           |             |  |  |
|---------------------|------------------|-----------|-------------|--|--|
| Output(MW)          | 400              | 550       | 700         |  |  |
| P1                  | 102,565123       | 142,20785 | 182,527169  |  |  |
| P2                  | 153,881829       | 211,26185 | 271,555809  |  |  |
| Р3                  | 150,945308       | 210,72572 | 269,237824  |  |  |
| Fuel cost (\$/hr)   | 20837.2961       | 25496.204 | 35464.72440 |  |  |
| Emission<br>(kg/hr) | 200.207537       | 381.17844 | 651.464731  |  |  |
| PL(MW)              | 7.34903          | 14.18162  | 23.2950046  |  |  |
| Total cost(Rs/hr)   | 29808.3291       | 44982.714 | 64654,8247  |  |  |

Variations of fuel cost in terms of number of iterations with EVOA for power demand of 550MW and 700 MW are plotted in figure 6 and figure 7,the proposed EVOA reduces the cost of electrical power generate .

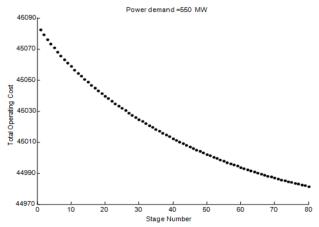



Fig. 6. Convergence of three generating unit system for  $P_{ch}$ =550MW

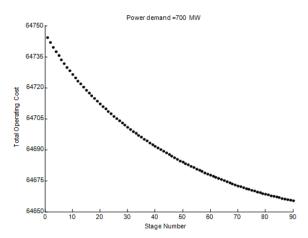



Figure 7. Convergence of three generating unit system for  $P_{ch}$ =700MW

#### **APPLICATION 2:**

The application of the EVOA has been made on an IEEE network of six generators of production; they have a cost function of fuel and a function of emission of exhaust gas to this production. The parameters related by the system composed of six units are indicated in the table 5 and table 6 below:

Table 6
Data of six generators of production.

| unit  | Fu                        | el cost coeffi            | cient                     | $P_{gmin}$ | $P_{\text{gmax}}$ |
|-------|---------------------------|---------------------------|---------------------------|------------|-------------------|
|       | $\mathbf{a}_{\mathrm{i}}$ | $\mathbf{b}_{\mathrm{i}}$ | $\mathbf{c}_{\mathbf{i}}$ | (MW)       | (MW)              |
| $G_1$ | 0.1527                    | 38.53973                  | 756.7986                  | 10         | 125               |
| $G_2$ | 0.1057                    | 46.15916                  | 451.3253                  | 20         | 150               |
| $G_3$ | 0.0283                    | 40.39655                  | 1049.531                  | 35         | 225               |
| $G_4$ | 0.0356                    | 38.30552                  | 1243.531                  | 35         | 210               |
| $G_5$ | 0.0211                    | 36.32782                  | 1658.556                  | 130        | 325               |
| $G_6$ | 0.0179                    | 38.27041                  | 1356.652                  | 125        | 325               |

Table 7
Emission coefficients of six generators of production.

| unit  | Fuel cost coefficient |          |          | $P_{Gmin} \\$ | $P_{\text{Gmax}}$ |
|-------|-----------------------|----------|----------|---------------|-------------------|
|       | $d_i$                 | $e_i$    | $f_i$    | (MW)          | (MW)              |
| $G_I$ | 0.00419               | 0.32767  | 13.85932 | 10            | 125               |
| $G_2$ | 0.00419               | 0.32767  | 13.85932 | 20            | 150               |
| $G_3$ | 0.00683               | -0.54551 | 40.26690 | 35            | 225               |
| $G_4$ | 0.00683               | -0.54551 | 40.26690 | 35            | 210               |
| $G_5$ | 0.00461               | -0.51116 | 42.89553 | 130           | 325               |
| $G_6$ | 0.00461               | -0.51116 | 42.89553 | 125           | 325               |

The transmission line losses coefficient of six generators of production:

$$B_{mn} = \begin{bmatrix} 1.40\,0.17\,0.15\,0.19\,0.26\,0.22\\ 0.17\,0.60\,0.13\,0.16\,0.15\,0.20\\ 0.15\,0.13\,0.65\,0.17\,0.24\,0.19\\ 0.19\,0.16\,0.17\,0.71\,0.30\,0.25\\ 0.26\,0.15\,0.24\,0.30\,0.69\,0.32\\ 0.22\,0.20\,0.19\,0.25\,0.32\,0.85 \end{bmatrix}$$

The table 8 presented an optimum simulation results of EAOA (emission, Fuel cost, total cost, losses) compared with simulation results of FA[37],BA[37]and HYB[37], where the charge is modified as follows:  $P_{\rm ch}$ =700MW, Pch=800MW,  $P_{\rm ch}$ =900MW and  $P_{\rm ch}$ =1000MW.The results obtained by EVOA are satisfactory when compared with four other processes.

