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Abstract: In this paper we apply modified biogeography-
based Optimization to design an interval type-2 fuzzy 
logic controller to improve the performance of the plant 
control system. Biogeography-based optimization is a 
novel evolutionary algorithm that is based on the 
mathematical models of biogeography. Biogeography is 
the study of the geographical distribution of biological 
organisms. In the Biogeography-based optimization 
model, problem solutions are represented as islands, and 
the sharing of features between solutions is represented 
as immigration and emigration between the islands. A 
modified version of the Biogeography-based optimization 
is applied to design interval type-2 fuzzy logic controller 
to get the optimal parameters of the membership 
functions of the controller. We test the optimal interval 
type-2 fuzzy logic controller obtained by modified 
biogeography-based Optimization using benchmark 
plants and the performance is compared with a Particle 
swarm optimization-based controller. Also this paper 
deals with the design of intelligent systems using interval 
type-2 fuzzy logic for minimizing the effects of uncertainty 
produced by instrumentation elements, environmental 
noise, etc. We found that the optimized membership 
functions for the inputs of a type-2 system to improve the 
performance of the system for high uncertainty (noise) 
levels. 
 
Key words: Biogeography-Based Optimization, Particle 
Swarm Optimization, Process Control, and Type 2 Fuzzy 

Logic. 
 
1. Introduction 
 Optimization algorithms are search methods, 
where the goal is to find a solution to an 
optimization problem, such that a given quantity is 
optimized, possibly subject to a set of constraints [1, 
2]. Some optimization methods are based on 
populations of solutions. Unlike the classic methods 
of improvement for trajectory tracking, in this case 
each iteration of the algorithm has a set of solutions. 
These methods are based on generating, selecting, 
combining and replacing a set of solutions. Since 
they maintain and they manipulate a set, instead of a 
unique solution throughout the entire search process, 
they used more computer time than other met 
heuristic methods. This fact can be aggravated 
because the “convergence” of the population 
requires a great number of iterations. For this reason 
a concerted effort has been dedicated to obtaining 
methods that are more aggressive and manage to 
obtain solutions of quality in a nearer horizon.  
  

  
This paper is concerned with bio-inspired 
optimization methods like modified biogeography-
based Optimization to design optimized interval type 
2 fuzzy logic controller (IT2FLC) for a selection of  
some benchmark plants. This method is used to find 
the parameters of the membership functions 
achieving the optimal IT2FLC for plant control.   
 This paper is organized as follows: Section 2 
reviews Biogeography-based optimization (BBO). 
Section 3, presents the modified Biogeography-
based optimization (MBBO). In Section 4 is 
proposed an overview about type 2 fuzzy logic 
controller and, section 5 introduce the controller 
design where a MBBO is used to select the 
parameters. Robustness properties of the closed-loop 
system are achieved with a type-2 fuzzy logic 
control system using a Takagi-Sugeno model where 
the error and the change of error, are considered the 
linguistic variables. Section 6, presents the 
benchmark plants, performance criteria and provides 
a simulation study of the plant using the controller 
described in Sections 4 and 5. Finally, the 
conclusions are stated in Section 7. 
 
2. Biogeography-Based Optimization 

As its name implies, BBO is based on the science 

of biogeography. Biogeography is the study of the 

distribution of animals and plants over time and 

space. Its aim is to elucidate the reason of the 

changing distribution of all species in different 

environments over time. As early as the 19th 

century, biogeography was first studied by Alfred 

Wallace [3] and Charles Darwin [4]. After that, 

more researchers began to pay attention to this area. 

