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Abstract: This paper addresses a Multi-Objective Particle 
Swarm Optimization-Dynamic Crowding Distance 
(MOPSO-DCD) based algorithm to solve the Multi-
Objective Risk Constrained Self-Scheduling (MORCSS) 
problem of the Generator companies (Gencos), in the 
correlated energy and spinning reserve markets. The 
proposed MOPSO-DCD method is demonstrated on the 
single generator system and the standard IEEE 30-bus 
system and its corresponding results are analyzed. The 
effectiveness of the proposed approach is demonstrated by 
comparing the reference Pareto front, generated by using 
multiple runs of the Cauchy Mutated Mimetic Particle 
Swarm Optimization (CMMPSO) method. Minimum spacing 
and the diversity of the Pareto front is  taken into account 
for the performance assessment process 
 
Key words: Cauchy Mutated Mimetic Particle Swarm 
Optimization, Correlated market, Dynamic Crowding 
Distance, Multi-Objective Particle Swarm Optimization, 
Self-Scheduling. 
 
1. Introduction 
 The objective of the Gencos Self-Scheduling (SS) 
problem is to effectively schedule the generating units 
over a given scheduling period, to maximize the 
expected profit, satisfying various operating constraints 
of the generators. The modelling of the SS problem for 
the various entities and for the various market 
structures without considering the uncertainties is 
presented in [1-4]. In the past, numerous research 
works have incorporated risk issues into the Gencos SS 
problem [5-11]. In General, the only objective of the 
SS problem is to maximize the expected profit. It is 
also necessary to consider related societal issues 
because of the scale of the electric industry and its 
importance to modern life. One of these issues is the 
environmental impact of electricity generation. The 
environmental issues caused by the pollutant emissions 
produced by fossil-fueled electric power plants, have 
become a matter of concern. Due to increasing public 
awareness of environmental protection, and the passing 
of the clean air act amendments of 1990 [12], modern 
utilities has been forced to simultaneously optimize 
both economic and emission objectives.   
  

 The formulation of the Multi-Objective Self-
Scheduling (MOSS) problem has gathered momentum 
in recent times. Due to the current scenario, generator 
owners are forced to limit their emission levels, to 
escape from the penalties. The optimal strategies of the 
Gencos in the deregulated environment also depend 
upon the emission strategies of the Gencos. Jalal 
Kazempour [13] considered emission as one of the 
constraints of the SS problem, which is solved for the 
correlated energy and spinning reserve markets. 
 The discussions about various multi-objective 
evolutionary approaches from the analytical weighted 
aggression to population based approaches, and the 
Pareto-optimality concepts are discussed in [14]. The 
recent trend is to handle multi-objectives 
simultaneously as competing objectives, using modern 
optimization techniques, such as Genetic Algorithms 
(GA), Evolutionary Programming (EP) and Particle 
Swarm Optimization (PSO). Pareto based approaches 
are most suitable for multi-objective optimization 
problems, due to the ability to produce multiple 
solutions in less computation time.  
 Goldberg [15] introduced Non-Dominated Sorting 
(NDS) to rank a search population according to Pareto 
optimality. A ranking based procedure of identifying 
Non-dominated sets of individuals are proposed to 
obtain the Pareto frontier. The solution of multi-
objective problems by using Non-dominated Sorting 
Genetic Algorithms (NSGA) was proposed by Srinivas 
and Deb [16]. However, a large number of Non-
dominated solutions may get lost in this approach as 
the elitism property of Evolutionary Algorithms (EA) 
has not been included. The Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II) was proposed in [17] to 
improve the performance of the NSGA algorithm. The 
controlled elitism is proposed by Deb and Goel [18] to 
improve the exploitation-exploration characteristics of 
NSGA-II.  
 On the other hand, Particle Swarm Optimization 
(PSO) based algorithms seem particularly suitable for 
multi-objective optimization, mainly because of its 
high speed of convergence. There are several forms of 
Multi-objective PSO proposed over the years, to solve 
Multi-objective problems. Carlo Coello et al [19] 
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proposed a Pareto dominance based PSO approach, to 
solve multi-objective optimization problems. This 
algorithm uses the concept of a repository of particles 
and a mutation operator to improve the solution. 
Raquel and Prospero Naval [20] proposed a modified 
solution methodology for the multi-objective 
optimization problem, by combining the PSO and 
Crowding Distance (CD) operator for the generation of 
the hypercube, to locate the edges of the Pareto front. 
The Dynamic Crowding Distance (DCD) operator was 
proposed by Luo et al [21] to improve the diversity of 
the multi-objective evolutionary algorithms.  
   Considering all these factors, 
an archive based Multi-Objective Particle Swarm 
Optimization (MOPSO) algorithm, which includes a 
DCD operator to solve the Multi-Objective Risk 
Constrained Self-Scheduling (MORCSS) problem. The 
MORCSS problem of the price-taking Gencos in the 
day-ahead energy and spinning reserve markets 
considering the conflicting objectives of the 
maximization of profit and the minimization of 
emission impacts. This proposed algorithm provides 
multiple solutions to the Gencos to decide their SS in 
the day-ahead market. The Pareto front obtained using 
the proposed method, is compared with the reference 
Pareto front generated by the multiple optimization 
runs, with the Dynamic Weighted Aggregation (DWA) 
of individual objectives, using the CMMPSO 
algorithm. The performance of the proposed multi 
objective algorithm is compared by measuring the 
performance measures, such as minimum spacing and 
diversity with respect to the reference Pareto front. 
  