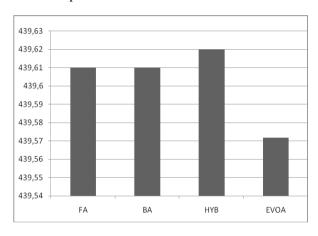



Fig. 8. Illustration of emission by HYB, BA, FA and EVOA of six generators of production  $P_{ch}$ =700MMW.

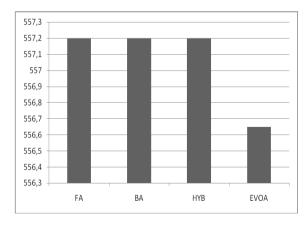



Fig.9. Illustration of emission by HYB, BA, FA and EVOA of six generators of production P<sub>ch</sub>=800MMW.

Table 8
System of six units simulated by EVOA and four other processes.

|                         | by sterm of sin diffes | Simulature of | L , OII and Io | ar other proce | obboo.           |
|-------------------------|------------------------|---------------|----------------|----------------|------------------|
| P <sub>ch</sub><br>(MW) | Performance            | FA [37]       | BA [37]        | HYB [37]       | Proposed<br>EVOA |
|                         | Total cost (Rs/hr)     | 571910.01     | 571900.01      | 571900.01      | 56562,8311       |
|                         | Emission (Kg/hr)       | 439.61        | 439.61         | 439.62         | 439.5717         |
| 700                     | PL(MW)                 | 17.0566       | 17.0566        | 17.0569        | 16.6541          |
|                         | Fuel cost (RS/hr)      | 37500.93      | 37500.84       | 37500.48       | 37575.3967       |
|                         | Total cost (Rs/hr)     | 67740.26      | 67740.26       | 67740.26       | 66947,9599       |
|                         | Emission (Kg/hr)       | 557.20        | 557.20         | 557.20         | 556.6477         |
| 800                     | PL(MW)                 | 22.1890       | 22.1888        | 22.1888        | 22,0381          |
|                         | Fuel cost (RS/hr)      | 42784.41      | 42784.52       | 42784.36       | 42921.785        |
|                         | Total cost (Rs/hr)     | 81529.09      | 81529.09       | 81529.09       | 78287,7016       |
|                         | Emission (Kg/hr)       | 693.79        | 693.78         | 693.79         | 692.9526         |
| 900                     | PL(MW)                 | 28.0098       | 28.0094        | 28.0095        | 27,555114        |
|                         | Fuel cost (RS/hr)      | 4850.59       | 4850.77        | 4850.54        | 4835.18115       |
|                         | Total cost (Rs/hr)     | 94846.36      | 94846.36       | 94846.36       | 90925,2363       |
|                         | Emission (Kg/hr)       | 851.53        | 851.53         | 851.53         | 850.8578         |
| 1000                    | PL(MW)                 | 34.6112       | 34.6113        | 34.6113        | 33,7630          |
|                         | Fuel cost (RS/hr)      | 54124.28      | 54124.12       | 54124.13       | 54119.7598       |
|                         |                        |               |                |                |                  |

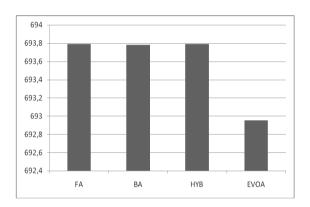



Fig .10. Illustration of emission by HYB, BA, FA and EVOA of six generators of production  $P_{ch}$ =900MMW.

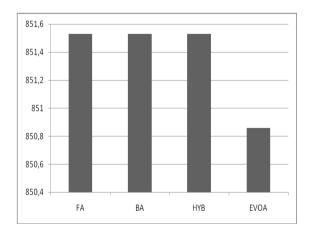



Fig. 11. Illustration of emission by HYB, BA, FA and EVOA of six generators of production  $P_{ch}$ =1000MMW

Table 9, contains an optimum simulation results of the generating system of six units given by EVOA for charge demand 700MW, 800MW, 900MW and 1000MW.