The environment of BBO corresponds to an 

archipelago, where every possible solution to the 

optimization problem is an island. Each solution H 

has a number of features called a suitability index 

variable (SIV). The number of SIV in each solution 

H corresponds to the problem dimension. The 

goodness of each solution is called its habitat 

suitability index (HSI), where a high HSI of an 

island means good performance on the optimization 

problem, and a low HSI means bad performance on 

the optimization problem. 
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 Improving the population is the way to solve 

problems in heuristic algorithms. The method to 

generate the next generation in BBO is by 

emigrating solution features to other islands, and 

receiving solution features by immigration from 

other islands. The algorithm assumes high species’ 

count in island having high HSI (i.e., for island 

corresponding to good solutions). The high species’ 

count encourages species to leave the island sharing 

their good SIV with other island. Hence, islands 

with good HSI have high emigration rate and low 

immigration rate. Bad solutions (islands with low 

HSI) have small species count, low emigration rates 

and high immigration rates. Mutation is performed 

for the whole population in a manner similar to 

mutation in GAs. The basic procedure of BBO is as 

follows: 

1. Define the island modification probability, 

mutation probability, and elitism parameter. Island 

modification probability is similar to crossover 

probability in GAs. Mutation probability and elitism 

parameter are the same as in GAs.  

2. Initialize the population (n islands). 

3. Calculate the immigration rate (rate of 

species arrival to an island) and emigration rate 

(rates of species departing from an island) for each 

island. 

4. Probabilistically choose the immigration 

islands based on the immigration rates. Use roulette 

wheel selection based on the emigration rates to 

select the emigrating islands. 

5. Migrate randomly selected SIVs based on 

the selected islands in the previous step. 

6. Probabilistically perform mutation based on 

the mutation probability for each island. 

7. Calculate the fitness of each individual 

island. 

8. If the termination criterion is not met, go to 

step 3; otherwise, terminate. 
In 2008, BBO performance was tested and 

compared with seven other evaluation algorithms 
(EA) optimization techniques (including PSO, 
genetic algorithm (GA) and five other different 
methods). Comparison of the performance of BBO 
with other standard methods using fourteen 
benchmarks optimization problems shows 
significant advantages of the BBO algorithm [5]. 
The author also provides an example of the use of 
BBO in engineering application by applying it to the 
design of aircraft engine [5]. After 2008, 
oppositional Biogeography-Based Optimization for 
Combinatorial Problems is developed by Mehmet 
Ergezer and Dan Simon [6]. Biogeography-Based 
Optimization with Blended Migration for 
Constrained Optimization Problems is introduced by 

Haiping Ma and Dan Simon [7]. A Hybrid 
Differential Evolution with Biogeography-Based 
Optimization (DE/BBO) for Global Numerical 
Optimization is proposed by Wenyin Gong and 
colleagues [8]. Equilibrium species counts and 
migration model tradeoffs for Biogeography-Based 
Optimization is developed by Haiping Ma and 
colleagues [9]. The BBO is applied to electric power 
system applications like the solution of the power 
flow problem as introduced by Rick Rarick and 
colleagues [10]. 
 
3.  Modified Biogeography-Based Optimization 

In BBO, there are two main operators: migration 

and mutation. The basic BBO provides a discrete 

solution space ranging from a user specified 

minimum to a specified maximum and with a 

specified granularity. The authors proposed a new 

migration operator called modified migration, in 

order to improve the convergence performance and 

provide a continuous solution space for the 

optimization problems [11]. 
3.1 Mutation Operator 

Mutation is a probabilistic operator that randomly 

modifies a solution’s SIV based on its a priori 

probability of existence. Namely, a randomly 

generated SIV replaces a selected SIV in the 

solution HI according to a mutation probability. 

Although mutation is not the most important factor 

in BBO, the improvement of solutions is obtained by 

perturbing the solution after the migration operation. 

For classic BBO, the mutation probability is 

inversely proportional to the solution probability [5], 

and is defined by 

          
  

    
                   

Where mmax is the user-defined maximum 

mutation probability, Pmax =ARGMAX(PI), I=1,…….., 

n (n is population size), and PI is the solution 

probability. For more details see [5].This mutation 

scheme tends to increase diversity among the 

population. 