2. Formulation of the Multi-Objective Risk 

Constrained Self-Scheduling (MORCSS) 
Problem 

   The MORCSS problem of the thermal power 

generators are formulated as a bi-objective 

optimization model. The two conflicting objectives are: 

1) maximizing the expected profit and 2) minimizing 

the emission levels, while satisfying all the system 

operating constraints over the scheduling period. The 

mathematical formulation of this problem is explained 

in this section. 

2.1 Objective Functions 

2.1.1 Profit Maximization 

   Diversification of investments into different types of 

assets is the main objective of the Gencos in 

deregulated power market. This will minimize the 

Gencos exposure to risks, and maximizes the returns on 

the portfolios. The Gencos profit maximization 

problem can be formulated as an optimization problem 

that maximizes the profit and minimizes the risk. The 

Markowitz portfolio optimization model is used to 

formulate the profit maximization problem. In the 

Markowitz mean-variance model, the safety selection 

of risky portfolio construction is considered as one 

objective function and the mean profit is defined as one 

of the constraints. This model is described as: 
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    where i and j are the time indices, 
e

P and 
s

P  are the 

scheduled power output in the energy and spinning 

reserve markets respectively, 
est

eV and 
est
sV

 
are the 

estimated covariance matrix of energy and spinning 

reserve prices of size ( TT  ) respectively, 
est
seCOV ,  is the 

Covariance of market prices of size ( TT  ), T is the 

total scheduling interval and 
d

R  is the desired profit of 

the portfolio.                          

   Different objective function values are found by 

varying the desired mean returns. The risk aversion 

parameter ],0[   is used for this purpose. The profit 

maximization objective function with this parameter   

can be described as: 

F1:    RISKCOSTSRETURNSMAX       (3) 

   when,   is zero, the model maximizes the mean 

return of the portfolio, regardless of the variance (risk). 

So the sensitivity of the Gencos to the risk increases as 


 
increases from zero to infinity, while it decreases as 

  approaches zero. The introduction of parameter   

makes the problem a single-objective function. The 

RETURNS AND COSTS terms are given in equations 

(4) and (5) respectively. The quadratic cost function 

with the valve point effect is given in equation (6),        
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where, 
e

kP and 
s

kP  are the scheduled power output of 

the k
th
 generator in the energy market and spinning 

reserve market respectively, kU  is the schedule state of 



 

the k
th
 generator (1: unit is on and 0: unit is off), e , s  

are the prices at the energy and spinning reserve 

markets respectively and gN  is the number of 

generating units participates in the SS. The operating 

cost of the Gencos, participating in the energy and 

spinning reserve markets is expressed as,  
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where, kSUC and kSDC  is the start-up and shutdown 

cost and kC  is the quadratic cost function of the k
th
 

generator.         
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where, kckbka ,,  are the cost coefficients and kekd ,  

are the coefficients reflecting the valve point effect of 

the k
th
 generator. The real power 

e
kP

 
will be replaced 

by 
s

kP  for the spinning reserve market.
  

 

2.1.2 Minimizing Emission Levels 

   The objective function to minimize the emission 

levels of the thermal generators are presented below, 
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    where, kE  is the quadratic emission function of the 

k
th
 generator (ton/hr) of the atmospheric pollutants 

caused by the operation of the k
th
 thermal generator. 

The emission function of the k
th
 generator is given 

below, 
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  where, kf , kg
 
and kh  are the emission coefficients 

of the k
th
 generator.  

2.2  Generators Operating Constraints 

2.2.1  Generator Boundary Limits 

   The real power boundary limits of the k
th
 generator in 

the correlated energy and spinning reserve markets is 

given in equation (9) 
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where,  max,
/

min, e
kP

e
kP and  max,

/
min, s

kP
s

kP are the 

minimum and maximum real power boundary limits of 

the k
th
 generator in the energy and spinning reserve 

market respectively. The value of  min,s
kP  is set to zero 

and 
schedulede

kP
,

 is the scheduled power in the energy 

market. 