Table 9
Optimal results of the generating system of six units given by EVOA

| Unit Power        |            | Load Demand (MW) |            |            |  |  |  |
|-------------------|------------|------------------|------------|------------|--|--|--|
| Output (MW)       | 700        | 800              | 900        | 1000       |  |  |  |
| $\mathbf{P}_1$    | 61,06496   | 84,9087278       | 95,0104039 | 110,6735   |  |  |  |
| $P_2$             | 71,08263   | 76,6526063       | 97,8276776 | 115,0069   |  |  |  |
| $P_3$             | 113,6715   | 138,506233       | 149,214881 | 169,8053   |  |  |  |
| $\mathbf{P}_4$    | 106,9277   | 139,38355        | 140,743799 | 151,3749   |  |  |  |
| $P_5$             | 186,5580   | 181,496879       | 222,664986 | 237,5525   |  |  |  |
| $P_6$             | 177,3492   | 201,090978       | 222,093367 | 249,3497   |  |  |  |
| Total cost(Rs/hr) | 56562,8311 | 66947,9599       | 78287,7016 | 90925,2363 |  |  |  |
| Fuel cost (\$/hr) | 37575.3967 | 42921.7857       | 48351.8115 | 54119.7598 |  |  |  |
| Emission (kg/hr)  | 439.5717   | 556.6477         | 48351.8115 | 850.8578   |  |  |  |
| $P_L(MW)$         | 16.6541    | 22,0381          | 27,5552    | 33,7630    |  |  |  |
| T(s)              | 9.071      | 10.470           | 11.670     | 11.915     |  |  |  |

An approach based on EVOA has been presented and applied to the function of the cost of fuel and the function of emission in a network of electrical energy. The problem has been formulated as a problem multi objective with objectives to optimize the cost of fuel for the production and the rate of impact on the environment. The EVOA has therefore well given satisfactory results.

Variations of fuel cost in terms of number of iterations with EVOA for power demand of 700MW, 800 MW, 900 MW and 1000MW are plotted in Figure 12, Figure 13, Figure 14

and Figure 15, the proposed EVOA reduce the cost of electrical power generate

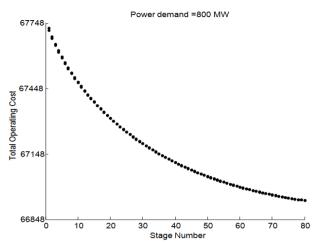



Fig .13. Convergence of six generating unit system for  $P_{ch}$ =800MW.

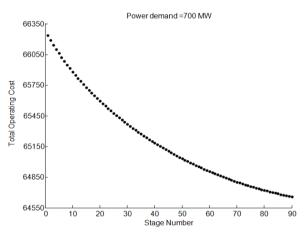



Fig .12. Convergence of six generating unit system for Pch=700MW

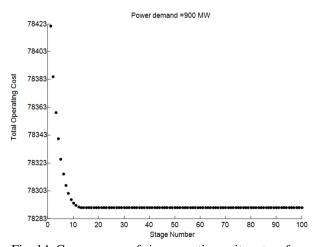



Fig .14. Convergence of six generating unit system for  $$P_{\text{ch}}\!\!=\!\!900MW$$ 

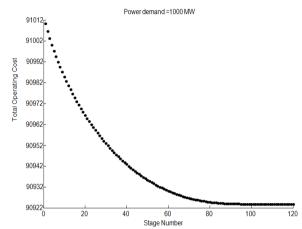



Fig.15. Convergence of six generating unit system for  $P_{ch}$ =1000MW

## **APPLICATION 3:**

The application of the EVOA has been made on an IEEE network of ten generators of production; they have a cost function of fuel and a function of emission of exhaust gas to this production. The parameters related by the system composed of ten units are indicated in the table 9 and table 10 below:

Table 10
Data of ten generators of production.

| unit | Fuel cost coefficient |         |          | $\mathbf{P}_{\mathrm{gmin}}$ | $P_{\text{gmax}}$ |
|------|-----------------------|---------|----------|------------------------------|-------------------|
|      | ai                    | bi      | ci       | (MW)                         | (MW)              |
| G1   | 0.12951               | 40.5407 | 1000.403 | 10                           | 55                |
| G2   | 0.10908               | 39.5804 | 950.606  | 20                           | 80                |
| G3   | 0.12511               | 36.5104 | 900.705  | 47                           | 120               |
| G4   | 0.12111               | 39.5104 | 800.705  | 20                           | 130               |
| G5   | 0.15247               | 38.539  | 756.799  | 50                           | 160               |
| G6   | 0.10587               | 46.1592 | 451.325  | 70                           | 240               |
| G7   | 0.03546               | 38.3055 | 1243.531 | 60                           | 300               |
| G8   | 0.02803               | 40.3965 | 1049.998 | 70                           | 340               |
| G9   | 0.02111               | 36.3278 | 1658.569 | 135                          | 470               |
| G10  | 0.01799               | 38.2704 | 1356.659 | 150                          | 470               |