3.2 Modified Migration Operator 

In biogeography, migration is the movement of 

species between different habitats. In BBO, 

migration is a probabilistic operator that adjusts each 

solution HI (uniquely defined for each island) by 

sharing features between solutions. In the original 

BBO work [5], the probability that the solution HI is 

selected as the immigrating habitat is proportional to 

its immigration rate λI, and the probability that the 

solution HJ is selected as the emigrating habitat is 

proportional to the emigration rate µJ. Migration can 

be expressed as: 



 

                           

In biogeography, an SIV is a suitability index 

variable which characterizes the habitability of a 

habitat [5]; that is, the HSI is determined by many 

SIVs. In BBO, an SIV is a solution feature, 

equivalent to a gene in a GA. In other words, an SIV 

is a search variable and the set of all possible SIVs is 

the search space from which an optimal solution will 

be determined. Eq. (2) shows that a solution feature 

of solution HI is replaced by a feature from solution 

HJ. In BBO, each HI resides in an island having its 

own immigration rate λI and emigration rate µJ. A 

good solution has relatively high µ and low λ, while 

the converse is true for a poor solution. The 

immigration rate and the emigration rate are 

functions of the fitness of the solution. They can be 

calculated as: 

        
    

 
        

    

 
                

Where I is the maximum possible immigration 

rate; E is the maximum possible emigration rate; k(I) 

is the fitness rank of the Ith individual (I is worst and 

n is best); and n is the number of candidate solutions 

in the population. I and E are often set equal to 1, or 

slightly less than 1. Note that the migration function 

(3) is a linear curve, but in general it might be a 

more complicated curve. 

Haiping Ma and Dan Simon [7] propose the 

blended migration operator, which is a 

generalization of the standard BBO migration 

operator. The blended migration operator is 

motivated by blended crossover in GA. In blended 

crossover, instead of copying a parent’s gene to a 

child chromosome, the off spring are obtained by 

combining parents’ genes, so that equation (2) will 

be replaced by:  

                                       

Where α Є [0, 1] 

In [7], α is a constant selected by the user. The 

best results shown in the paper corresponds to α = 

0.5. We proposed a new migration operator called 

modified migration operator defined as [11]: 

                     

                         

Where  

       
    

         
           

K(I):  is the fitness rank of the solution. 

It should be noted that both equation (4) and (5) 

can provide a new member in the solution space, 

while (2) just provide re-construction of the new 

solution vectors using a selection from a constant 

pool. When using (2), the mutation operator is the 

only way to generate new SIV not members of the 

set of SIVs of the initial population. Hence, an 

algorithm using (2) may need high initial population 

count or high mutation rate. Finally after substituting 

equation (6) in (5) to get the modified migration 

operator form, defined as: 

 

        
                         

           
         

Modified migration is an attractive BBO 

modification from a couple of different viewpoints. 

On one hand, good solutions will be less likely to be 

degraded due to migration. On the other hand, poor 

solutions can still accept a lot of new features from 

good solutions. The BBO algorithm, generalized for 

modified migration, is summarized in the next flow 

chart as: 

Start

Generate Initial Solutions and 

Define Cost Function

Set 

Number of Island

Number of Generation

Number of SIVs per Island 

Mutation Probability

Calculate the Cost Function

Test No. of 

Generation

Arrange the solutions

in ascending order

Set the number of

species for each

Solution based on its order

Set (λI, μI) for each

Solution based on the number of 

species

No

Test No. of 

Island

Check each Solution to be

modified or not based

on its (λI)

Chose Solutions (Using Equation No. 7) 

to be modifiers based on their (μI)

No

Apply mutation

inverse proportionally

with each Sol's (Number of 

species)

Yes

Yes
Output Solutions

4. Interval Type 2 Fuzzy Logic Systems 

Similar to type 1 fuzzy sets, type 2 fuzzy sets 

provide some linguistic information about the 

variable of interest. Moreover, type 2 fuzzy sets 

provide information about the uncertainty associated 

with the linguistic information. For example, if 

several chemical process operators are asked to 



 

 

define the range in which they consider the pressure 

of a reactor to be “Normal”, the result obtained from 

one operator may be represented by the triangular 

type-1 membership function (MF) depicted in Fig. 

