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Abstract: This paper addresses a Multi-Objective Particle
Swarm  Optimization-Dynamic  Crowding  Distance
(MOPSO-DCD) based algorithm to solve the Multi-
Objective Risk Constrained Self-Scheduling (MORCSS)
problem of the Generator companies (Gencos), in the
correlated energy and spinning reserve markets. The
proposed MOPSO-DCD method is demonstrated on the
single generator system and the standard IEEE 30-bus
system and its corresponding results are analyzed. The
effectiveness of the proposed approach is demonstrated by
comparing the reference Pareto front, generated by using
multiple runs of the Cauchy Mutated Mimetic Particle
Swarm Optimization (CMMPSQ) method. Minimum spacing
and the diversity of the Pareto front is taken into account
for the performance assessment process
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1. Introduction

The objective of the Gencos Self-Scheduling (SS)
problem is to effectively schedule the generating units
over a given scheduling period, to maximize the
expected profit, satisfying various operating constraints
of the generators. The modelling of the SS problem for
the various entities and for the various market
structures without considering the uncertainties is
presented in [1-4]. In the past, numerous research
works have incorporated risk issues into the Gencos SS
problem [5-11]. In General, the only objective of the
SS problem is to maximize the expected profit. It is
also necessary to consider related societal issues
because of the scale of the electric industry and its
importance to modern life. One of these issues is the
environmental impact of electricity generation. The
environmental issues caused by the pollutant emissions
produced by fossil-fueled electric power plants, have
become a matter of concern. Due to increasing public
awareness of environmental protection, and the passing
of the clean air act amendments of 1990 [12], modern
utilities has been forced to simultaneously optimize
both economic and emission objectives.

The formulation of the Multi-Objective Self-
Scheduling (MOSS) problem has gathered momentum
in recent times. Due to the current scenario, generator
owners are forced to limit their emission levels, to
escape from the penalties. The optimal strategies of the
Gencos in the deregulated environment also depend
upon the emission strategies of the Gencos. Jalal
Kazempour [13] considered emission as one of the
constraints of the SS problem, which is solved for the
correlated energy and spinning reserve markets.

The discussions about various multi-objective
evolutionary approaches from the analytical weighted
aggression to population based approaches, and the
Pareto-optimality concepts are discussed in [14]. The
recent trend is to handle multi-objectives
simultaneously as competing objectives, using modern
optimization techniques, such as Genetic Algorithms
(GA), Evolutionary Programming (EP) and Particle
Swarm Optimization (PSO). Pareto based approaches
are most suitable for multi-objective optimization
problems, due to the ability to produce multiple
solutions in less computation time.

Goldberg [15] introduced Non-Dominated Sorting
(NDS) to rank a search population according to Pareto
optimality. A ranking based procedure of identifying
Non-dominated sets of individuals are proposed to
obtain the Pareto frontier. The solution of multi-
objective problems by using Non-dominated Sorting
Genetic Algorithms (NSGA) was proposed by Srinivas
and Deb [16]. However, a large number of Non-
dominated solutions may get lost in this approach as
the elitism property of Evolutionary Algorithms (EA)
has not been included. The Non-dominated Sorting Genetic
Algorithm-1l (NSGA-Il) was proposed in [17] to
improve the performance of the NSGA algorithm. The
controlled elitism is proposed by Deb and Goel [18] to
improve the exploitation-exploration characteristics of
NSGA-II.

On the other hand, Particle Swarm Optimization
(PSO) based algorithms seem particularly suitable for
multi-objective optimization, mainly because of its
high speed of convergence. There are several forms of
Multi-objective PSO proposed over the years, to solve
Multi-objective problems. Carlo Coello et al [19]
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proposed a Pareto dominance based PSO approach, to
solve multi-objective optimization problems. This
algorithm uses the concept of a repository of particles
and a mutation operator to improve the solution.
Raquel and Prospero Naval [20] proposed a modified
solution methodology for the multi-objective
optimization problem, by combining the PSO and
Crowding Distance (CD) operator for the generation of
the hypercube, to locate the edges of the Pareto front.
The Dynamic Crowding Distance (DCD) operator was
proposed by Luo et al [21] to improve the diversity of
the multi-objective evolutionary algorithms.
Considering all these factors,
an archive based Multi-Objective Particle Swarm
Optimization (MOPSOQ) algorithm, which includes a
DCD operator to solve the Multi-Objective Risk
Constrained Self-Scheduling (MORCSS) problem. The
MORCSS problem of the price-taking Gencos in the
day-ahead energy and spinning reserve markets
considering the conflicting objectives of the
maximization of profit and the minimization of
emission impacts. This proposed algorithm provides
multiple solutions to the Gencos to decide their SS in
the day-ahead market. The Pareto front obtained using
the proposed method, is compared with the reference
Pareto front generated by the multiple optimization
runs, with the Dynamic Weighted Aggregation (DWA)
of individual objectives, using the CMMPSO
algorithm. The performance of the proposed multi
objective algorithm is compared by measuring the
performance measures, such as minimum spacing and
diversity with respect to the reference Pareto front.