Table 11 Emission coefficients of ten generators of production.

| unit     | Fuel cost coefficient |         |          | $P_{g min}$ | $P_{g max}$ |
|----------|-----------------------|---------|----------|-------------|-------------|
|          | di                    | ei      | fi       | (MW)        | (MW)        |
| $G_1$    | 0.04702               | -3.9864 | 360.0012 | 10          | 55          |
| $G_2$    | 0.04652               | -3.9524 | 350.0056 | 20          | 80          |
| $G_3$    | 0.04652               | -3.9023 | 330.0056 | 47          | 120         |
| $G_4$    | 0.4652                | -3.9023 | 330.0056 | 20          | 130         |
| $G_5$    | 0.0042                | 0.3277  | 13.8593  | 50          | 160         |
| $G_6$    | 0.0042                | 0.3277  | 13.8593  | 70          | 240         |
| $G_7$    | 0.0068                | -0.5455 | 40.2669  | 60          | 300         |
| $G_8$    | 0.0068                | -0.5455 | 40.2669  | 70          | 340         |
| $G_9$    | 0.0046                | -0.5112 | 42.8955  | 135         | 470         |
| $G_{10}$ | 0.0046                | -0.5112 | 42.8955  | 150         | 470         |

The transmission line losses coefficient of ten generators of production:

$$B_{\rm mn} = 0.0001^* \begin{cases} 0.49 & 0.14 & 0.15 & 0.15 & 0.16 & 0.17 & 0.17 & 0.18 & 0.19 & 0.20 \\ 0.14 & 0.45 & 0.16 & 0.16 & 0.17 & 0.15 & 0.15 & 0.16 & 0.18 & 0.18 \\ 0.15 & 0.16 & 0.39 & 0.10 & 0.12 & 0.12 & 0.14 & 0.14 & 0.16 & 0.16 \\ 0.15 & 0.16 & 0.10 & 0.40 & 0.14 & 0.10 & 0.11 & 0.12 & 0.14 & 0.15 \\ 0.16 & 0.17 & 0.12 & 0.14 & 0.35 & 0.11 & 0.13 & 0.13 & 0.15 & 0.16 \\ 0.17 & 0.15 & 0.12 & 0.10 & 0.11 & 0.36 & 0.12 & 0.12 & 0.14 & 0.15 \\ 0.17 & 0.15 & 0.14 & 0.11 & 0.13 & 0.12 & 0.38 & 0.16 & 0.16 & 0.18 \\ 0.18 & 0.16 & 0.14 & 0.12 & 0.13 & 0.12 & 0.16 & 0.40 & 0.15 & 0.16 \\ 0.19 & 0.18 & 0.16 & 0.14 & 0.15 & 0.14 & 0.16 & 0.15 & 0.42 & 0.19 \\ 0.20 & 0.18 & 0.16 & 0.15 & 0.16 & 0.15 & 0.18 & 0.16 & 0.19 & 0.44 \\ \end{cases}$$

Table 12. System of ten units simulated by EVOA and four other processes.