1-a.By overlapping the set of MFs obtained from 

different operators, a blurred triangle is obtained as 

in Fig. 1-b. To accommodate with the uncertainty of 

the fuzzy sets, at a specific value of x, say    we can 

express the MF of    as an interval that takes on 

values in the interval [a(  ), b(  )] where the vertical 

line intersects the blur. In type 2 Fuzzy sets, we 

associate a fuzzy set (secondary fuzzy set) that 

describe the possibility we associate with each value 

of the interval [a (  ), b (  )].The most commonly 

used form of fuzzy type 2 sets is the interval type 2 

Fuzzy sets. In this case, the membership function of 

the secondary fuzzy set is equal to one for all points 

inside [a (  ), b (  )], and is zero otherwise. To 

represent interval type 2 fuzzy sets, we only need to 

identify the interval [a (  ), b (  )] for all possible     
(since the secondary membership function is 

known). This is performed by defining the two T1 

membership functions that bound the blurred area. 

These two T1 MFs are usually denoted as UMF 

(upper membership function) and LMF (Lower MF) 

as shown in Fig. 2 [12]. 

 
Fig. 1: (a) Type1 MF (b) Blurred type1 MF 

 
Fig. 2: Upper and Lower Membership Functions 

Interval type 2 fuzzy logic systems (IT2FLS) are 

quite similar to type 1 fuzzy logic systems. The main 

difference is that the antecedent and/or consequent 

sets in a type-2 fuzzy logic system are type-2, so that 

each rule output set is a type-2. There are five 

principal parts in a type-2 fuzzy logic system: 

fuzzifier, Rule Base, Inference Engine, Type-

Reducer and defuzzifier as shown in Fig. 3 [13].The 

type-reducer performs a type-reduction operation 

which is an extended version of type-1 

defuzzification. Type reduction yield a type-1 set 

from the type-2 rule output sets. It was proposed by 

Karnik and Mendel [14], and [15]. The resulting 

type-1 set is called type-reduced set.  

 
Fig. 3: Type 2 fuzzy logic system block 

The type-reduced set can then be defuzzifiedusing 

conventional type fuzzy system defuzzificattion 

rules.Type-2 fuzzy rule base consists of a collection 

of IF-THEN rules [16] in the following form: 

               
                 

                

Where    
  is the interval type 2 antecedent sets 

(j=1,2…n),     the output,     is the interval type 2 

consequent sets and i=1,2…M, where M is the total 

number of rules of the rule base.In IT2FSC with 

meet under minimum or product t-norm the firing 

interval of the    rule         
 
  can be 

calculated using equation (8) 

       
      …..     

      

 
 
     

      …..     
      

(8) 

Where  
   

      is the firing of the LMF of    
 , 

 
   

      is the firing of the UMF of     
  , and X is the 

t-norm operator.There are several methods of type 

reduction introduced in [17], and [18]. In this paper 

we will use the center of sets type reduction [19]. In 

this case, the type reduced set           is 

determined by two end points  and    which can be 

calculated from the following equations (9) and (10). 
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Where   
  and   

  are the two end points of centroid 

interval of interval type 2 consequent as described in 

[14],  
       

 
  denotes the firing strength 

membership grade contributing to the left-most point 

   ,and   
       

 
  denotes the firing strength 



 

membership  grade contributing to the right-most 

point   .  
      

   can be computed using KM 

algorithms as in [18]. The defuzzified output of y 

will be the average of    and    that is present is 

equation (11) 

  
     

 
 

(11) 

5. IT2FLC Design 

In this section we design interval type 2 fuzzy 

logic controller (IT2FLC) by using MBBO as shown 

in Fig. 4. For the IT2FLC a Takagi-Sugeno type of 

fuzzy system is used with two inputs a) error, and b) 

error change, with Seven membership functions for 

each input, “High Negative, medium Negative, 

Negative, Zero, Positive, medium Positive, High 

Positive” (Gaussian), and one span output, defined 

with constant values and 49 fuzzy rules (IF-THEN) 

[12,20-25]. Now, the number of SIVs per island will 

be reduced from 57 SIV to 3 SIV (real values that 

represent the span of the two inputs: error “S1”and 

error change “S2”and one span for output constant 

value “S0”) as indicated in the equations to follow.  

