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Abstract: It is often essential to estimate the number of 
operating nodes in a wireless communication network 
(WCN), in which the nodes are deployed in different forms 
to cover small or large areas for a wide range of personal, 
scientific and commercial applications. The number of 
nodes may vary due to ad-hoc nature, power failure of 
nodes, or environmental disaster. In any communication 
network, it is important to estimate the number of nodes at 
any point in time for proper network operation and 
maintenance. Counting the number is very important for 
data collection, network maintenance and node 
localization.  Also network performance depends on the 
area node ratio i.e. the number of operating nodes per unit 
area. Many estimation techniques are used to count the 
number of nodes in wireless communication networks, but 
in underwater environment they are not efficient. In this 
paper a cross-correlation based statistical signal 
processing approach for node estimation in underwater 
wireless communication network is proposed. In this 
method nodes are considered as acoustic signal sources 
and their number is calculated through the cross-
correlation of the acoustic signals received at two sensors 
placed in the network. The mean of the cross-correlation 
function is used as the estimation parameter in this 
process. Theoretical and simulation results are provided 
which justify the effectiveness of the proposed approach. 
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1.  Introduction 
     In underwater wireless sensor networks nodes are 
deployed for a variety of applications. These 
applications range from research to security purposes 
such as climatic data collection, pollution 
monitoring, environmental monitoring, seismic and 
acoustic monitoring to surveillance and national 
security, military and health care, discovering natural 
resources as well as locating man-made artefacts or 
extracting information for scientific analysis. In any 
type of underwater sensor network, proper network 
operation depends on the number of active nodes. So, 
estimating the number of active nodes is an important 

issue in any sensor network. Moreover, maintenance 
and localization activities need exact estimation of 
nodes. So, the number of operating nodes is a very 
important factor in any network. 
       However, the number of operating nodes can 
vary with time due to various artificial as well as 
natural reasons (for example, some nodes might fail, 
some could be damaged, or batteries might fail). So, 
it is a matter of great interest for a communication 
network to know how many operating nodes or 
transmitters are available in the region at any point in 
time to ensure proper network operation as well as 
network maintenance (such as replacement of faulty 
nodes). At present there have been many node 
estimation techniques. For example, protocols [1-8] 
have been used to estimate the number of tag IDs in 
radio frequency identification (RFID) systems, which 
is a similar problem to the estimation of the number 
of nodes in wireless communication networks.   
Similarly, a Good-Turing estimator of node 
estimation for terrestrial sensor networks has been 
proposed in Budianu et al. [9-11], where each 
transmitting node transmits its ID in every slot 
according to a certain probability and the packet 
collection can be modeled as an i.i.d. (independent, 
identically distributed) sampling with uniform 
distribution by terrestrial sensor network with 
mobile access (SENMA) protocol (an ALOHA-like 
protocol). In this method they estimate the number of 
operating sensors by deriving an expression for it as 
a function of missing mass.   
     All of the abovementioned techniques are only 
effective for communication friendly networks such 
as RFID as well as terrestrial systems; these 
techniques do not take into account the capture 
effect, so they are difficult to apply in UASN. Later 
Howlader et al. [12, 13] proposed a node estimation 
technique taking the capture effect into account. The 
procedure is similar to probabilistic framed slotted 



 
 

ALOHA [1]. But, it also suffers from long 
propagation delays, high path loss in underwater 
acoustic network. 
       So, it can be said that node estimation in 
underwater sensor network is not so easy as other 
type of networks. The existing procedures for the 
estimation of the number of nodes are not effective in 
underwater network due to underwater propagation 
characteristics [14] such as propagation delay, high 
absorption, and dispersion. These conventional 
protocol-based techniques are expensive, inefficient 
and time consuming for underwater network. 
Moreover, limited battery power, limited bandwidth, 
long and variable propagation delays, multi-path and 
fading problems and high bit error rates make the 
conventional techniques inefficient for underwater 
network. 
     In this paper, a simple novel estimation technique 
is proposed which is based on the cross-correlation of 
the acoustic signals received at two sensors in the 
network. The cross-correlation of signals received 
from random signal sources at each end of the 
channel is an important issue in current research and 
this technique has been investigated by the 
researchers [15-18]. However, none of these 
investigations has focused on the estimation of the 
number of signal sources.    
       In the proposed approach transmitted signals 
from a number of different random signal sources 
(nodes) within range are received by two sensors 
separated by a certain distance in the region; the 
received signals are summed at each of the two 
sensor locations, and these two signals are then 
cross-correlated. The estimation of the number of 
signal sources (assumed in our case the number of 
nodes in an underwater network) can be obtained 
based on the mean of the CCF. The process of cross-
correlation might be affected by the sampling rate 
and the distance between sensors and the effects are 
investigated in this paper. 