| Unit<br>Power<br>Output | NSGA-<br>II [40] | RCCRO<br>[41] | MODE<br>[42] | ABC_PSO<br>[43] | EMOCA<br>[44] | MODE<br>[45] | GSA<br>[46] | EVOA     |
|-------------------------|------------------|---------------|--------------|-----------------|---------------|--------------|-------------|----------|
| (MW)                    |                  |               |              |                 |               |              |             |          |
| P <sub>1</sub>          | 51.9515          | 55.0000       | 54.9487      | 55              | 55            | 54.9487      | 54.9992     | 48.0212  |
| $\mathbf{P}_2$          | 67.2584          | 80.0000       | 74.5821      | 80              | 80            | 74.5821      | 79.9586     | 63.1488  |
| $\mathbf{P}_3$          | 73.6879          | 85.6453       | 79.4294      | 81.14           | 83.5594       | 79.4294      | 79.4341     | 105.289  |
| $\mathbf{P_4}$          | 91.3554          | 84.1259       | 80.6875      | 84.216          | 84.6031       | 80.6875      | 85.0000     | 77.9493  |
| $P_5$                   | 134.052          | 136.503       | 136.855      | 138.3377        | 146.563       | 136.8551     | 142.1063    | 86.1894  |
| $\mathbf{P}_{6}$        | 174.950          | 155.580       | 172.6393     | 167.5086        | 169.248       | 172.6393     | 166.5670    | 188.189  |
| $\mathbf{P}_7$          | 289.435          | 300.000       | 283.823      | 296.8338        | 300           | 283.8233     | 292.8749    | 296.503  |
| $P_8$                   | 314.055          | 316.674       | 316.3407     | 311.5824        | 317.349       | 316.3407     | 313.2387    | 336.046  |
| $P_9$                   | 455.697          | 434.125       | 448.592      | 420.3363        | 412.918       | 448.5923     | 441.1775    | 426.875  |
| $P_{10}$                | 431.805          | 436.572       | 436.428      | 449.1598        | 434.313       | 436.4287     | 428.6306    | 454.823  |
| Fuel cost (\$/hr)       | 113540           | 113355.7      | 113484       | 113420          | 113445        | 113480       | 113490      | 112983.8 |
| Emission (kg/hr)        | 4130.2           | 4121.06       | 4124.9       | 4120.1          | 4113.98       | 4124.90      | 4111.4      | 4111.39  |
| PL(MW)                  | NR               | NR            | 84.33        | 84.1736         | 83.56         | NR           | 83.9869     | 83.0359  |
| T(s)                    | NR               | NR            | 3.82         | NR              | 2.90          | 3.82         | NR          | 15.069   |

NR means not reported in the refereed literature.

The table 12 present an optimum simulation results of EVOA CEED compared with simulation results of NSGA-II [40], RCCRO [41], MODE[42] ABC\_PSO [43], EMOCA[44],MODE[45] and GSA [46] where the charge is modified as follows:  $P_{ch}$ =2000MW.The results obtained by EVOA are satisfactory when compared with other processes Figure 16.

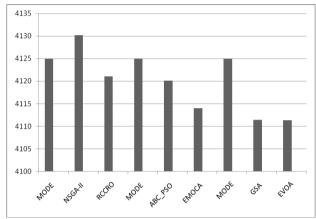



Fig.16. Illustration of CEED by EVOA and other processes in application 3.

Variations of fuel cost in terms of number of iterations with EVOA for power demand of 2000MW are plotted in figure 17 the proposed EVOA reduces the cost of electrical power generate.

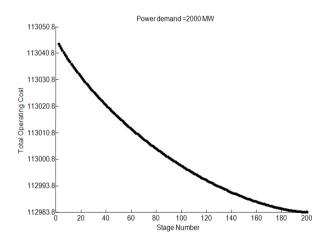



Fig. 17. Convergence of ten generating unit system for  $P_{ch}$ =2000MW

Table 13, contains an optimum simulation results of the generating system of ten units given by EVOA for charge demand 1100MW, 1400 MW and 1700MW

Table 13.

Optimal results of the generating system of ten units given by EVOA

| Unit Power         | Load Demand (MW) |            |            |  |  |  |
|--------------------|------------------|------------|------------|--|--|--|
| Output (MW)        |                  |            |            |  |  |  |
| Output (MVV)       | 1100             | 1400       | 1700       |  |  |  |
| $P_1$              | 54,1329          | 51,3393    | 48,8251    |  |  |  |
| $P_2$              | 48,3049          | 73,3870    | 52,6199    |  |  |  |
| $P_3$              | 61,8698          | 72,4786    | 62,7911    |  |  |  |
| $P_4$              | 20               | 20,5377    | 20,2999    |  |  |  |
| $P_5$              | 135,8292         | 75,0618    | 152,1661   |  |  |  |
| $P_6$              | 92,4619          | 115,6240   | 199,8725   |  |  |  |
| $P_7$              | 173,2468         | 206,4850   | 192,0777   |  |  |  |
| $P_8$              | 163,5811         | 218,3653   | 246,6841   |  |  |  |
| $P_9$              | 204,9682         | 263,2107   | 362,4260   |  |  |  |
| $P_{10}$           | 169,4741         | 344,3621   | 421,6672   |  |  |  |
| Total cost (\$/hr) | 118305,38        | 150714,429 | 190958,797 |  |  |  |
| Fuel cost (\$/hr)  | 62101.3531       | 76670.2227 | 96941.8475 |  |  |  |
| Emission (kg/hr)   | 1972.8357        | 2599.7466  | 3280.2416  |  |  |  |
| PL(MW)             | 23,8695          | 40,8521    | 59,4298    |  |  |  |
| T(s)               | 8.231 s          | 10.124     | 12.312     |  |  |  |

The EVOA has therefore well given satisfactory results. This demonstrates that it is much faster and more efficient than similar techniques in dealing with the problems of multi- objective optimization.