2. Formulation of the Multi-Objective Risk
Constrained  Self-Scheduling  (MORCSS)
Problem

The MORCSS problem of the thermal power
generators are formulated as a bi-objective
optimization model. The two conflicting objectives are:
1) maximizing the expected profit and 2) minimizing
the emission levels, while satisfying all the system
operating constraints over the scheduling period. The
mathematical formulation of this problem is explained
in this section.

2.1 Objective Functions

2.1.1 Profit Maximization

Diversification of investments into different types of
assets is the main objective of the Gencos in
deregulated power market. This will minimize the
Gencos exposure to risks, and maximizes the returns on
the portfolios. The Gencos profit maximization
problem can be formulated as an optimization problem
that maximizes the profit and minimizes the risk. The
Markowitz portfolio optimization model is used to

formulate the profit maximization problem. In the
Markowitz mean-variance model, the safety selection
of risky portfolio construction is considered as one
objective function and the mean profit is defined as one
of the constraints. This model is described as:
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where i and j are the time indices, P® and P® are the
scheduled power output in the energy and spinning

. t t
reserve markets respectively, v,  and v< are the
estimated covariance matrix of energy and spinning

reserve prices of size (T x T ) respectively, coveeit isthe

Covariance of market prices of size (T x1), T is the
total scheduling interval and rY is the desired profit of
the portfolio.

Different objective function values are found by
varying the desired mean returns. The risk aversion
parameter g < [0,] is used for this purpose. The profit
maximization objective function with this parameter s
can be described as:

F1:MAX > RETURNS - » COSTS — 8> RISK (3)

when, g is zero, the model maximizes the mean
return of the portfolio, regardless of the variance (risk).
So the sensitivity of the Gencos to the risk increases as
p increases from zero to infinity, while it decreases as
B approaches zero. The introduction of parameter s
makes the problem a single-objective function. The
RETURNS AND COSTS terms are given in equations
(4) and (5) respectively. The quadratic cost function
with the valve point effect is given in equation (6),
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where, B and B are the scheduled power output of
the k™ generator in the energy market and spinning
reserve market respectively, U, is the schedule state of



the k™ generator (1: unit is on and O: unit is off), Aoy Ag
are the prices at the energy and spinning reserve
markets respectively and Ny is the number of

generating units participates in the SS. The operating
cost of the Gencos, participating in the energy and
spinning reserve markets is expressed as,
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where, suc, and sbc, is the start-up and shutdown
cost and ¢, is the quadratic cost function of the k"
generator.
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where, 3, by, ¢ are the cost coefficientsand d| , ey
are the coefficients reflecting the valve point effect of
the k™ generator. The real power Pke will be replaced

by PkS for the spinning reserve market.

2.1.2 Minimizing Emission Levels
The objective function to minimize the emission
levels of the thermal generators are presented below,
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where, g, is the quadratic emission function of the

k™ generator (ton/hr) of the atmospheric pollutants
caused by the operation of the k™ thermal generator.
The emission function of the k™ generator is given
below,

F2=MIN E,(
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where, f,, g, and h, are the emission coefficients
of the k™ generator.

fy + 9P +h sz (8)

2.2 Generators Operating Constraints

2.2.1 Generator Boundary Limits

The real power boundary limits of the k™ generator in
the correlated energy and spinning reserve markets is
given in equation (9)
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where,  pE™RE™ and RS pS™ are  the

minimum and maximum real power boundary limits of
the k™ generator in the energy and spinning reserve
market respectively. The value of p>™" s set to zero

e,scheduled
and R’

market.

is the scheduled power in the energy

2.2.2 Generator Ramp Up/Down Limits

The ramp up and ramp down limits of the k™
generator in the correlated energy and spinning reserve
markets is given in equation (11)
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where, UR /DR are the up/down ramp rate limits of
the k™ generating unit.

2.2.3 Minimum Up / Down Time Limit

The minimum up and down time limits of the k™
generating unit for the correlated market is given in
equations (12) and (13).
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where T,/ Tof IS the time counter for which a unit has
been on/off at hour t and can be expressed as:
Ton (1) = @+T,, (t =DV, (1)
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where wmut, /mpT, are the minimum up/down time
limits of the k™ generator.