2.2.2 Generator Ramp Up/Down Limits 

   The ramp up and ramp down limits of the k
th
 

generator in the correlated energy and spinning reserve 

markets is given in equation (11) 
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   where, kDRkUR /  are the up/down ramp rate limits of 

the k
th 

generating unit.
         

 

2.2.3 Minimum Up / Down Time Limit 

   The minimum up and down time limits of the k
th
 

generating unit for the correlated market is given in 

equations (12) and (13). 
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where Ton/Toff is the time counter for which a unit has 

been on/off at hour t and can be expressed as: 
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where 

kMDTkMUT /  are the minimum up/down time 

limits of the k
th
 generator. 

2.3  Multi-Objective Formulation 

   Multi-objective optimization problem have two or 

more objectives to be optimized simultaneously. The 

Pareto front concept describes the optimal trade-off 



 

 

possibilities between the objectives. The MORCSS 

problem has two conflicting objectives; the main 

objective is to maximize the profit of the Gencos, and 

at the same time, the emission levels of the generators 

have to be minimized. This problem can be 

mathematically formulated as a Multi-objective 

optimization problem as follows: 
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where, h  is the inequality constraint representing the 

generator boundary limits, ramp rate limits and 

minimum up/down time constraints. 

3. Multi-Objective Particle Swarm Optimization 
Algorithm  

   The similarity of the PSO with Evolutionary 

Algorithms (EA) makes evident the notion that 

using a Pareto ranking scheme [15] could be a 

straightforward way to extend the approach to 

handle multi-objective optimization problems.  

The best solutions found by the individual particle 

in the past run could be used to store the generated 

Non-dominated solutions. This would be similar 

to the elitism used in evolutionary multi-objective 

optimization.       

   The performance of MOPSO can be attributed 

to its use of an external archive of non-dominated 

solutions found in previous iterations. The Cauchy 

Mutation (CM) operator improves the exploratory 

capabilities of the algorithm, and prevents 

premature convergence. However, it should be 

noted that the use of CD of each solution, as a 

diversity operator by NSGA-II was able to 

produce a better distribution of the generated 

Non-dominated solutions, compared to the results 

generated by MOPSO that uses an adaptive grid 

[19] in maintaining the diversity of the generated 

solutions. The computation time of the PSO 

algorithm is less compared to that of the EA. This 

fact suggests that the PSO has been extended to 

solving multi-objective optimization problems, by 

incorporating the mechanism of DCD 

computation in the global best selection, and the 

deletion method of the external archive of non-

dominated solutions, whenever the archive is full. 

The DCD operator, together with a CM operator, 

maintains the diversity of Non-dominated 

solutions in the external archive. The algorithmic 

steps of the proposed method are as follows, 
Step1: For i =1 to M (M is the population size) 

 Randomly initialize the particle ][iP  

 Randomly initialize the velocity of the 

particles 0][ iv   

 Evaluate the fitness function of each of the 

particles  

 Store the personal best  ][ibestp  value of the 

particles 

 Store the global best  bestg  value among all 

the particles 

           End 

Step2: Initialize the iteration counter 0iter  

Step3: Store the position of the non-dominated vectors 

found in P  into the external archive A.  

Step4: Repeat  

 Compute the DCD values of each of the 

non-dominated solutions in the archive A. 

 Sort the non-dominated solutions in A in 

descending DCD values 

For i=1 to M 

 Randomly select the global best guide for 

][iP  from a specified top portion of the sorted    

       archive A and its position to bestg .  

 Compute the new velocity: 
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                  where ][ipbest  is the best position that the 

particle i has reached and ][ bestgA  is the 

global best guide for each non-dominated 

solution. 



 

 Compute the new position of the particle 

][iP :                           
 

 ][][][ iviPiP                               (17) 

if ][iP  violates the boundary limits, then 

the decision variable takes the value of its 

corresponding lower and upper boundary 

limits, and its velocity is multiplied by -1, 

so that it searches in the opposite 

direction. 

 Generate a uniformly distributed random 

number ( irand ) between 0 and 1 and compare 

each generated random number ( irand ) 

with mP . If mP > irand  then mutate the particle 

by the following equation, 

kki
viter

ki
xf

ki
x

ki
x iter

,
)

,
(iter

,
1iter

,


        (18) 

where 
k   is a Cauchy random number. 