Variations of fuel cost in terms of number of iterations with EVOA for power demand of 1100MW,1400 MW and 1700 MW are plotted in Figure 18, Figure 19, Figure 20 and Figure 19, the proposed EVOA reduce the cost of electrical power generate

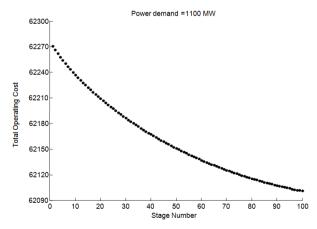



Fig .18. Convergence of ten generating unit system for  $P_{ch}$ =1100MW

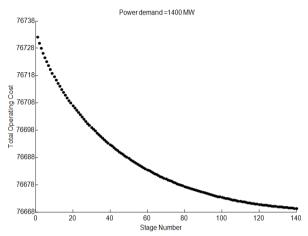



Fig.19. Convergence of ten generating unit system for  $P_{ch}$ =1400MW

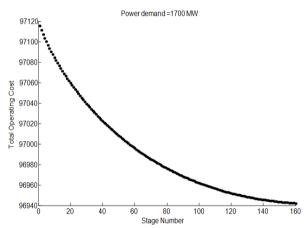



Fig.20. Convergence of ten generating unit system for  $P_{ch}$ =1700MW.

- The simplified generalized term taken in this paper distinctly confers optimal generation scheduling of thermal units for the determined charge request without necessity of repeated steps. As a consequence, the counting of the total generation cost will be an easier task.
- 2. The suggested procedure needs a less number of repetitions for convergence after including transmission losses in the economic power dispatch problem.
- 3. The suggested EVOA procedure can be realized for large-scale systems.
- 4. The suggested procedure gives the optimal solution with less computational effort.

#### 5. Conclusion

Egyptian Vulture Optimization Algorithm (EVOA), is a new optimization suggested by this paper in the domain of Combined Economic and Emission Dispatch. So as to show the efficiency of EVOA using three, six and ten generating units test systems.

The method of Egyptian Vulture Optimization Algorithm, is included for the first time in dispatching emission gas, we obtained very satisfactory results (emission, cost, total cost, PL) compared with results of previous studies relied on other methods .As of PSPSO, PSO, GA,CS, GA, PSO, FPA, BA, HYB, FA, NSGA-II, RCCRO, MODE ABC\_PSO, EMOCA, MODE and GSA. EVOA is the most effective methods, easy to applied and able to search near total optimum solutions.

So, this result proves that EVOA optimization is a reliable technique for solving Combined Economic and Emission Dispatch problem

#### References

- [1] El- Keib AA, Ma H, JL Hart, Economic Dispatch in view of the Clean Air Act of 1990, IEEE Trans Power Syst, Vol.9, No. 2, pp.972–978, 1994.
- [2] Irina C, Elias K "Recent methodologies and approaches for the economic dispatch of generation in power systems" International Transactions on Electrical Energy Systems Int.trans.Electr.Energ. Syst. 2013; 23:1002–1027 DOI: 10.1002/etep.1635
- [3] Y.H. Song, R. Morgan, D. Williams, Environmentally constrained Electric Power Dispatch with Genetic Algorithms, Evolutionary Computation, IEEE International Conference, vol.1, pp.17, Dec. 1995.
- [4] Shah-Hosseini, H. "The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation 1(1/2), 71–79 (2009) DOI:10.1504/IJBIC.2009.022775
- [5] U. Güvenç, Combined Economic and Emission Dispatch solution using Genetic Algorithm based on similarity crossover, Scientific Research and Essays, vol.5, no. 17, pp. 2451–2456, 2010
- [6] Ehsan A; Mahmood J "An improved cuckoo search algorithm for power economic load dispatch" International Transactions on Electrical Energy Systems Int.trans.Electr.Energ. Syst. 2015; 25:958–975; 26:49-78 DOI: 10.1002/etep.1878
- [7] Uma S Beaulah M "Analysis and optimization of economic load dispatch using soft computing techniques" IEEE Trans Power Syst 2016 DOI: 10.1109/ICEEOT.2016.7755472
- [8] Dilip K, Nandhini M "Adapting Egyptian Vulture Optimization Algorithm for Vehicle Routing Problem" International Journal of Computer Science and Information Technologies, (IJCSIT) Vol. 7 (3), 2016, 1199-1204 DOI: 10.15640/jcsit
- [9] R. Balamurugan and S. Subramanian, A Simplified Recursive Approach to combined economic emission dispatch, Electric Power Components and Systems, vol. 36 number 1, pp. 17–27, 2008.
- [10] M. Abido, "Environmental/Economic Power Dispatch using Multiobjective Evolutionary Algorithms", IEEE Trans. Power Syst. vol.18, no. 4, pp.1529–1537, 2003 Doi: 10.1109/PES.2003.1270431
- [11] M. Sudhakarn, S.M.R Slochanal, R. Sreeram and N. Chandrasekhar, "Application of Refined Genetic Algorithm to Combined Economic Emission Dispatch", J. Institute of Engg. (India), vol-85, pp.115-119, Sep.2004.