2.3 Multi-Objective Formulation

Multi-objective optimization problem have two or
more objectives to be optimized simultaneously. The
Pareto front concept describes the optimal trade-off



possibilities between the objectives. The MORCSS
problem has two conflicting objectives; the main
objective is to maximize the profit of the Gencos, and
at the same time, the emission levels of the generators
have to be minimized. This problem can be
mathematically formulated as a Multi-objective
optimization problem as follows:

MIN Fr = [1/FIRS,B. U, ). F2(RE ..U, ) 1(14)
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where, h is the inequality constraint representing the
generator boundary limits, ramp rate limits and
minimum up/down time constraints.

3. Multi-Objective Particle Swarm Optimization
Algorithm

The similarity of the PSO with Evolutionary
Algorithms (EA) makes evident the notion that
using a Pareto ranking scheme [15] could be a
straightforward way to extend the approach to
handle multi-objective optimization problems.
The best solutions found by the individual particle
in the past run could be used to store the generated
Non-dominated solutions. This would be similar
to the elitism used in evolutionary multi-objective
optimization.

The performance of MOPSO can be attributed
to its use of an external archive of non-dominated
solutions found in previous iterations. The Cauchy
Mutation (CM) operator improves the exploratory
capabilities of the algorithm, and prevents
premature convergence. However, it should be
noted that the use of CD of each solution, as a
diversity operator by NSGA-II was able to
produce a better distribution of the generated
Non-dominated solutions, compared to the results
generated by MOPSO that uses an adaptive grid
[19] in maintaining the diversity of the generated
solutions. The computation time of the PSO
algorithm is less compared to that of the EA. This
fact suggests that the PSO has been extended to
solving multi-objective optimization problems, by
incorporating the mechanism of DCD
computation in the global best selection, and the
deletion method of the external archive of non-
dominated solutions, whenever the archive is full.

The DCD operator, together with a CM operator,
maintains the diversity of Non-dominated
solutions in the external archive. The algorithmic
steps of the proposed method are as follows,
Stepl: For i =1to M (M is the population size)

e Randomly initialize the particle P[i]

e Randomly initialize the wvelocity of the
particles vfi] = o

e Evaluate the fitness function of each of the
particles

e Store the personal best (pbest[i]) value of the
particles

e Store the global best (gbest) value among all
the particles

End
Step2: Initialize the iteration counter iter =0

Step3: Store the position of the non-dominated vectors
found in P into the external archive A.

Step4: Repeat

e Compute the DCD values of each of the
non-dominated solutions in the archive A.

e Sort the non-dominated solutions in A in
descending DCD values

Fori=1to M

e Randomly select the global best guide for
pli] from a specified top portion of the sorted

archive A and its position to g, -

e Compute the new velocity:

wxV[i]+ C1 x randl( Phest ™ PLIT) +
C, xrand, (A[g, . 1-Pli])

Vil = ¢ 1o

where P..[1] is the best position that the

particle i has reached and A[gy.] is the

global best guide for each non-dominated
solution.



End

e Compute the new position of the particle
P[i]:

PLi] = P[]+ V[i] 17

if pri] violates the boundary limits, then
the decision variable takes the value of its
corresponding lower and upper boundary
limits, and its velocity is multiplied by -1,
so that it searches in the opposite
direction.

e Generate a uniformly distributed random
number (rand, ) between 0 and 1 and compare

each generated random number (rand,)

with P, . If P,,> rand, then mutate the particle
by the following equation,

iter+1 _  iter iter \, iter
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where o, is a Cauchy random number.

(18)

e Evaluate the fitness function of each of the
particles in P

o Insert all the new non-dominated solutions
in P into A, if they are not dominated by any of
the stored solutions. All dominated solutions in
the archive by the new solution are removed
from the archive. If the archive is full, the
solution to be replaced is determined by the
following steps:

i) Compute the DCD values of each non-
dominated solution in the archive A.

ii) Sort the Non-dominated solutions in Ain
descending DCD values.

iii) Randomly select a particle from a
specified bottom portion which compromises
the most crowded particles in the archive;
then replace it with the new solution.

iv) Update the personal solution of each

particle in p. If the current Poest dominates
the position in memory, the particles position

is updated using ppeg[il = PIi]

e [ncrement iteration count t.

Step 5:  Until the maximum number of iterations is
reached repeat the previous steps.