 Evaluate the fitness function of each of the 

particles in P  

End  

 Insert all the new non-dominated solutions 

in P into A, if they are not dominated by any of 

the stored solutions. All dominated solutions in 

the archive by the new solution are removed 

from the archive. If the archive is full, the 

solution to be replaced is determined by the 

following steps:      

i)  Compute the DCD values of each non-

dominated solution in the archive A. 

ii) Sort the Non-dominated solutions in A in 

descending DCD values. 

iii) Randomly select a particle from a 

specified bottom portion which compromises 

the most crowded particles in the archive; 

then replace it with the new solution.  

iv) Update the personal solution of each 

particle in P . If the current bestp
 dominates 

the position in memory, the particles position 

is updated using ][][ iPibestp   

 Increment iteration count t. 

Step 5:   Until the maximum number of iterations is 

reached repeat the previous steps.   

3.1 Dynamic Crowding Distance Computation 

   In Multi-objective optimization algorithms, the 

horizontal diversity of the Pareto front is very 

important. The horizontal diversity is often realized by 

removing excess individuals in the Non-Dominated Set 

(NDS), when the number of non-dominated solutions 

exceeds the population size. The MOPSO uses the CD 

measure as given in equation (19) to remove excess 

individuals. The individuals having the lower value of 

CD are preferred over individuals with a higher value 

of CD in the removal process.     
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where m is the number of objectives, k

if 1
is the 

thk objective of the thi 1  individual and k

if 1
is the 

thk objective of the thi 1  individual after sorting the 

population according to the CD. The major drawback 

of the CD is the lack of uniformity, in obtaining non-

dominated solutions as illustrated in Figure 1.  

              
      Figure 1. Crowding Distances of Individuals 

   In Figure 1, if the normal CD method is adopted, 

then the individuals Pc, Pd, and Pe are deleted from the 

NDS, since they have small CD values. Because of 

that, some parts of the Pareto front are too crowded and 

some parts are sparse. Also, the CD of Pb is small, 

because one side of the rectangle is short, while the 

other side is long. However, the CD of Pf is large 

because the length of one side is almost equal to that of 

the other side. If one individual must be removed 

between the individuals Pb and Pf, because of small CD 

value, individual Pb will be removed and Pf will be 

retained in the NDS. But, in order to get good 

horizontal diversity, the individual Pb should be 



 

 

maintained, because the individual Pb helps to maintain 

a uniform spread. To overcome this problem, the 

Dynamic Crowding Distance (DCD) [21] method is 

suggested.                           

    In this approach, one individual with the lowest 

DCD value is removed every time and the DCD is 

recalculated for the remaining individuals. The 

individuals DCD is calculated as follows:  
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where 
iCD is calculated using equation (19) and zi using 

equation (21),  
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    where zi is the variance of the CDs of individuals, 

which are neighbors of the i
th
   individual. zi can give 

information about the variations of CD of different 

objectives. In Figure 1, the individual Pb has a larger 

value of zi than the individual Pf, and the DCD of Pb is 

larger than that of Pf. Therefore, the individuals similar 

to Pb in the NDS will have more chance to be retained. 

    Assume that the population size is N, the NDS at the 

jth generation is Q(j) and its size is M. If M > N, the 

DCD based strategy is used to remove M-N individuals 

from the NDS. The algorithmic steps of the DCD 

algorithm are given below:  

Step 1 :  If NjQ )( then go to step 5, else go 

to step 2.  

Step 2 :  Calculate the individuals’ DCD in the 

Q(j) by using equation (20).        

Step 3 :  Sort the non-dominated set Q(j) based 

on DCD. 

Step 4 :  Remove the individual which has the 

lowest DCD value in the Q (j). 

Step 5 :  If NjQ )( , stop the population 

maintenance; otherwise go to  

step 2 and continue. 

3.2 Constraint Handling 

   The proposed MOPSO-DCD algorithm adopted the 

constraint handling mechanism used in NSGA-II, due 

to its simplicity in using the feasibility and non-

dominance of solutions when comparing solutions. A 

solution x1 is said to constrained-dominate a solution x2 

if any of the following conditions is true: 

 Solution x1 is feasible and solution x2 is not. 

 Both solutions x1 and x2 are infeasible, but solution x1 

has a smaller overall constraint violation. 

 Both solutions x1 and x2 are feasible and solution m 

dominates solution n. 

   When comparing two feasible particles, the particle 

which dominates the other particle is considered a 

better solution. On the other hand, if both particles are 

infeasible, the particle with a lesser number of 

constraint violations is a better solution. 

3.3 Global Best Selection 

   The selection of the global is a crucial step in a 

MOPSO algorithm. It affects both the convergence 

capability of the algorithm, as well as the maintenance 

of a good spread of the Non-dominated solutions. In 

the MOPSO-DCD, a bounded external archive stores 

the Non-dominated solutions found in the previous 

iteration. It is to be noted that any of the Non-

dominated solutions in the archive can be used as the 

global best guide of the particles in the swarm. But we 

want to ensure that the particles in the population move 

towards the sparse regions of the search space. 