- [12] M. Abido, "Multi-objective Particle Swarm Optimization for Environmental/Economic Dispatch problem", Electr. Power Syst. Res. vol.79, no.7, pp. 1105–1113, 2009.
- [13] A. Bhattacharya, P. Chattopadhyay, "Application of Biogeography- Based Optimization for solving Multi-objective Economic Emission Load Dispatch problems", Electr. Power Compon. Syst., vol.38, no. 3, pp.340–365, 2010.
- [14] M. Basu, "Economic Environmental Dispatch using Multiobjective Differential Evolution", Applied Soft Computing, vol.11 pp.2845–2853, 2011.
- [15] Dilip K, Nandhini M "Adapting Egyptian Vulture Optimization Algorithm for Vehicle Routing Problem" International Journal of Computer Science and Information Technologies, (IJCSIT) Vol. 7 (3), 2016, 1199-1204 DOI: 10.15640/jcsit
- [16] G.P. Dixit, H.M. Dubey, M. Pandit, B. K. Panigrahi, "Artificial Bee Colony Optimization for Combined Economic and Emission Dispatch", International Conference on Sustainable Energy and Intelligent System," IEEE Conference, pp 340-345, July 2011.
- [17] E.D. Manteaw, N.A. Odero, "Combined Economic and Emission Dispatch solution using ABC\_PSO Hybrid algorithm with valve point loading effect", International Journal of Scientific and Research Publications, vol. 2, Issue 12, pp 1-9, December, 2012.
- [18] U. Guvenc, Y. Sonmez, S. Duman, N. Yoruderen, "Combined Economic and Emission Dispatch solution using gravitational search algorithm", Turkey: Science Iranica, vol. 19, issue 6, pp 1754-1762, December, 2012.
- [19] Xia X, Elaiw A. "Optimal dynamic economic dispatch of generation": a review. Elect Power Syst Res 2010; 80:975–86. DOI.org/10.1016/j.epsr.2009.12.012
- [20] Bouzeboudja H, Chaker A, Alali A, Naama B." Economic dispatch solution using a real coded genetic algorithm". Acta Electrotech Inform 2005; 5(4):1–5.
- [21] K. Senthil and K. Manikandan, "Economic Thermal Power Dispatch witth emission constraint and valve point effect Loading using immproved Tabu search algorithm", Int. Journal of Computer App., volume.3,no.9,July-2010, pp.6-11.
- [22] Shaw B, Ghoshal SP, Mukherjee V," Solution of combined economic and emission dispatch problems using hybrid craziness-based PSO with differential evolution". In, 2011 IEEE symposium on differential evolution (SDE); 2011. p. 1–8. DOI: 10.1109/SDE.2011.5952061
- [23] Subbaraj P, Rengaraj R, Salivahanan S, Senthilkumar T. "Parallel particle swarm optimization with modified stochastic acceleration factors for solving large scale economic dispatch problem". Int J Elect Power Energy Syst 2010; 32:1014–23. DOI.org/10.1016/j.ijepes.2010.02.003
- [24] Subbaraj P, Rengaraj R, Salivahanan S, Senthilkumar T. "Parallel particle swarm optimization with modified stochastic acceleration factors for solving large scale economic dispatch problem". Int J Elect Power Energy Syst 2010; 32:1014–23. DOI.org/10.1016/j.ijepes.2010.02.003
- [25] H. Hamedi, "Solving the Combined Economic Load and Emission Dispatch problems using new Heuristic Algorithm, Electrical Power and Energy Systems", vol.46, pp. 10–16, 2013. doi.org/10.1016/j.ijepes.2012.09.021
- [26] A. Si Tayeb, H.Bouzeboudjab, D.Rezzak, Y. Houam K. Touafek, "Environmental/economic power dispatch problem using multi-objective Hybrid Tabu Search and Algorithm Genetic", 4<sup>eme</sup> séminaire international sur les énergies nouvelles et renouvelables (SIENR 2016) Ghardaïa 24-25/10/2016
- [27] Aniruddha B, Pranab Kumar Ch., "Solving economic emission load dispatch problems using hybrid differential evolution". Appl Soft Comput 2011; 11(2):2526–37.
- [28] Güvenç U. Combined economic emission dispatch solution using genetic algorithm based on similarity crossover. Sci Res Essays 2010;5(17):2451-6
- [29] C. Palanichamy, K. Srikrishna, "Economic thermal power dispatch with emission constraint" J. Institute of Engg. (India) volume-72, April-1991, 11.

