
Application of Different State Variable Estimators  
in Control Structures of Two-mass Drive System 

 

Krzysztof Szabat, Teresa Orlowska-Kowalska 
Wroclaw University of Technology 

Institute of Electrical Machines, Drives and Measurements 
ul. Smoluchowskiego 19, 50-372 Wrocław, Poland 
Tel.: (+48 71) 320 35 46 Fax: (+48 71) 320 34 67 

e-mails: teresa.orlowska-kowalska@pwr.wroc.pl,  krzysztof.szabat@pwr.wroc.pl 
 

 
Abstract − The paper presents issues relevant to 

control of a two-mass system. In order to provide 
effective vibration suppression, there is a need to apply 
additional feedback in control structures. Different 
methods of state variable estimation were considered, 
namely the simple estimator, the Luenberger observer 
and the Kalman filter. The quality of variable estimation 
in an open-loop and a closed-loop system with the use of 
these methods was compared. The laboratory set-up 
used for the experimental verification of the developed 
control structures was briefly described. All methods of 
variable estimation were tested in an open and a closed-
loop system. Some experimental results for classical PI 
speed control structure with additional feedbacks and 
for the structure with the state controller are presented. 

Index terms −  DC drive, elastic joint, estimation 
techniques, PI speed controller, state controller  

I. INTRODUCTION 
In some industrial applications like rolling mill 

drives, the mechanical part of the system has very low 
resonant frequency, because of a long shaft between 
the motor and the load machine. So, especially in the 
drive systems with high performances of the speed 
and torque regulation, the motor speed is different 
from the load speed during transients. The speed 
difference results in the coupling shaft stresses, which 
influence this mechanical coupling in a negative way. 
Additionally, speed oscillations cause decrease in the 
quality of the rolling material and can influence the 
stability of the control system [1-6]. The simplest 
method to eliminate the oscillation problem (occurring 
while the reference speed changes) is a slow change of 
reference velocity. But it causes the decrease of the 
drive system dynamics and does not protect against 
oscillations resulting while disturbance torque 
changes. Some methods of this problem solving are 
reported in technical papers. The most advanced 
techniques, ensuring very good performances of the 
system, are based on special control structures with 
additional feedbacks from such state variables as 
torsional torque, load speed and/or disturbance torque. 
But the direct feedbacks from these signals are very 
often impossible, because additional measurements of 
these mechanical variables are difficult, cost effective 
and reduce the system reliability. Thus special systems 
for state variables estimation are necessary, such as 
estimators, state observers or state filters.  

In the paper comparative tests of three methods of 
variable estimation were presented. The quality of 
variable estimation using the simple estimator, the 
Luenberger observer and the Kalman filter were 
compared. Simulation tests of the control system with 
PI or state speed controllers and different types of 
state variables estimation were carried out. The 
laboratory set-up was briefly described and 
experimental results were demonstrated. 

II. THE CONTROLLED DRIVE SYSTEM 
A: The mathematical model of the drive system 

In the paper a commonly-used model of the DC 
drive system with the resilient coupling was 
considered. The system is described by the following 
state equations (in per unit system), with nonlinear 
friction neglected: 
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where: 1ω - motor speed, - load speed, i - armature 
current, K

2ω a

t - gain factor of the motor, Ψf  - excitation 
flux, ms- shaft (torsional) torque, mo - disturbance 
torque, T1 - mechanical time constant of the motor, T2 - 
mechanical time constant of the load machine, Tc - 
stiffness time constant. Parameters of the analysed 
system are following: T1 =230ms, T2 =230ms, Tc 
=2.6ms, Ψf =1, Kt=7.4.  
B: The speed control structures 

The first considered speed control of the drive 
system has the most widely used cascade structure 
shown in Fig. 1  
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Fig.1. The PI control structure with additional feedbacks 



It consists of two major loops. The inner control loop 
encloses the current controller, the power converter 
and the electromagnetic part of the motor. It is 
designed to provide sufficiently fast torque control and 
very often is approximated by a first order filter. The 
PI current controller is usually adjusted according to 
the well known modulus criterion. The outer control 
loop includes: the mechanical part of the drive, the 
speed sensor and the PI controller typically adjusted 
according to the symmetry criterion or poles 
placement method [2]. The classical structure works 
well only for some inertia ratio (T2/T1) of the two-
mass system. In the case of low mechanical time 
constant of the load machine, transients of the system 
are not proper. In order to damp torsional vibrations 
effectively additional feedback from one of the 
following variables: torsional torque, derivative of 
torsional torque or from speed of load machines needs 
to be applied. The structure with one additional 
feedback can suppress the torsional vibrations 
effectively but the system has only one resonant 
frequency depending on mechanical parameters of the 
system. It can be too low in some applications.  