     

   In the MOPSO-DCD, the global best guide of the 

particles is selected from among those non-dominated 

solutions with the highest DCD values. Selecting 

different guides for each particle in a specified top part 

of the sorted archive, based on a decreasing DCD, 

allows the particles in the primary population to move 

towards those non-dominated solutions in the external 

archive, which are in the least crowded area in 

objective space. 

   Also, whenever the archive is full, the DCD is again 

used in selecting which solution to replace in the 

archive. This promotes diversity among the stored 

solutions in the archive since those solutions which are 

in the most crowded areas, are most likely to be 

replaced by a new solution. 

 
4. Implementation Of MORCSS model   

   The implementation of MORCSS problem is 

discussed in this section. The self-scheduling of the 

generators in day-ahead market is based on the 

forecasted LMP values. The variance and covariance 

matrices up to ‘N-1’ days are estimated from the 

available LMP data. The Pareto front with a set of non-

dominated solution is obtained using the MOPSO-

DCD algorithm depends upon the risk strategies of the 

Gencos. Multiple Criteria Decision Making (MCDM) 



 

techniques are generally employed in an evaluation of 

Pareto-optimal solutions, to choose the best amongst 

them. A modified Technique for Order Performance by 

Similarity to Ideal Solution (TOPSIS) [22] based on 

Shannon entropy function [23] is used for this purpose 

which is similar to the one proposed in [26]. The unit 

commitment status and the scheduled real power 

outputs of generators in the correlated energy and 

spinning reserve markets owned by the Gencos for the 

24 hour time period is obtained using the same 

procedure mentioned above, subject to the 

minimization of the emission levels and maximization 

of the expected profit from the selected portfolio. 

5. Numerical Results and Discussions   

    A power producer owning a single generating 

machine in the PJM market and an IEEE 30-bus 

system with six generating machines in the day-ahead 

energy and reserve markets are used to test the multi-

objective MORCSS model. The cost, emission 

coefficients and the technical data, the forecasted LMP 

values of the energy and spinning reserve markets and 

the estimated covariance matrices for the single 

generator system, are presented in Appendix. 

   

   First, the profit and the emission optimization of the 

MORCSS problem are solved individually using the 

CMMPSO [24] algorithm, to obtain the reference 

Pareto front. The reference front is generated in 

multiple runs of the Dynamic Weighted Aggregation 

(DWA) of objectives. The CMMPSO based algorithm 

is used as an optimization algorithm. For a two-

objective problem, weights can be modified during the 

optimization. The combined objectives of the 

MORCSS model are given below, 
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    where t is the iteration index, ‘F’ is the weights’ 

change frequency and ‘w’ is a weighting factor 

indicating the relative importance of its associated 

objective during the optimization. If the Pareto front is 

concave in the nature, then the solution obtained by the 

DWA is better than the fixed weight method.  

 

   By varying‘t’ and ‘F’, a reference Pareto front with 

40 non dominated points is obtained. This reference 

Pareto front also includes two extreme points 

corresponding to w = 0 and w = 1. The comparisons of 

the scheduled real power, total profit and total emission 

values, using the CMMPSO algorithm for the two risk 

levels, are tabulated in Table 1. 

 

Table 1. Optimal Solution of Single Generator 

System using the CMMPSO 

Hour 
β = 0.0 β = 0.05 

eP (MW) 
sP (MW) 

eP (MW) 
sP (MW) 

1 206.5174 27.8193 117.3575  42.5089 

2  33.3783 27.2062 221.7253  25.3638 

3 237.5062 19.6957 274.6201 20.3705 

4 207.5018  41.9043 242.5523 20.5504 

5 194.2703 33.1284 290.8746  34.7893 

6  34.3412  26.2061 269.8908 6.4635 

7  61.8539  42.9825 162.9515 17.1860 

8  31.0760  19.9036 188.7858 33.5446 

9. 265.2294 25.2948 279.7858 23.9063 

10  98.1602 41.6720 258.5291  31.1578 

11 230.6436 28.2174 177.5739 27.1805 

12  77.4144 38.3518 231.2073 35.1533 

13 217.8192 28.0329 156.3114  53.6977 

14 226.0698  42.2667 231.5532 1.4799 

15 243.3177  31.1036 139.4325  41.2006 

16 251.5151  19.1071 291.3936  13.2746 

17  50.5443 22.2994 112.4157   13.1879 

18  64.5210 22.3591 251.1599  40.0999 

19 227.1968  16.3831 275.3588  53.9290 

20  57.5594  23.0649 267.5486 13.4552 

21 242.4722  25.9063 218.3404 34.1975 

22 168.5870  41.3339 283.8619 28.8470 

23 263.3438  27.1628 271.5379  43.1436 

24  48.5398  44.9286 225.8333 2.7588 

Total  

Expected 

Profit 

(TEP) in 

($) 