 
2.  Formation of Cross-Correlation Function 
     Consider two receiving nodes surrounded by N 
transmitting nodes in a 3D space, as shown in Fig.  
1.Assuming that the transmitting nodes are the 
sources of white Gaussian signals and are uniformly 
distributed over the volume of a large sphere inside a 
cube, the center of the sphere lays half way between 
the sensors, because only a sphere provides equal 
amounts of signals from every direction. The 
propagation velocity is constant, which in our case, 
the sound velocity Sp, in the medium. 

 
Fig. 1:  Distribution of underwater nodes with N 

transmitting nodes. 
 
       Now, getting probe request, a node emits a very 
long Gaussian signal, which is recorded by the 
sensors with corresponding time delays. The signals 
in the sensors are cross-correlated, which takes the 
form of a delta function as it is a cross-correlation of 
two white Gaussian signals where one signal 
essentially is a delayed copy of the other. The 
position of this delta in the CCF will be the distance 
equal to the delay difference of the signals from the 
center of the CCF where the position is called a bin 
in this paper. This holds for all nodes and the 
formation of CCF for N number of nodes can be 
expressed as follows [19]:  
        If the transmitted signals from the nodes are 
denoted as )(,),(),( 21 tStStS N respectively, the 
corresponding delays to reach at sensor 1 are denoted 
as 12111 ,,, N  , and the corresponding 
attenuations are as 12111 ,,, N  , the composite 
signal at sensor 1 can be expressed as  
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      Similarly, if the transmitted signals from the 
nodes are denoted as )(,),(),( 21 tStStS N

respectively, the corresponding delays to reach at 
sensor 2 are denoted as 22212 ,,, N  , and the 
corresponding attenuations are as 22212 ,,, N  , 
the composite signal at sensor 2 can be expressed as 
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    Assuming τ = dDBS/Sp is the time shift in cross-
correlation, then the CCF is 
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which takes the form of a series of delta functions as 
it is a cross-correlation of two composite signals 
which are the summation of several white Gaussian 
signals.  
 
One such obtained CCF with N (=10000) nodes is 
shown in Fig.  2. 
 

 
 

Fig.  2 : Bins in the cross-correlation process positions are 
in meters from the CCF center 

 
3.  The mean of the CCF 
       The mean of CCF is expressed by ensemble 
average of the signal cross-correlation in [15] as 
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    where QT represents the acoustic power of the 
received signals from the nodes taken to be constant 
over time and space, and ν the creation rate of the 
random nodes whose unit is unit time per unit 
volume, Tr total recording time, sr


path length of node 

s from the origin, ar


path length of first receiver from 

the origin, and br


the path length of second receiver 
from the origin.   
 
 
4.  Approach to binomial probability distribution  
       In the proposed estimation technique a simple 
analysis will show that the proposed cross-correlation 

technique can be  reframed to a probability problem 
using the well-known occupancy problem which 
follows the binomial probability distribution from 
which a parameter will be  chosen to estimate the 
number of nodes of a network. Considering each 
delta function as a ball which occupies a bin 
according to the delay difference of corresponding 
recorded signals in the sensors, it is simple to model 
this cross-correlation problem as a probability 
problem based on the well-known occupancy 
problem, i.e., the problem of placing N balls in b 
bins. It is known from [20] that the occupancy 
problem follows the binomial probability distribution 
in which the parameters are the number of balls i.e. 
nodes, N, and the inverse of the number of bins, b. 
     Occupancy problems deal with the pairings of 
objects and have a wide range of applications in 
different fields containing probabilistic and statistical 
properties. The basic occupancy problem is about 
placing m balls into b bins [21]. If one threw some 
balls randomly towards several bins, the bins would 
be randomly filled by the balls, resulting in some 
bins being occupied by more than one ball, some by 
one while some may have none. In this work, the 
cross-correlation process for node estimation is 
reframed as this occupancy problem. It describes the 
reframing process as follows: 

 In this process to obtain a CCF, N nodes 
create N number of delta functions which 
occupy the place in the correlation length 
where the length is divided by b number of 
bins as shown in Fig.  2. 