If there is a requirement to have very fast response 
of the drive system, then the state feedback structure 
can be used, which general scheme is presented in Fig. 
2.  
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Fig.2. The state feedback control structure 

 

The performances of the system depend on closed-
loop poles locations. The locations of feedback 
coefficients can be calculated using Ackerman 
formula [7]. Placing the closed-loop poles more to the 
left of the original plant poles, results in the faster 
responses of the system. In this structure there is 
possible to have very fast speed response, but the 
information about all states is needed. 

III. METHODS OF MECHANICAL STATE VARIABLES  
ESTIMATION 

A. Simple estimator of torsional torque  

If the requirement concerning of the system 
dynamics is connected only with a good suppression 
of torsional vibrations, then PI control structure with 
one additional feedback from torsional torque or its 
derivative can be used. The simplest method to obtain 
information about the required variable is to apply 
torsional torque estimator, described by the following 
equation: 

11ωsTmm es −=  (2) 

where: dtds /= . 
The scheme of such estimator is presented in Fig. 3. 
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Fig.3. The block diagram of torsional torque estimator 

 

The Td time constant is used to ensure a real 
derivation of the speed signal; its value depends on the 
noise level in the real system and it should be as small 
as possible. The accuracy of the estimator depends 
only on the mechanical time constant of the motor.  

B. State observers 

The state feedback control structure requires 
information about all mechanical state variables of the 
drive system, i.e. torsional torque and load speed. 
Additionally, in some cases there is a need to apply 
additional feedback from estimated load torque, to 
improve the drive speed response to the load torque 
changes. The commonly used methods to obtain this 
information are Luenberger observer and Kalman 
filter. 

1) Mathematical model of the extended full-order  
     Luenberger observer for two-mass drive system 

The electromagnetic torque me of the motor 
(proportional to the armature current) was used as a 
control input of the estimation system and the angular 
speed of the motor was taken as the output value. 
Hence, the results of this work can be applied to any 
kind of electrical motor with high performance torque 
control.  

For the linear dynamical system described by the 
linear state equation: 

( ) ( ) ( )

( ) ( )txCty

tuBtxAtx
dt
d

=

+=   

 (3) 
the full-order Luenberger state observer is described 
by the following state equation:  

( ) ( ) ( ) ( ) ( )[ ]
( ) ( )txCty

tytyKtuBtxAtx
dt
d

ˆˆ

ˆˆˆ

=

−++=  (4) 

In the case of the drive system with elastic joint, 
the state vector of the drive system was extended by 
the load torque value, to obtain the estimation of all 
mechanical state variables of the system:  

T
os mmx ][ 21 ωω= . (5) 

The motor electromagnetic torque and speed were 
used as input and output variables, respectively. 

emu = ,
1ω=y  (6) 

Thus the state, control and output matrices of this 
extended Luenberger observer are as follows: 
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The gain matrix K (set to K=[12 e-7 e-9 182]) was 
determined using genetic-gradient algorithm (GGA) 
described briefly in [8], using special form of the cost 
function [9], to provide robustness of the estimator to 
parameter changes of the mechanical system.  
2) Mathematical model of the Kalman filter for two-

mass drive system  
The same extended state equations (7) were used 

for the Kalman filter design. According to the theory 
of Kalman filtering, it was assumed that a system is 
disturbed with Gaussian white noises, which represent 
process and measurement errors ( ) ( )( )tvtw , . The system 
is thus described: 

( ) ( ) ( ) ( )

( ) ( ) ( )tvtxCty

twtuBtxAtx
dt
d

+=

++=  (8) 0. m
← ]

where: A, B, C, x, y, u – as (12)-(14). 
After discretisation of Eq.8 with Ts sampling step, 

the state estimation using the Kalman filter algorithm 
is calculated: 

( ) ( ) ( ) ( ) ( ) ( )[ ]kkxkCkykKkkxkkx /1ˆ111/1ˆ1/1ˆ ++−++++=++   (9) 

where the gain matrix is obtained by the following 
numerical procedure: 
( ) ( ) ( ) ( ) QkAkkPkAkkP T +=+ //1  

( ) ( ) ( ) ( ) ( ) ( )[ ]1/111/11
−

++++++=+ RkCkkPkCkCkkPkK TT 1 (10) 
( ) ( ) ( ) ( )[ ] ( )kkPkCkKkkPkkP /111/11/1 +++−+=++   

with state and measurement covariance matrices Q 
and R (set to Q = diag[0.25, 35, 3e-12, 1e4], R = [75]). 

The suitable choice of covariance matrices is 
rather a difficult task, usually solved by trail and error. 
So, in this paper the same GGA was used for solving 
the optimisation process. 

IV. RESULTS OF SIMULATIONS 

A. Open loop system 
In simulation and experimental tests the motor was 

fed by the AC/DC power converter with switching 
frequency 5kHz. The sampling steep used for the rotor 
speed measurement in the open-loop system was 0.2 
ms.  