18,959 16,177 

Total 

Emission 

(TE) in 

(ton) 

1962 627 

   

   Then, the MORCSS problem is solved by using the 

proposed MOPSO-DCD algorithm. The population 

size is fixed at 150 and the archival size is fixed at 100 

particles. The global best from the top 10% sorted 

archival replaces one of the non-dominated solutions in 

the bottom 10% of the archival. The DCD parameters 

are calculated based on the Crowding Distance (CD) 

and the variance of the CD. For the MORCSS model, 

10 independent trails are conducted using the proposed 

algorithm for the different initial populations.   

    A set of extreme non-dominated solutions for the 

two risk levels of the MORCSS problem is obtained. 

The optimal solution is obtained from the set of non-

dominated solutions, as given in Table 2. 



 

 

Table 2. Optimal Solution of a Single Generator System 

using the MOPSO-DCD 

Hour 
β = 0.0 β = 0.05 

eP (MW) 
sP (MW) 

eP (MW) 
sP (MW) 

1 204.4522 27.2629 115.5971 41.6587 

2   31.0445 26.6621   18.3994 24.8565 

3 235.1311 19.3018 270.5008 19.9631 

4 205.4268 41.0662 238.9140 20.1394 

5 192.3276 32.4658 286.5115 34.0935 

6 231.9978 25.6820 265.8424   6.3342 

7 160.2354 42.1229 160.5072 16.8423 

8 228.7652 19.5055 185.9540 32.8737 

9. 262.5771 24.7889 275.5890 23.4282 

10 196.1786 40.8386 254.6512 30.5346 

11 228.3372 27.6531 174.9103 26.6369 

12 175.6403 37.5848 227.7392 34.4502 

13 215.6410 27.4722 153.9667 52.6237 

14 223.8091 41.4214 228.0799  1.4503 

15 240.8845 30.4815 137.3410 40.3766 

16 248.9999 18.7250 287.0227 13.0091 

17 149.0389 21.8534 110.7295 12.9241 

18 261.8758 21.9119 247.3925 39.2979 

19 224.9248 16.0554 271.2284 52.8504 

20 254.9838 22.6036 263.5354 13.1861 

21 240.0475 25.3882 215.0653 33.5135 

22 166.9011 40.5072 279.6040 28.2701 

23 260.7104 26.6195 267.4648 42.2807 

24 147.0544 44.0300 222.4458   2.7036 

TEP 

in ($) 
18,989 16,237 

TE in 

(ton) 
1,942 611 

 

    The comparison of the Pareto front obtained by 

using the CMMPSO and MOPSO-DCD for the two 

risk levels is shown in Figure 2 and Figure 3 

respectively.        From Figures 2 and Figure 3, it is 

clear that the Pareto front obtained by the MOPSO-

DCD is closer to the reference Pareto front. The 

execution time of the CMMPSO algorithm to produce 

10 non-dominated solutions is approximately 35 

minutes, while that of the MOPSO-DCD algorithm is 

15 minutes. The multiple solutions provided by the 

proposed approach can be effectively used by the 

generator owners, to SS their generators in the energy 

and spinning reserve markets 

 

Figure 2. Comparison of the Pareto Front of the 

Single Generator System (β = 0.0) 

Figure 3. Comparison of the Pareto Front of the 

Single Generator System (β = 0.05)  

   For further validation, the proposed MOPSO-DCD 

algorithm is applied to the six generator IEEE 30-bus 

system. The forecasted energy and spinning reserve 

prices, the technical data and the estimated covariance 

matrixes are tabulated in Appendix.    

 The population size and the archival size are fixed 

as 400 and 300 respectively. Ten independent trials are 

simulated, by using the MOPSO-DCD algorithm and 

the extreme non-dominated solutions for the two risk 

penalty parameters are obtained. The optimal solution 

obtained for the two risk levels by using TOPSIS, is 

tabulated in Tables 3 and 4 respectively.   The 

optimal expected profit and the emission obtained 

without risk, by using the CMMPSO algorithm, are 

8582.14 and 5512.89 respectively. For the value of risk 

penalty parameter β = 0.05, the profit and the emission 

values are 6014.29 and 3752.65 respectively. 