 Some bins are empty i.e. not occupied by any 
delta function; some are occupied by only 
one and others are more than one.  

 
     Moreover, the formation of cross-correlation 
function to obtain node estimation satisfies the 
characteristics of binomial distribution as the number 
of trials i.e. the number of nodes is fixed, trials are 
independent in the sense that the nodes are sending 
independent Gaussian signal, there exist only two 
possible outcomes, success or failure, for every trial 
which indicates that delta for a particular node is 
occupying a bin or not, each trial has the same 
probability of success, p which is equivalent to 1/b, 
where b is the number of bins.As the cross-
correlation function follows the binomial 
distribution, its mean is easy to obtain from the 
theory of binomial distribution which is discussed in 
the following section. 



 
 

 
 
5. Estimation of the number of nodes, N 
      It is discussed in the previous section that the 
cross-correlation function follows the binomial 
probability distribution where the parameters are the 
number of balls i.e. nodes, N, and the number of bins, 
b. Then the expected value, i.e. the mean, m of the 
CCF is defined as: 

(5)
b
N

m   

where b is the number of bins in the cross-correlation 
process and is obtained from the experimental setup 
with sampling rate, SR, distance between sensors, 
dDBS, and speed of propagation, Sp as [19]:  
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− 1																																		(6) 

Thus the estimation of N is obtained from equation 
(1) as: 

                mbN                                     (7)                                                          

This is the relationship between the number of nodes, 
N, and the mean, m, of the CCF. Since the number of 
bins, b is known and m can be measured from the 
CCF, the number of nodes, N can be readily 
determined. 

6.  Results and discussion 
     Both theoretical and simulation results of the 
estimation of the number of nodes using this novel 
signal processing approach using cross-correlation 
are provided in Fig.  3 to Fig. 5. Simulations have 
been performed in the Matlab programming 
environment. Fig. 3 to Fig. 5 show the theoretical and 
corresponding simulated results for the estimation of 
the number of nodes in a network in terms of the 
estimation parameter m of CCF, which show that the 
simulations match the theory properly and is the 
indication of effectiveness of the process. The solid 
lines indicate the theoretical results and the circles 
the corresponding simulated results. The variations 
of b in the three different Figs. are as a result of 
varying dDBS (considering sampling rate and 
propagation speed constant). The distances between 
the sensors are: 0.0625m in Fig. 3, 0.1875m in Fig. 4 
and 0.4m in Fig. 5. The other parameters are radius 
of the sphere is 2000m, N=1, 10, 20,…,100, signal 
length is 106 samples, signal propagation speed is 
1500m/s, and sampling rate SR = 180 kSa/s. 
 

 
Fig. 3. Mean of CCF  versus number of nodes, N for 

 b = 14, dDBS = 0.0625m 
 

 
Fig. 4. Mean of CCF  versus number of nodes, N for   

b = 44, dDBS = 0.1875m 

 
 

Fig. 5. Mean of CCF  versus number of nodes, N for  
 b = 95, dDBS = 0.4m 
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      The above mentioned results show that the 
simulated and corresponding theoretical results are 
very close to each other, which indicates that the 
process is effectively applicable for estimation. At 
the same time, it is clear that the number of bins, b 
has an effect on the estimation parameter, which is 
depicted in the estimation expression  equation (7).  
It can be seen that the value of the estimation 
parameter is lower in case of higher b and vice-versa 
and the simulated lines are more closer with the 
theoretical lines. It is also obvious from the results 
that a good approximation of the number of nodes, N, 
can be obtained for any dense network.The shown 
results are for 100 nodes and for more number of 
nodes estimation is possible in the same way. 
     Now, another approach will be taken, the 
sampling rate will be increased and the process will 
be repeated. A comparison will be observed for the 
proposed estimation process for the same number of 
bins as before. 
 