3.1 Dynamic Crowding Distance Computation

In  Multi-objective optimization algorithms, the
horizontal diversity of the Pareto front is very
important. The horizontal diversity is often realized by
removing excess individuals in the Non-Dominated Set
(NDS), when the number of non-dominated solutions
exceeds the population size. The MOPSO uses the CD
measure as given in equation (19) to remove excess
individuals. The individuals having the lower value of
CD are preferred over individuals with a higher value
of CD in the removal process.

1 m
CDi: Ekzl:‘ fiJIil - fikl‘

where m is the number of objectives, f* is the

(19)

k" objective of the i+1" individual and f* is the

k" objective of the i—1" individual after sorting the
population according to the CD. The major drawback
of the CD is the lack of uniformity, in obtaining non-
dominated solutions as illustrated in Figure 1.
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Figure 1. Crowding Distances of Individuals

In Figure 1, if the normal CD method is adopted,
then the individuals P, Py, and P, are deleted from the
NDS, since they have small CD values. Because of
that, some parts of the Pareto front are too crowded and
some parts are sparse. Also, the CD of Py is small,
because one side of the rectangle is short, while the
other side is long. However, the CD of Ps is large
because the length of one side is almost equal to that of
the other side. If one individual must be removed
between the individuals P, and Ps, because of small CD
value, individual P, will be removed and Ps will be
retained in the NDS. But, in order to get good
horizontal diversity, the individual P, should be



maintained, because the individual P, helps to maintain
a uniform spread. To overcome this problem, the
Dynamic Crowding Distance (DCD) [21] method is
suggested.

In this approach, one individual with the lowest
DCD value is removed every time and the DCD is
recalculated for the remaining individuals. The
individuals DCD is calculated as follows:

DCD, = cb, (20)

where CD, is calculated using equation (19) and z; using
equation (21),
1 ’
Z; = _Zq fiJIil - fi:‘ -Ch; )
mia
where z; is the variance of the CDs of individuals,
which are neighbors of the i individual. z; can give
information about the variations of CD of different
objectives. In Figure 1, the individual Py, has a larger
value of z; than the individual P, and the DCD of Py is
larger than that of Ps. Therefore, the individuals similar
to P, in the NDS will have more chance to be retained.
Assume that the population size is N, the NDS at the
jth generation is Q(j) and its size is M. If M > N, the
DCD based strategy is used to remove M-N individuals
from the NDS. The algorithmic steps of the DCD
algorithm are given below:

(1)

Step1: If |Q(j)| < N thengotostep5, else go
to step 2.
Step2 : Calculate the individuals’ DCD in the

Q(j) by using equation (20).

Step 3 :  Sort the non-dominated set Q(j) based

on DCD.

Step4 : Remove the individual which has the
lowest DCD value in the Q (j).

Step5 @ If|Q(j)| <N, stop the population

maintenance; otherwise go to
step 2 and continue.

3.2 Constraint Handling

The proposed MOPSO-DCD algorithm adopted the
constraint handling mechanism used in NSGA-II, due
to its simplicity in using the feasibility and non-
dominance of solutions when comparing solutions. A
solution x; is said to constrained-dominate a solution x,
if any of the following conditions is true:

e Solution Xx; is feasible and solution X, is not.

e Both solutions x; and X, are infeasible, but solution x;
has a smaller overall constraint violation.

¢ Both solutions x; and x, are feasible and solution m
dominates solution n.

When comparing two feasible particles, the particle
which dominates the other particle is considered a
better solution. On the other hand, if both particles are
infeasible, the particle with a lesser number of
constraint violations is a better solution.

3.3 Global Best Selection

The selection of the global is a crucial step in a
MOPSO algorithm. It affects both the convergence
capability of the algorithm, as well as the maintenance
of a good spread of the Non-dominated solutions. In
the MOPSO-DCD, a bounded external archive stores
the Non-dominated solutions found in the previous
iteration. It is to be noted that any of the Non-
dominated solutions in the archive can be used as the
global best guide of the particles in the swarm. But we
want to ensure that the particles in the population move
towards the sparse regions of the search space.

In the MOPSO-DCD, the global best guide of the
particles is selected from among those non-dominated
solutions with the highest DCD values. Selecting
different guides for each particle in a specified top part
of the sorted archive, based on a decreasing DCD,
allows the particles in the primary population to move
towards those non-dominated solutions in the external
archive, which are in the least crowded area in
objective space.

Also, whenever the archive is full, the DCD is again
used in selecting which solution to replace in the
archive. This promotes diversity among the stored
solutions in the archive since those solutions which are
in the most crowded areas, are most likely to be
replaced by a new solution.