the standard deviation of the two inputs are 
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The mean of the two inputs are 

   
    

   

 
 

        

   
         

   
    

   

 
 

        

   
         

   
       

               

   
       

               

      
   

 
 

        

   
         

Where: 
S1: Error Span 

S2: Error change span 

S0: Output span 

   
: Standard deviation for upper membership function 

“Error” 

   
: Standard deviation for upper membership function 

“Error Change” 

   
: Standard deviation for Lower membership function 

“Error” 

   
: Standard deviation for Lower membership function 

“Error Change” 

   
   : Mean for upper membership function “Error” 

   
   : Mean for upper membership function “Error 

Change” 

   
   : Mean for Lower membership function “Error” 

   
   : Mean for Lower membership function “Error 

Change” 

     : Output for membership function 

 : is constant from 0 to 1, set by user.  : From 1 to   , 

Where;    is the number of the membership 

functions for each input. All parameters above are 

shown in Fig. 6, 7 and (8). Once we obtain the 

IT2FLC design, we set the parameters of MBBO 

method as presented in Table 1. 

6. Benchmark plants, performance criteria and 

Simulation Results 

In this section we present the benchmark Plants, 

performance criteria and provide a simulation study 

of the plant using the controller described in 

Sections 4 and 5. 

6.1. Benchmark Linear Plants 

To test the optimized IT2FLC obtained by the 

modified biogeography-based Optimization and 

Particle swarm optimization methods; we used 

different linear systems. We first consider two 

benchmark plants called Plant 1 and Plant 2 with 

different levels of complexity [26].  Plant 1 is given 

by the following second order transfer function: 

     
  

 

           
                       

Where,    is the natural frequency and      is the 

coefficient of damping. Plant 2 is given by the 

following transfer function: 

     
 

    
               

6.2 Benchmark Non-Linear Plant 
For the non-linear test system, we choose the simple 

inverted pendulum system [27]. The dynamic 

equation is, 

    
 

 
         

 

 
                        

Where,    is the position angle;   is the mass of the 

bob,   is the length of the rod,   is the gravity,   is 

the friction coefficient. Assume the rod is rigid and 

has zero mass. The bob of the pendulum moves in a 

circle of radius   .   repersents the torque applied to 

the pendulum bob. 

The state space equations are shown below 

  
                     

           
               

                                  
Where 

  
 

 
            

 

 
               

       



 

 

6.3 Performance Criteria 
For evaluating and comparing the transient 

closed-loop response of the plant control system, we 

can use the Integral of Square Error (ISE) as shown 

in Fig. 5 and following equation. 

              
 

 

                      

6.4 Simulation Results 

In this section we evaluate, through computer 

simulations performed in MATLAB® and 

SIMULINK®, the designed IT2FLC for the 

benchmark plants (Plant 1, Plant 2 and the non-

linear plant) as shown in Fig. 5. We include the 

results for interval type-2 controller designed with 

MBBO and PSO. All results for the case employing 

a PSO-based controller presented by Castillo and 

colleagues [28-29]. 

Plant 1 using MBBO: Table 2 presents the main 

results of  IT2FLC obtained with MBBO with the 

best result show on the fourth row. Fig. 6 shows the 

membership functions (MFs) of input 1 and input 2 

of the optimized FLC obtained by the MBBO.  

Plant 2 using MBBO: Table 3 presents the main 

results of   IT2FLC obtained with MBBO with the 

best result show on the fourth row. Fig. 7 shows the 

membership functions (MFs) of  input 1 and input 2 

of the optimized FLC obtained by the MBBO.   

Non-linear Plant using MBBO: Table 4 presents 

the main results of IT2FLC obtained with MBBO 

with the best result show on the fourth row. Fig. 8 

shows the membership functions (MFs) of input 1 

and input 2 of the optimized FLC obtained by the 

MBBO.   

Plant 1 using PSO: Table 5 presents the main 

results of IT2FLC obtained by PSO with the best 

tresult show on the first row [28-29].  