In Fig.4 simulated transients of real and estimated 
torsional torques ms, mse, load speed ω2, ω2e, load 
torque mo , moe for both estimators are presented, in 
the case of nominal drive parameters. As follows from 
presented test results, both estimation methods worked 
in a proper way. The Luenberger observer had slightly 

larger estimation errors of all variables; however, its 
computational algorithm is far simpler, hence a 
cheaper microprocessor can be used in practical 
realisation of the drive control system. 
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Fig. 4. Transients of the motor and estimated torsional torque (a,b), 

load speed (c,d), load torque (e,f) for nominal drive parameters,  
using Luenberger observer (a,c,e) and the Kalman filter (b,d,f) 
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Fig. 5. Estimation errors of torsional torque (a,d), load speed (b,e) 

and load torque (c,f) for changed load inertia: from left: 50%, 75%, 
100%, 150% and 200% of nominal value, using Luenberger 

observer (a,c,e) 
and Kalman filter (b,d,f) 



The estimation errors were calculated according to 
the Eq. 11 and presented in this chapter:  

N

x̂x
N

i
jj

j

∑ −
=∆ =1

; (11) 

where:  - actual motor variable,  x - estimated 
variable, N – number of samples. 

jx jˆ

The load inertia was changed to check the sensitivity 
of Luenberger observer and Kalman filter. In Fig.5 an 
example of errors calculated according to Eq. 11 for 
both observers are presented in the case of load inertia 
changes. It is seen that for the same range of 
parameter changes, the Kalman filter presents much 
lower estimation errors and better dynamics in the 
case of fast step changes of the motor speed or load 
torque. 

B. Closed loop system 
In this chapter dynamical performances of two 

analysed structures were presented. Fig. 6 shows 
transients of variables in PI control structure with 
additional feedback from torsional torque (a,b) 
(Kp=26, KI=384, k1=0,96) and derivative of torsional 
torque (c,d), (Kp=12, KI=136, k2=0,021) respectively. 
Both systems have been working with the simple 
estimator (2). Transients in the control structure with 
additional feedback from torsional torque are faster, 
the speed settling time and the overshoot are smaller. 
The damping coefficient in both structures was set to 
0.7.   

a)   b)   

   
c)    d)  

 
Fig. 6. Transients of state variables of the system with PI control  

structure and additional feedback from: torsional torque (a,b), 
derivative of torsional torque (c,d) 

 
Fig.7 shows transients of the drive variables in the 
controller system with the state controller with the 
direct state feedback (a,b) (ki =107; k1(ia)=0,082; 
k2(ω1)=3,8; k3(ω2) =2,2; k4(ms)= 0,17; k5(mo)=0,05) 
as well as with the state observer (c,d) and with the 
Kalman filter (e,f). As follows from Fig.7, responses 
of the system to changes of the speed reference value 
in all analysed systems are almost identical. The 

difference occurred when the load torque was 
changed. The response to the load torque change of 
the direct state feedback control system contained no 
oscillations. The system with the Kalman filter 
responded in a similar way.  The response to 
disturbance torque change for the system with the 
state observer had oscillations caused by the time 
delay in variable estimation. However, these 
oscillations were quite quickly suppressed. 

 

a)   b) 

 
c)   d) 

 
e)   f) 

 
Fig. 7. Transients of the state variable of the system with state 

controller and: direct state feedback (a,b), state observer (c,d) and 
Kalman filter (e,f) 

V. RESULTS OF EXPERIMENTAL TESTS 
 

A. The experimental set-up 
The experimental set-up, presented in Fig.8, was 

composed of a DC motor driven by a four-quadrant 
chopper and a DC loading machine. 
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Encoder
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Fig.8. The schematic diagram of experimental set-up 

The motor was coupled to a load machine by an 
elastic shaft (a steel shaft of 5mm diameter and 
600mm length). The moment of inertia can be varied 



by a flywheel, where the inertia ratio of the motor to 
the load machine varies from 0.125 to 8. Both motors 
had the nominal power of 500W each. Speed and 
position of the drive system were measured by 
incremental encoders (5000 pulses per rotation). The 
mechanical system had a natural frequency 
approximately 9.5 Hz. The control and estimation 
algorithms were implemented using a digital signal 
processor with dSPACE software 

B. Open loop system 
Both estimators of mechanical state variables were 

tested in the open-loop system, and the measured 
motor variables were compared to the estimated ones.  