 The Pareto fronts obtained for the two risk levels by 

using the CMMPSO and MOPSO-DCD are compared 

and shown in Figures 4 and 5 respectively. 



 

 

Figure 4. Comparison of the Pareto front of the IEEE 

30-Bus System (β = 0.0) 

 
Figure 5. Comparison of the Pareto front of the IEEE 

30-Bus System (β = 0.05) 

5.1 Performance Evaluation of MOPSO-DCD          

  Algorithm                                                             

  

   In order to conduct a quantitative assessment of the 

performance of the MOPSO-DCD algorithm, two 

factors are taken into consideration.   

1) Minimize the spacing of the Pareto front produced 

by the proposed algorithm, with respect to the 

reference Pareto front, obtained using the CMMPSO 

algorithm.     2) Maximize the diversity of the solutions 

found, to have a distribution of vectors as smooth and 

uniform as possible.  

   The minimum spacing and divergence measures [25] 

are obtained for the single generator system and IEEE 

30-Bus system, by comparing the reference Pareto 

front with Pareto fronts obtained in 5 independent runs, 

by using the MOPSO-DCD algorithm. The best, worst 

and mean value for the single generator system and 

IEEE 30-Bus system are given in Table 5. 

 

 

Table 5. Statistical Measures Comparison of the Test 

Systems 

Single Generator System ( 05.0 ) 

Performance measures Best Worst Mean 

Minimum spacing 0.0212 0.0321 0.0278 

Diversity 0.575 0.422 0.511 

IEEE 30-Bus System  ( 05.0 ) 

Performance measures Best Worst Mean 

Minimum spacing 0.0332 0.0399 0.0312 

Diversity 0.495 0.411 0.431 

 

6. Conclusion  

   This paper proposed a MOPSO–DCD based solution 

methodology for the MORCSS problem of the Gencos, 

in the correlated energy and spinning reserve markets. 

This problem is formulated as a multi-objective 

optimization problem with conflicting objectives of the 

maximization of profit and the minimization of the 

emission impacts. Two test systems are considered for 

the validation. The reference Pareto front is generated 

using multiple runs of the CMMPSO algorithm and is 

compared with the Pareto front generated using the 

proposed algorithm for validation. The results obtained 

by using the proposed MOPSO-DCD method shows 

that the algorithm is fast and efficient in solving 

MORCSS problem. The multiple Pareto optimal 

solutions are obtained in one simulation run. The set of 

non-dominated solutions provide many options for the 

price taking Gencos for the self- scheduling problem. 

The results indicate that the obtained solutions are 

distributed and have good diversity characteristics. 
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Table 3. Optimal Solution of the IEEE 30-Bus System using the MOPSO-DCD without Risk 

P1
e
 P2

e
 P3

e
 P4

e
 P5

e
 P6

e
 P1

s
 P2

s
 P3

s
 P4

s
 P5

s
 P6

s
 

200.00   80.00    46.18    22.19    27.25    30.30    18.12     16.41     13.44     6.53     3.92     2.83     

89.33   52.42    19.72    29.68    27.55    25.86    2.909     5.545     3.226     6.48     3.220  8.80    

156.44   66.91 29.24 28.53 23.01 31.92 6.183   4.041     2.378 1.41     2.41   10.7  

181.77   68.74    29.30    34.96    22.92    28.67    18.833  8.322    0 0.58     4.05     6.72     

177.73   52.14    26.31    20.67    10.81    26.88    18.89     14.18    8.015     5.23     0.705   5.81     

200.00   36.85    25.05    17.82    19.72    19.11    3.607    18.00    6.974    5.85     2.10     2.55 

188.64   77.28    28.07    23.21    24.65    12.00    32.48    10.80     11.61     4.29     2.80     5.60     

136.65   63.79    15.69    16.21    12.09    15.50    29.92   6.172     5.672     4.01     4.73     5.89 

119.32   80.00    31.75    12.50    22.08   28.60    23.19    6.326    2.907    3.21     0.98     2.57     

176.75   44.52    17.26    28.79    21.37   28.64    11.76    16.89    11.55     4.57     2.60    3.66     

182.50   72.96    21.68    26.22    11.26    24.49    10.75   10.93     1.763     7.03     2.77     6.79     

177.03   44.348  17.47    35.00    26.02    26.53    19.21    5.089    9.302     3.73     3.85     3.66    

194.36 39.53    37.14    25.61    26.60   25.09    29.65     16.84     6.161   6.18     3.05     11.0     

79.037   26.52    20.36    19.67    25.51    35.84    7.188    5.196    9.166     2.06     3.83     4.75    

108.81 42.06    19.84    12.71    18.97    35.137  11.06    15.96    4.556     2.07     0.73     2.31    