4. Implementation Of MORCSS model

The implementation of MORCSS problem is
discussed in this section. The self-scheduling of the
generators in day-ahead market is based on the
forecasted LMP values. The variance and covariance
matrices up to ‘N-1° days are estimated from the
available LMP data. The Pareto front with a set of non-
dominated solution is obtained using the MOPSO-
DCD algorithm depends upon the risk strategies of the
Gencos. Multiple Criteria Decision Making (MCDM)



techniques are generally employed in an evaluation of
Pareto-optimal solutions, to choose the best amongst
them. A modified Technique for Order Performance by
Similarity to Ideal Solution (TOPSIS) [22] based on
Shannon entropy function [23] is used for this purpose
which is similar to the one proposed in [26]. The unit
commitment status and the scheduled real power
outputs of generators in the correlated energy and
spinning reserve markets owned by the Gencos for the
24 hour time period is obtained using the same
procedure mentioned above, subject to the
minimization of the emission levels and maximization
of the expected profit from the selected portfolio.

5. Numerical Results and Discussions

A power producer owning a single generating
machine in the PJIM market and an IEEE 30-bus
system with six generating machines in the day-ahead
energy and reserve markets are used to test the multi-
objective  MORCSS model. The cost, emission
coefficients and the technical data, the forecasted LMP
values of the energy and spinning reserve markets and
the estimated covariance matrices for the single
generator system, are presented in Appendix.

First, the profit and the emission optimization of the
MORCSS problem are solved individually using the
CMMPSO [24] algorithm, to obtain the reference
Pareto front. The reference front is generated in
multiple runs of the Dynamic Weighted Aggregation
(DWA) of objectives. The CMMPSO based algorithm
is used as an optimization algorithm. For a two-
objective problem, weights can be modified during the
optimization. The combined objectives of the
MORCSS model are given below,

Fcombined = w, (t)F, (PR, P, U, )+

w, ()F, (RS, B’,U,) (22)
w, (t) =|sin(24/ F)| and
W, (1) =1—w(t) (23)

where t is the iteration index, ‘F’ is the weights’
change frequency and ‘w’ is a weighting factor
indicating the relative importance of its associated
objective during the optimization. If the Pareto front is
concave in the nature, then the solution obtained by the
DWA is better than the fixed weight method.

By varying ‘¢’ and ‘F’, a reference Pareto front with
40 non dominated points is obtained. This reference

Pareto front also includes two extreme points
corresponding to w = 0 and w = 1. The comparisons of
the scheduled real power, total profit and total emission
values, using the CMMPSO algorithm for the two risk
levels, are tabulated in Table 1.

Table 1. Optimal Solution of Single Generator
System using the CMMPSO

H p=0.0 p =0.05

o P'amw) | PPovw) | P amw) | P° (Mw)
1 206.5174 | 27.8193 117.3575 42.5089
2 33.3783 27.2062 221.7253 25.3638
3 237.5062 | 19.6957 274.6201 | 20.3705
4 207.5018 41.9043 242.5523 | 20.5504
5 194.2703 | 33.1284 290.8746 34.7893
6 34.3412 26.2061 269.8908 | 6.4635
7 61.8539 42.9825 162.9515 | 17.1860
8 31.0760 19.9036 188.7858 | 33.5446
9. 265.2294 | 25.2948 279.7858 | 23.9063
10 98.1602 41.6720 258.5291 | 31.1578
11 230.6436 | 28.2174 177.5739 | 27.1805
12 77.4144 38.3518 231.2073 | 35.1533
13 217.8192 | 28.0329 156.3114 53.6977
14 226.0698 42.2667 231.5532 | 1.4799
15 243.3177 31.1036 139.4325 41.2006
16 2515151 19.1071 291.3936 13.2746
17 50.5443 22.2994 112.4157 13.1879
18 64.5210 22.3591 251.1599 40.0999
19 227.1968 16.3831 275.3588 53.9290
20 57.5594 23.0649 267.5486 | 13.4552
21 2424722 25.9063 218.3404 | 34.1975
22 168.5870 41.3339 283.8619 | 28.8470
23 263.3438 27.1628 271.5379 43.1436
24 48.5398 44.9286 225.8333 | 2.7588
Total
Expected
Profit 18,959 16,177
(TEP) in
$)
Total
Emission
(TE) in 1962 627
(ton)

Then, the MORCSS problem is solved by using the
proposed MOPSO-DCD algorithm. The population
size is fixed at 150 and the archival size is fixed at 100
particles. The global best from the top 10% sorted
archival replaces one of the non-dominated solutions in
the bottom 10% of the archival. The DCD parameters
are calculated based on the Crowding Distance (CD)
and the variance of the CD. For the MORCSS model,
10 independent trails are conducted using the proposed
algorithm for the different initial populations.