Plant 2 using PSO: Table 6 presents the main 

results of  IT2FLC obtained by PSO with the best 

tresult show on the first row [28-29].  

Fig. 9 shows the step response results of IT2FLC 

for plant 1 obtained by MBBO and PSO.  

Fig. 10 shows the step response results of IT2FLC 

for plant 2 obtained by MBBO and PSO.  

Fig. 11 shows the closed loop states (angular 

position    angular velocity      response results of 

IT2FLC for non-linear plant obtained by MBBO.  

The variations of the cost function with number of 

generations for plants 1, 2 and non-linear plant using 

MBBO are shown in Fig 12, 13 and 14 respectively. 

We were also interested in improving the 

controller by adding uncertainty (noise) to the plant. 

We decided to use Random noise number block 

function in the MATLAB SIMULINK by add to 

plant output to simulate uncertainty in the control 

process as shown in Fig. 15. To check the system 

performance and stability due to uncertainty in the 

plant output, Plant 1 with uncertainty using MBBO: 

Table 7 presents the main results of IT2FLC 

obtained with MBBO showing the ISE for each case. 

Fig. 16 shows the step response results of IT2FLC 

for plant 1 with uncertainty obtained by MBBO. 

Plant 2 with uncertainty using MBBO: Table 6 

presents the main results of IT2FLC obtained with 

MBBO showing the ISE for each case. Fig. 17 

shows the step response results of IT2FLC for plant 

2 with uncertainty obtained by MBBO. 

6.5 Examining the results 
We can note the following: Table 2, 3, 5, and 6 

indicates that the maximum number of cost function 

evaluations for MBBO is 2000 while that of PSO is 

140000. Hence it is clear that employing the MBBO to 

design IT2FLC produces better results with lower 

computation cost. Fig. 9 and Fig. 10 present the unit step 

response for the test plants using the two optimization 

algorithms, PSO and MBBO for optimizing the IT2FLC 

parameters. In all cases MBBO results in lower overshoot 

and steady state error compared to PSO [28-29]. It is 

important to note that when testing with higher levels of 

noise for in all cases, the step response result show the 

system is still tracking the set point and stable.  

Table I: MBBO Parameters 

Parameter Value 

Number of Generation 20 

Number of SIVs per island 3 

Island modification 

probability 
1 

Mutation probability 0.005 

Elitism parameter 1 

Table 2: Results of the IT2FLC for plant 1 obtained by 

MBBO 

No 
N0.of 

Island 

Number of 

Generation 

No. of 

SIVs 

per 

Island 

Mutation 
MBBO 

Time  
Error 

1 25 20 3 0.005 00:47:34 0.034726 

2 50 20 3 0.005 01:50:10 0.037662 

3 75 20 3 0.005 03:03:56 0.034311 

4 100 20 3 0.005 04:10:24 0.033171 

Table 3: Results of the IT2FLC for plant 2 obtained by 

MBBO 

No 
No. of 

Island 

Number of 

Generation 

No. of 

SIVs 

per 

Island 

Mutation 
MBBO 

Time 
Error 

1 25 20 3 0.005 00:39:34 0.035247 

2 50 20 3 0.005 01:38:42 0.035232 

3 75 20 3 0.005 02:56:32 0.035233 

4 100 20 3 0.005 03:48:59 0.035226 

 



 

Table 4: Results of the IT2FLC for non-linear plant 

obtained by MBBO 

No 
No. of 

Island 

Number of 

Generation 

No. of 

SIVs 

per 

Island 

Mutation 
MBBO 

Time 
Error 

1 25 20 3 0.005 01:13:12 0.00182 

2 50 20 3 0.005 03:02:57 0.00112 

3 75 20 3 0.005 04:06:21 0.00082 

4 100 20 3 0.005 05:32:02 0.00061 

Table 5: Results of the IT2FLC for plant 1 obtained by 

PSO [28-29] 