- [30] Tsai MT, Yen CW. An improved particle swarm optimization for economic dispatch with carbon tax considerations. In: 2010 Int conf on technology (POWERCON); 2010. p. 1–6.
- [31] Secui DC. "A new modified artificial bee colony algorithm for the economic dispatch problem". Int J Energy Convers Manage 2015;89:43–62.
- [32] C. Sur, S. Sharma, and A.Shukla "Egyptian Vulture Optimization Algorithm – A New Nature Inspired Metaheuristics for Knapsack Problem" P. Meesad et al. (Eds.): IC2IT2013, AISC 209, pp. 227–237-2013, DOI: 10.1007/978-3-642-37371-8 26
- [33] S. Dhanalakshmi, S. Kannan, K. Mahadevan, S. Baskar, "Application of modified NSGA-II Algorithm to Combined Economic and Emission Dispatch problem", Electrical Power and Energy Systems, vol.33, pp. 992–1002, 2011. Doi.org/10.1016/j.ijepes.2011.01.014
- [34] M. Sudhakaran and S.M.R Slochanal, "Integrating Genetic Algorithm and Tabu Search for Emission and Economic Dispatch Problem" J. Institute Of Engg. (India) volume-86, June.2005, pp-22 27. Doi: 10.1109/TENCON.2003.1273225
- [35] U. Sapra"Solving Combined Economic and Emission Dispatch using Cuckoo Search" International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 6- June 2013
- [36] Aydin G. "The development and validation of regression models to predict energy-related CO2 emissions in Turkey". Energy Sources Part B: Econ Plan Policy 2015; 10(2):176–82.
- [37] Y.A. Gherbi, H Bouzeboudja, F. Gherbi "The combined economic environmental dispatch using new hybrid metaheuristic" Energy 115 (2016) 468e477 Doi.org/10.1016/j.energy.2016.08.079
- [38] Devi AL, Krishna OV. "Combined economic and emission dispatch using evolutionary algorithms-a case study". ARPN J Eng Appl Sci December
- [39] A.Y. Abdelaziz, E.S. Ali S.M. Abd Elazim "Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems" Energy 101 (2016) 506e518 doi.org/10.1016/j.energy.2016.02.041
- [40] Basu M." Economic environmental dispatch using multiobjective differential Evolution". Int J Appl Soft Comput 2011;11:2845e53.
- [41] K. Bhattacharjee, A. Bhattacharya ,S. Halder "Solution of Economic Emission Load Dispatch problems of power systems by Real Coded Chemical Reaction algorithm" Electrical Power and Energy Systems 59 (2014) 176–187 doi.org/10.1016/j.ijepes.2014.02.006
- [42] Ehsan A, Mahmood J "Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using epsilon-multi-objective genetic algorithm variable" Electrical Power and Energy Systems 52(2013)55– 67,doi.org/10.1016/j.ijepes.2013.03.017
- [43] Manteaw ED, Odero NA. "Combined economic and emission dispatch solution using ABC\_PSO hybrid algorithm with valve point loading effect". Int J Sci Res Publ December 2012;2(No. 12):1e9.
- [44] Zhang R, Zhou J, Mo L, Ouyang S, Liao X." Economic environmental dispatch sing an enhanced multi-objective cultural algorithm". Electr Power Syst Res 2013;99:18e29.
- [45] Basu M. "Economic environmental dispatch using multiobjective differential evolution". Int J Appl Soft Comput 2011; 11:2845e53.
- [46] Güvenç U, Sonmez Y, Duman S, Yorükeren N. "Combined economic and emission dispatch solution using gravitational search algorithm". Sci Iran DComput Sci Eng Electr Eng 2012;19 (No. 6):1754e62.