A set of extreme non-dominated solutions for the
two risk levels of the MORCSS problem is obtained.
The optimal solution is obtained from the set of non-
dominated solutions, as given in Table 2.




Table 2. Optimal Solution of a Single Generator System
using the MOPSO-DCD

B=10.0 B=10.05
Hour

P mmw) | PP (mw) | PS(mw) | P°(Mw)
1 204.4522 | 27.2629 | 1155971 | 41.6587
2 31.0445 | 26.6621 18.3994 | 24.8565
3 2351311 | 19.3018 | 270.5008 | 19.9631
4 205.4268 | 41.0662 | 238.9140 | 20.1394
5 192.3276 | 32.4658 | 286.5115 | 34.0935
6 231.9978 | 25.6820 | 265.8424 | 6.3342
7 160.2354 | 42.1229 | 160.5072 | 16.8423
8 2287652 | 19.5055 | 185.9540 | 32.8737
9. 2625771 | 247889 | 2755890 | 23.4282
10 196.1786 | 40.8386 | 254.6512 | 30.5346
11 2283372 | 27.6531 | 174.9103 | 26.6369
12 175.6403 | 37.5848 | 227.7392 | 34.4502
13 215.6410 | 27.4722 | 153.9667 | 52.6237
14 223.8091 | 41.4214 | 228.0799 | 1.4503
15 240.8845 | 30.4815 | 137.3410 | 40.3766
16 248.9999 | 187250 | 287.0227 | 13.0091
17 149.0389 | 21.8534 | 110.7295 | 12.9241
18 261.8758 | 21.9119 | 247.3925 | 39.2979
19 2249248 | 16.0554 | 271.2284 | 52.8504
20 254.9838 | 22.6036 | 263.5354 | 13.1861
21 240.0475 | 25.3882 | 215.0653 | 33.5135
22 166.9011 | 40.5072 | 279.6040 | 28.2701
23 260.7104 | 26.6195 | 267.4648 | 42.2807
24 147.0544 | 44.0300 | 222.4458 | 2.7036
;E(Z) 18,989 16,237
(Ttgni)” 1,942 611

The comparison of the Pareto front obtained by
using the CMMPSO and MOPSO-DCD for the two
risk levels is shown in Figure 2 and Figure 3
respectively. From Figures 2 and Figure 3, it is
clear that the Pareto front obtained by the MOPSO-
DCD is closer to the reference Pareto front. The
execution time of the CMMPSO algorithm to produce
10 non-dominated solutions is approximately 35
minutes, while that of the MOPSO-DCD algorithm is
15 minutes. The multiple solutions provided by the
proposed approach can be effectively used by the
generator owners, to SS their generators in the energy
and spinning reserve markets
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Figure 2. Comparison of the Pareto Front of the
Single Generator System ( = 0.0)
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Figure 3. Comparison of the Pareto Front of the
Single Generator System (B = 0.05)

For further validation, the proposed MOPSO-DCD
algorithm is applied to the six generator IEEE 30-bus
system. The forecasted energy and spinning reserve
prices, the technical data and the estimated covariance
matrixes are tabulated in Appendix.

The population size and the archival size are fixed
as 400 and 300 respectively. Ten independent trials are
simulated, by using the MOPSO-DCD algorithm and
the extreme non-dominated solutions for the two risk
penalty parameters are obtained. The optimal solution
obtained for the two risk levels by using TOPSIS, is
tabulated in Tables 3 and 4 respectively. The
optimal expected profit and the emission obtained
without risk, by using the CMMPSO algorithm, are
8582.14 and 5512.89 respectively. For the value of risk
penalty parameter f = 0.05, the profit and the emission
values are 6014.29 and 3752.65 respectively.

The Pareto fronts obtained for the two risk levels by
using the CMMPSO and MOPSO-DCD are compared
and shown in Figures 4 and 5 respectively.
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Figure 5. Comparison of the Pareto front of the IEEE
30-Bus System (B = 0.05)

5.1 Performance Evaluation of MOPSO-DCD
Algorithm

In order to conduct a quantitative assessment of the

performance of the MOPSO-DCD algorithm, two
factors are taken into consideration.
1) Minimize the spacing of the Pareto front produced
by the proposed algorithm, with respect to the
reference Pareto front, obtained using the CMMPSO
algorithm.  2) Maximize the diversity of the solutions
found, to have a distribution of vectors as smooth and
uniform as possible.