First, the system with the Luenberger observer was 
tested. A lot of experiments were carried out to check 
the system’s performance. The most interesting are 
transients obtained with changed inertia of the load 
side. They are presented in Fig.9, for low speed range.  

a)    b) 

 
c)   d) 

 
e)   f) 

 
 

Fig 9. Transients of the real and estimated load speed (a, c, e), 
motor torque, estimated torsional and load torques (b, d, f), for 
changed load inertia: 50% (a, b), 100% (c,d), and 200% (e,f) of 

nominal value 
using Luenberger observer 

In Fig. 9a,c,e transients of real and the estimated 
motor speed are presented. For smaller value of load 
side inertia the results are poor. The estimated speed 
oscillates especially for change of the speed reference 
value. For nominal parameters of the system (Fig. 9c) 
the Luenberger observer works very well, only small 
errors occur while changing disturbance torque. In 
Fig. 9b,d,f, the motor electromagnetic torque, 
estimated torsional and disturbances torques are 
shown. Unfortunately, in the experimental set-up there 

is no measurement of these last two variables, so there 
is no possibility to check the accuracy of estimation.  

a)   b) 

 
c)   d) 

 
e)   f) 

 
Fig 10. Transients of real and estimated load speed (a, c, e), motor 
torque, estimated torsional and load torques (b, d, f), for changed 

load inertia: 50% (a,b), 100% (c,d), and 200% (e,f) of nominal value 
using Kalman filter 

In Fig 10 experimental results obtaining for 
Kalman filter are presented. The real and estimated 
load speed transients are presented in Fig. 10a,c,e. 
Despite of changing parameters of the system, results 
of the estimation are good. In Fig. 10b,d,f the motor 
electromagnetic torque, estimated torsional and load 
torques are presented. In the case of Kalman Filter 
much smaller estimation errors are obtained in 
comparison with results for Luenberger observer. 

C. Closed loop system 
In Fig 11 the transients in PI control structure with 

additional feedback from torsional torque (a,b) and 
derivative of torsional torque (c,d) are presented. In 
both cases the simple estimator (2) provides the 
information about torsional torque. In both structures 
the oscillations of torsional torque were effectively 
damped. The response of the speed control structure 
with additional feedback form torsional torque (a,b) is 
faster of than of the second one (c,d).  

Next the state feedback control structure was 
tested. As resulted from previous simulation and 
experimental tests, for nominal parameters of the 
system the performances of the Luenberger observer 
were quite good.  This method is very often used in 
practice as the computation algorithms are not 
complicated in comparison to the Kalman filter. For 
this reasons the state feedback control with the 
Luenberger observer was used in the real drive 
system.  



 a)   b) 

 
c)   d) 

 
Fig. 11. Transients of the classical PI system with additional 

feedback from torsional torque (a,b) and derivative of torsional 
torque (c,d) 

a)   b) 

 
g)   h) 

 
Fig. 12. Transients of the system with direct state feedback (a,b,e,f) 

and state feedback with the observer (c,d,g,h) 
 

In Fig. 12 the transients of state feedback structure 
with Luenberger observer are presented. The closed-
loop poles of the system with transients shown in Fig. 
12 were chosen as follows: µ1,3=-46+i46, µ2,4=-46-
i46, µ5=-46 (Fig. 12a,b) and µ1,3=-64+i64, µ2,4=-64-
i64 µ5=-64 (Fig. 12c,d). Shifting poles of the closed-
loop system to the left, made the difference between 
analysed systems clearly visible. When the speed 
reference value and/or the disturbance torque were 
changed, the system with the observer responded with 
small oscillations. Transients of systems varied due to 
the time delay of variables estimation, measurement 
noises, and imprecise identification of the drive 
system. Nevertheless, the application of the state 
controller cooperating with the Luenberger observer 
allowed effective suppressing of the occurring 
oscillations and optimisation of the system speed 
response dynamics. 

VI. CONCLUSION 
In the paper results of simulation and experimental 

tests for the two-mass system were presented. Two 
control structures, i.e. classical PI speed control 

structure with additional feedbacks and the structure 
with the state controller were used in order to suppress 
the system oscillations effectively.  

The classical PI structure with one additional 
feedback can be use in the case when the main 
requirement is suppression of torsional vibrations and 
the speed of the responses is not so important. This 
structure can ensure very effective damping. The main 
advantage of the structure is its simplicity. It could 
successfully work in many applications. 

The state feedback control structure can be used in 
the case when effective damping of torsional 
vibrations and fast responses of the system are 
required simultaneously. This structure needs the 
information about all state variables of the system. As 
in the real systems measurements of certain variables 
are troublesome, two methods of state variables 
estimation can be use: the Kalman filter and the 
Luenberger observer. The quality of estimation of the 
two methods in an open-loop system was compared 
and the correctness of their operation in a closed-loop 
system was examined. As the Luenberger observer 
requires less computational effort, the observer was 
selected to real system application. The real system 
cooperating with this observer provides effective 
dumping of occurring oscillations. The dynamics of 
the system depends on the poles placement of the 
closed-loop system and it can be formed to a large 
extent.  
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