 
Fig. 6. Mean of CCF  versus number of nodes, N for  

b =14, dDBS = 0.0313, SR = 360kSa/s 
 

 
Fig. 7. Mean of CCF  versus number of nodes, N for  

b = 44, dDBS = 0.0938m, SR = 360kSa/s 

 
 

Fig. 8. Mean of CCF  versus number of nodes, N for  
b = 95, dDBS = 0.2m, SR = 360kSa/s 

 
      From Fig. 6 to Fig. 8 it can be observed that 
improvement in result occurs with the increased in 
number of bins as before. 
     In conclusion, it can be said that better result 
occurs for the increased number of bins. So, the 
number of bin has a great effect on the result. Also, it 
is observed that the result depends on the variation of 
the number of bins but independent on how bin 
number is varied. Bin number can be varied by 
varying distance between sensors, dDBS; sampling 
rate, SR and propagation speed, SP as expressed in 
equation (6). 
       Now, the results of estimated number of nodes, 
N (estimated) with respect to exact number of nodes 
will be shown. 
 

 
 

Fig. 9.   Comparison of theoretical and simulated number    
of estimated nodes 
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      Fig. 9 shows the comparison of theoretical and 
simulated number of estimated nodes (for bin 
number 119). In this Fig., the solid line indicates the 
theoretical result and the circles the corresponding 
simulated results. From Fig. 9, it can be seen that, the 
theoretical and simulated results are very close to 
each other, which signify the validity of the proposed 
approach. 
 
 
7.  Analysis of error in estimation 
      As the proposed cross-correlation based approach 
is a statistical technique, the statistical error, the 
coefficient of variation (CV), is used as its error in 
estimation in order to fully assess the accuracy of the 
proposed estimation technique. To obtain a simulated 
CV of estimation, a simulation process is run 1000 
times for a particular N and b. From these 1000 
values of estimated N, the standard deviation and 
mean of estimation and, thus, the corresponding CV, 
is obtained. In this case firstly, the mean, m of the 

CCF from 100 iterations, and then the estimated 
^
N  

using the expression of N related to this m, are 
obtained. Secondly, to obtain the CV, the same 
process is continued 1000 times without any change 

in parameters and the values of all estimated  
^
N are 

recorded. Finally, the CV for one iteration is obtained 
from the ratios of the standard deviation to the mean 
of those values as [22]: 
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    Now, after u iteration, the standard deviation and, 
thus, the CV, are reduced to 
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    Now, CV of the proposed estimation technique 
will be calculated and the result will be compared 
with the previous cross-correlation based method 
proposed by Anower et al. [19] which is also a signal 
processing approach. In the comparison it is 
considered a very long fixed signal length, Ns, of 
158093 samples, Sampling rate 390000 HZ , signal 
propagation speed 1500m/s, bin number 119 and  
dDBS=0.25m. 
 

 
 

   Fig. 10. Comparison of CV of the  proposed method 
with  previous technique. 

 
      From the above result it can be observed that the 
proposed estimation technique gives better accuracy 
than previous technique. The case behind this better 
accuracy can be analyzed by looking at the theory 
regarding error estimation. Equation (7) gives N = 
b×m. So, CV (N) = CV (b×m)) 
          = CV (m) as b is constant.  
and CV(m) is inversely proportional to b [22]. Here, 
the expression CV (N) = CV (m) is depicted directly 
but in previous method [19] this case was assumed, it 
is the main reason behind the better accuracy of the 
proposed estimation technique.  
 
 
8.  Conclusion 
      It can be concluded that this signal processing 
approach would be an effective alternate of the 
conventional protocols to estimate the number of 
nodes in any type and size of underwater networks. 
Previously used techniques are inefficient, complex 
and time consuming in harsh underwater 
environment. The proposed method is effectively 
applicable to any type of dense underwater network. 
Error in estimation of the number of nodes is 
investigated and it has been observed that the 
accuracy of the proposed approach shows 
satisfactory performance. Thus the proposed cross-
correlation based technique might be the useful 
alternate of the existing techniques.  
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