The minimum spacing and divergence measures [25]
are obtained for the single generator system and IEEE
30-Bus system, by comparing the reference Pareto
front with Pareto fronts obtained in 5 independent runs,
by using the MOPSO-DCD algorithm. The best, worst
and mean value for the single generator system and
IEEE 30-Bus system are given in Table 5.

Performance measures | Best Worst Mean
Minimum spacing 0.0212 0.0321 | 0.0278
Diversity 0.575 0.422 0.511
IEEE 30-Bus System (£ =0.05)

Performance measures | Best Worst Mean
Minimum spacing 0.0332 0.0399 | 0.0312
Diversity 0.495 0.411 0.431

6. Conclusion

This paper proposed a MOPSO-DCD based solution
methodology for the MORCSS problem of the Gencos,
in the correlated energy and spinning reserve markets.
This problem is formulated as a multi-objective
optimization problem with conflicting objectives of the
maximization of profit and the minimization of the
emission impacts. Two test systems are considered for
the validation. The reference Pareto front is generated
using multiple runs of the CMMPSO algorithm and is
compared with the Pareto front generated using the
proposed algorithm for validation. The results obtained
by using the proposed MOPSO-DCD method shows
that the algorithm is fast and efficient in solving
MORCSS problem. The multiple Pareto optimal
solutions are obtained in one simulation run. The set of
non-dominated solutions provide many options for the
price taking Gencos for the self- scheduling problem.
The results indicate that the obtained solutions are
distributed and have good diversity characteristics.
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Table 3. Optimal Solution of the IEEE 30-Bus System using the MOPSO-DCD without Risk

Ple Pze P3e P4E PSE Pee Pls PZS PSS P4S PSS Pss
200.00 [80.00 |46.18 [22.19 |27.25 |30.30 |18.12 |16.41 |13.44 |6.53 |3.92 |2.83
89.33 |52.42 |19.72 |29.68 |27.55 |25.86 |2.909 |5.545 |3.226 [6.48 |3.220 |8.80
156.44 |66.91 |29.24 |28.53 |23.01 |31.92 [6.183 |4.041 |2.378 |1.41 241 |10.7
181.77 |68.74 |29.30 [34.96 |22.92 |28.67 [18.833 |8.322 |0 058 |4.05 |6.72
177.73 |52.14 |26.31 |20.67 |10.81 |26.88 [18.89 |14.18 |8.015 |5.23 ]0.705 |5.81
200.00 [36.85 |25.05 |17.82 |19.72 |19.11 |3.607 |18.00 |6.974 |5.85 |2.10 |2.55
188.64 |77.28 [28.07 |23.21 |24.65 |12.00 |32.48 |10.80 |11.61 (429 |2.80 |5.60
136.65 |63.79 |15.69 [16.21 |12.09 |1550 [29.92 |6.172 |5.672 |4.01 |4.73 |5.89
119.32 |80.00 |31.75 |12.,50 |22.08 |28.60 [23.19 |6.326 |2.907 |3.21 |0.98 |2.57
176.75 |44.52 |17.26 |28.79 |21.37 |28.64 [11.76 |16.89 |11.55 |457 |2.60 |3.66
182.50 |72.96 |21.68 |26.22 |11.26 |24.49 [10.75 |10.93 |1.763 |7.03 |2.77 |6.79
177.03 |44.348 |17.47 |35.00 |26.02 |26.53 [19.21 |5.089 |9.302 |3.73 |3.85 |3.66
194.36 |39.53 |37.14 |25.61 |[26.60 |25.09 |29.65 |16.84 |6.161 |6.18 |3.05 |11.0
79.037 |26.52 |20.36 |19.67 |25.,51 |35.84 |7.188 |5.196 |9.166 |2.06 |3.83 |4.75
108.81 |42.06 |19.84 |12.71 |18.97 |35.137 [11.06 |15.96 |4.556 |2.07 ]0.73 |2.31
89.436 |45.18 |26.52 |25.78 |20.61 |27.99 |23.70 |15.38 |7.555 |6.71 |1.49 |10.6
180.90 |51.56 |25.89 |22.63 |23.22 |16.50 [23.35 |3.975 |2.019 |0.92 448 ]9.37
137.09 |77.13 |25.64 |15.21 |18.32 |28.60 [15.85 |0 13.97 |1.68 |3.69 |8.23
172.62 |46.35 |31.18 |18.03 |[27.48 |12.00 |14.62 |15.18 |2.898 |2.51 |0.84 |8.80
158.57 |50.61 |48.66 |28.81 |20.11 |37.96 [19.35 |13.33 |8.085 |6.57 |2.66 |9.27
200.00 |54.53 |45.61 [13.19 |19.44 |18.80 |34.20 |6.128 |10.26 |3.85 |1.34 16.92
167.98 |27.93 [43.73 |23.59 |14.37 |36.54 |38.05 |12.40 [1.911 |3.01 |1.98 |3.04
200.00 |70.07 |33.39 [28.08 |15.33 |27.69 |13.83 |7.095 |11.62 |6.96 |4.02 |1.46
67.106 |54.92 |47.93 [30.36 |16.38 |32.66 |31.75 |2.884 ]9.083 |3.31 |3.99 7.39
Total Expected Profit in ($) = 8586.22