89.436   45.18   26.52   25.78   20.61   27.99   23.70   15.38    7.555    6.71     1.49   10.6     

180.90   51.56    25.89    22.63    23.22    16.50    23.35    3.975  2.019    0.92    4.48     9.37     

137.09   77.13    25.64    15.21    18.32    28.60    15.85    0    13.97     1.68     3.69     8.23     

172.62   46.35    31.18   18.03    27.48    12.00    14.62   15.18    2.898     2.51     0.84     8.80     

158.57   50.61    48.66   28.81    20.11    37.96    19.35    13.33     8.085    6.57     2.66     9.27     

200.00   54.53    45.61   13.19    19.44    18.80    34.20   6.128    10.26     3.85     1.34     6.92     

167.98   27.93    43.73   23.59    14.37    36.54    38.05    12.40     1.911    3.01     1.98     3.04    

200.00   70.07    33.39   28.08    15.33    27.69    13.83    7.095     11.62     6.96    4.02     1.46     

67.106 54.92 47.93 30.36 16.38 32.66 31.75 2.884 9.083 3.31 3.99 7.39 

Total Expected Profit  in ($)     =  8586.22 

Total Emission in (ton)             =  5522.41 

 

Table 4. Optimal Solution of the IEEE 30-Bus System using the MOPSO-DCD with Risk Factor (β) of 0.05 

P1
e
 P2

e
 P3

e
 P4

e
 P5

e
 P6

e
 P1

s
 P2

s
 P3

s
 P4

s
 P5

s
 P6

s
 

182.6   49.82  22.98  24.3    27.39    30.43 25.31   9.84 3.89   7.22 4.35 5.05     

183.1 56.66 15.43   26.7    20.54    17.40 33.53     4.62 13.64 5.39 3.64   8.87     

151.6   31.70 22.01   12.2 19.96 33.00 6.633    8.93   2.386 6.45 1.47 6.23     

175.1   46.62   46.71   32.95 29.54    32.75 11.19    14.0 1.100 2.99 4.67 8.22     

189.5   69.24   30.43 20.2    18.68    29.88 12.44   13.61 9.343 6.48  3.94 7.76    

147.5   57.81 36.26   14.3   22.76    16.34 19.63   6.586 5.269  4.84 0.76 10.8     

181.7    42.73  44.54 29.8 27.09 30.00 25.49  4.040 2.981 5.05 3.56 2.99     

83.72 66.57   46.70   16.8 21.47   36.59 27.36   14.69 13.50 1.64 1.03 5.98   

186.3 53.25 18.68 24.8 20.14 35.62 3.344 4.668 7.543 5.94  0.67   1.99   

135.6 35.65 31.22  29.9  18.86 37.02 9.965 1.586 14.38 0.36 3.12 4.57     

144.2 64.63   29.52 20.8 29.01  22.66 23.31 15.00 12.79 6.89 3.10 1.33     

161.9 31.76 43.89 30.8 26.99 12.00 27.14 5.271 5.653 7.43 1.72 0.85 

151.6  46.53   41.71 29.7  13.81 29.99 14.25 16.72 4.460 7.54  2.35  8.11 

127.6   63.27   19.86 22.7 11.49    12.16 6.262 3.314 12.18 2.55 5.00 1.13     

92.09    21.42   38.30 21.3  23.99 22.17 5.142 11.55 0.451 2.84 0.74 2.66    

81.11    64.58   25.00   25.7  14.80  22.06  23.63   17.35 0.574 1.39 3.72 6.81     

189.1  33.17   43.92 13.3    22.85    32.35 1.003     7.794 5.929 6.85 3.92 2.64    

176.8 74.00 19.25 25.2  23.79    19.30 0.511    10.90 6.104 0.89 2.28 10.4   



 

 

185.2  44.87   38.32 11.2    26.85    35.96 32.52    19.76 3.841 3.58 0.58 10.6   

170.8 23.43   30.25   29.5  17.77    17.78 35.16    16.90 1.759 2.34 4.14 10.3     

162.4 25.58 24.51   22.19 18.90    34.60 14.86    8.908 8.505 2.59 1.13 6.18     

160.8 44.80   16.57   23.5   24.13   25.19 19.65    6.905 8.125 1.66 3.38 4.33     

162.6   70.19  35.80 21.5   12.42    40.00 28.53    9.980 5.432 1.84 2.80 7.35     

84.74 65.19 33.45 29.1 15.68 14.34 13.45 14.08 14.24 6.98 1.96 9.83 

Total Expected Profit  in ($)    =  6013.7 

Total Emission in (ton)            =  3753.1 

 
 
 
 
 
 
 
 
 
 
 
 

 