No   SW It  C1    C2   Inertia   
 PSO 
Time 

 Error   

 1  200    70  0.5149   .3317    0.6808   07:05:20   0.08028   

 2   200    70    0.8149   .9059    0.1706    12:44:19  0.08794   

 3    200    70    0.8129   .8159    0.1906    10:52:09  0.08894   

 4    200    70    0.7646   .9229    0.1096    09:50:45   0.12521   

 5   200    70    0.8168   .9359    0.4806    11:05:43  0.12630   

Table 6: Results of the IT2FLC for plant 2 obtained by 

PSO [28-29] 

No.   SW It  C1   C2   Inertia   
 PSO 
Time 

 Error   

 1  200   70   0.317 .541 0.7012   08:51:28   0.08338  

 2   200   70    0.769 
 

.208 
0.8755   08:09:51  0.09031   

 3   200    70    0.388 
 

.639 
0.7304   08:50:16  0.09609   

 4   200    70    0.951 
 

.801 
0.6141   09:15:29   0.10198 

 5    200    70    0.787 .632  0.5724   10:00:28  0.10201 

Table 7: Results of the IT2FLC for plant 1, and 2 with 

uncertainty level factor obtained by MBBO 

Plant 

Number 
Case Number 

Uncertainty 

level factor 
ISE 

1 1 0.001 0.033371 

1 2 0.01 0.039091 

1 3 0.1 0.065439 

1 4 1 0.109008 

2 1 0.001 0.035726 

2 2 0.01 0.040018 

2 3 0.1 0.070652 

2 4 1 0.110639 
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Fig. 4: Block diagram of a IT2FLC  

 
Fig. 5: Block diagram of a test plant with a IT2FLC 

controller 

 
Fig. 6: Error and Error Change membership function of 

the optimized IT2FLC for plant 1. 

 
Fig. 7: Error and Error Change membership function of 

the optimized IT2FLC for plant 2 
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Fig. 8: Error and Error Change membership function of 

the optimized IT2FLC for Non-Linear plant  

 
          Fig.9. step response results for Plant 1 

 
              Fig.10. step response results for Plant 2 

 
Fig. 11 shows the closed loop states response results 

 
Fig.12: The cost function with number of generations 

for plant 1 (case no. 4) using MBBO 

 
Fig.13: The cost function with number of generations 

for plant 2 (case no. 4) using MBBO 

 
Fig.14: The cost function with number of generations 

for Non-Linear Plant using MBBO 

  
Fig. 15: Block diagram of a test plant with a IT2FLC 

controller plus the noise source 

 
Fig. 16-Case 1: Step response result for Plant 1 with 

uncertainty level factor = 0.001 

 
Fig. 16-Case 2: Step response result for Plant 1 with 

uncertainty level factor = 0.01 

 
Fig. 16-Case 3: Step response result for Plant 1 with 

uncertainty level factor = 0.1 
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Fig. 16-Case 4: Step response result for Plant 1 with 

uncertainty level factor = 1 

 
Fig. 17-Case 1: Step response result for Plant 2 with 

uncertainty level factor = 0.001 

 
Fig. 17-Case 2: Step response result for Plant 2 with 

uncertainty level factor = 0.01 

 
Fig. 17-Case 3: Step response result for Plant 2 with 

uncertainty level factor = 0.1 

 
Fig. 17-Case 4: Step response result for Plant 2 with 

uncertainty level factor = 1 

 

 

 

7. CONCLUSION 

We described in this paper the application of bio-

inspired methods to design optimized IT2FLC using 

MBBO and PSO. To test the optimized IT2FLC, we 

use different systems.  In particular, we presented 

results of MBBO and PSO applied to two linear 

systems, using two different levels of complexity 

and uncertainty. Also we presented result of MBBO 

applied to a non-linear system. The results show that 

the IT2FLC obtained by MBBO and PSO gets stable 

in less than 10 seconds. On the other hand, the 

IT2FLC obtained by MBBO is better than the 

IT2FLC obtained by PSO, because the MBBO is 

less time consuming in the process and achieves 

lower overshoot in all plants: the plots of the results 

shows this difference. We have achieved satisfactory 

results with MBBO; the next proposed step by the 

authors is to solve the problem in a perturbed 

environment and considering multiple objective 

optimization to obtain more improved results.  
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