Total Emission in (ton) = 5522.41

Table 4. Optimal Solution of the IEEE 30-Bus System using the MOPSO-DCD with Risk Factor () of 0.05
P’ P, Ps P, Ps Pe |P° P, |Ps’ P’ |Ps |Ps
182.6 |49.82 |22.98 |24.3 |27.39 |30.43(25.31 |(9.84 |3.89 |7.22 |4.35 |5.05
183.1 |56.66 [15.43 |26.7 |20.54 |17.40(33.53 |4.62 [13.64 |5.39 |3.64 |8.87
151.6 |31.70 |22.01 |12.2 |19.96 |33.00(6.633 |8.93 [2.386 |6.45 |1.47 |6.23
175.1 |46.62 |46.71 |32.95 [29.54 |32.75|11.19 |14.0 [1.100 |2.99 |4.67 |8.22
189.5 |69.24 |30.43 |20.2 |18.68 |29.88(12.44 |13.61|9.343 |6.48 (3.94 |7.76
1475 |57.81 [36.26 |14.3 |22.76 |16.34|19.63 |6.586(5.269 |4.84 |0.76 |10.8
181.7 |42.73 |44.54 |29.8 |27.09 |30.00(25.49 |4.040|2.981 |5.05 (3.56 |2.99
83.72 |66.57 |46.70 [16.8 |21.47 |36.59|27.36 |14.69|13.50 (1.64 |1.03 |5.98
186.3 |53.25 [18.68 |24.8 |20.14 |35.62(3.344 |4.668|7.543 |5.94 |0.67 |1.99
135.6 |35.65 [31.22 |29.9 |18.86 |37.02(9.965 |1.586(14.38 |0.36 |3.12 |4.57
144.2 164.63 |29.52 |20.8 |29.01 |22.66(23.31 |15.00(12.79 |6.89 |(3.10 |1.33
161.9 |31.76 [43.89 |30.8 |26.99 |12.00(27.14 |5.271|5.653 |7.43 |1.72 |0.85
151.6 |46.53 |41.71 |29.7 |13.81 |29.99|14.25 |16.72|4.460 |7.54 |2.35 |(8.11
127.6 |63.27 [19.86 |22.7 |11.49 |12.16(6.262 |3.314|12.18 |2.55 |5.00 |1.13
92.09 |21.42 |38.30 (21.3 [23.99 |22.17|5.142 |11.55|0.451 |2.84 |0.74 |2.66
81.11 |64.58 |25.00 [25.7 |14.80 |22.06|23.63 |17.35|0.574 (1.39 |3.72 |6.81
189.1 |33.17 [43.92 |13.3 |22.85 |32.35|1.003 |7.794|5.929 |6.85 |3.92 |2.64
176.8 |74.00 [19.25 |25.2 |23.79 |19.30|0.511 |10.90/6.104 |0.89 |2.28 |10.4




185.2 |44.87 |38.32 |11.2 |26.85 |35.96(32.52 |19.76|3.841 |3.58 |0.58 |10.6
170.8 |23.43 |30.25 |29.5 |17.77 |17.78(35.16 |16.90|1.759 |2.34 |4.14 |10.3
162.4 |25.58 |24.51 |22.19 |18.90 |34.60(14.86 |8.908|8.505 |2.59 |[1.13 |6.18
160.8 |44.80 |16.57 |23.5 |24.13 |25.19(19.65 |6.905|8.125 |1.66 |(3.38 |4.33
162.6 |70.19 |35.80 |21.5 |12.42 |40.00(28.53 (9.980|5.432 |1.84 (2.80 |7.35
84.74 165.19 |33.45 (29.1 |[15.68 |14.34|13.45 |14.08|14.24 |6.98 |1.96 |9.83
Total Expected Profit in ($) = 6013.7

Total Emission in (ton) = 3753.1




