
 
 

Abstract:   In this paper we try to simplify the modeling 

of cable by using a new approach. In fact, we start by 

using the Maxwell’s equations in order to settle on the 

electric field within every element of the cable. Then, and 

from the electric field expression, we extract the 

analytical expression of impedance for each element of 

the cable. After that, we simulate the procedure 

“impedance versus frequency” by using specific software 

“MATLAB” with the aim of taking accounts the transient 

phenomena).       

Keywords: Modeling cable, high frequency performance, 

homogenous soil, and Maxwell’s equations.  

1. Introduction 

   The electric modeling of the transmission lines of 

power generally consists in establishing the 

relations between the tension and the current which 

control this system [1]. These relations are known 

as telegrapher’s equations. They are deduced 

mainly, from the circuits theory (the law of ohm, 

law of Kirchhoff...), also from the electromagnetic 

field propagation along the line, so the Maxwell's 

equations can be used. In fact, the drivers of the line 

can be assimilate like a waveguides [2][3].  

   Shelkunoff published in 1936 [4] a significant 

work concerning the coaxial transmission line. It 

was developed in a rigorous way, starting from the 

Maxwell's equations, to the study of the 

electromagnetic field propagation.    

   Moreover, the electromagnetic field propagation 

in the ground was well studied by Carson and 

Pollaczec (1926) [6] [7]. This paper is devoted to 

the electric modeling of a buried cable fled in a 

homogeneous ground.  

Work in this paper is presented as follows:   

  We, initially, determined the general shape of the 

electromagnetic field in all studied space, by using 

the cylindrical co-ordinates and Laplace 

transformation. Then, we studied the case of a cable 

only presumed fled in homogeneous soil and 

extended to the infinite.  

Precisely, we determine the impedance 

evolution (in function of frequency) of the main 

element of cable (core end screen). In addition; this 

study can be exploited in analysis of transient 

phenomena [5] (by determination of the current 

circulating in every element).     

2. General shape of the electromagnetic  

field 

In what follows, we will use the basic 

electromagnetism equations to determine the 

general shape of the magnetic field in a cylindrical 

transmission system.  

2.1. The basic electromagnetism equations  

-  Maxwell’s Equations  : 

  Maxwell’s equations have since been found to 

govern all classical electromagnetic phenomena. 

        
   

  
                    Modified Ampere’s Law 

      
   

  
      Faraday’s Law  

                   No magnetic charges  

                     Gauss’ Law  

Where: 

    Electric Field Intensity             

    Magnetic Field Intensity         

    Electric Current Density           

    Electric Flux Density               
 

    Magnetic Flux Density           

   Electric Charge Density           

- Constitutive Relations:  

The two divergence equations can be derived from 

the curl equations and the continuity equation. 

Hence, Maxwell’s equations represent six scalar 

equations with twelve unknowns. The remaining 

six scalar equations are required for a unique field 

solution which found by using the constitutive 

equations, relating the fields in a certain material 

as: 
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                                                              (1)    

Where  , is the permittivity and   is the 

permeability of the material, and both are tensors in 

general.                                                                                                                   

- Use of  symbolic system calculation:  

By using the Laplace transformation and by 

considering the two following assumptions:  

- The free loads are null everywhere except 

on the surface of the conductor. 

- The line is at rest at the initial moment. 

The Maxwell's equations, taking account of the 

relations (1) become:  

 
             
          

                                               (2)
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Where :      is the Laplace Operator                   

      

- General differential equation of the 

electric field:      

From the previous equations, we can establish 

the general differential equation which governed 

the electric field while using the following equation 

(4):   

                                  
   

                      (4) 

 In fact we obtain:     

                                                  (5) 

3.   The longitudinal electric field expression  

     This study takes in particular, the cylindrical 

conductors, so we use the cylindrical 

coordinates        , where the      axis merges 

with the axis of a cable.  

By projecting the relation (5) on the axis     , we 

obtain the following differential equation which 

governed the longitudinal electric field.  

 

 
   

 

   
 

 

 

   

  
 

 

  

    

   
 

    

   
                     (6) 

With:               

   The determination of the longitudinal electric 

field expression consists in solving the equation (6).        

The traditional method of resolution for this kind of 

equations is the Laplace producing method 

(separation of variables) [9].  

So we have,  

                                                             (7)  
 
    : Function which regroups the variables   
    : Function which regroups the variables   
    : Function which regroups the variables    
 

By substitution of those three expressions in 

equation (6) we obtain:  

 

 
 
   

   
 

 

 

  

  
  

 

  

 

 

   

   
 

 

 

   

   
      

          

(8) 

  It is clear that the first two terms of (8) are 

independent of Z; consequently the third one must 

be like the two proceeding terms, so we can 

presume that:  

 

 

   

   
    

We note that the general solution is a linear 

combination of the functions      and     , those 

functions translates the exponential character of the 

electromagnetic wave propagation along the      
axis, with   

 
is called propagation constant. 

    So that the equation (8) becomes:  

  

 
 
   

   
 

 

 

  

  
  

 

 

   

   
                        (9)  

If we assume that: 
 

 

   

   
 

 
; as an arbitrary constant.  

Sight the periodicity of the phenomenon 

following  , we take      , where   is an integer.  

In this case, the general solution is a linear 

combination of the functions       and      . 

 By making a good choice of the reference mark 

corresponding to    , (axial symmetry of the 

field), only the terms        appear in the 

solutions.  

 We thus obtain: 

   

   
 

 

 

  

  
     

  

  
                                 (10) 

Where:  

                                        (11) 

 Based on the equation (11), two cases are 

distinguished:  



 
 

 Case 1:   when        

The general solution of the equation (10) is given 

by:  

                                                         

In this case the constant of propagation is defined 

by: 

     . 

    This corresponds to the physical conditions of an 

ideal line; it is about a purely theoretical case 

towards.  

 Case 2 :  when       

   The equation (10) admits as general solution, a 

combination of modified Bessel function of the first 

and second kind of argument    , noted for the 

order    :        and       . 

N.B: We can either use, like solution, a 

combination of a Bessel function of first and second 

kind         and       . [8] 

   The combination of the partial solutions  ,   
and    makes it possible to obtain a solution for the 

differential equation (6).  

    If we consider only the waves which move in the 

increasing   direction, the longitudinal component 

of the electric field has the following general form:  

                              
 
                          

(12)  

With:    
and    

are the constants of integration 

which is determined by starting from the boundary 

conditions of the system. 

We present by the following flow chart the general 

method to follow to find the electric field 

expression.  
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Fig. 1. Flow chart of the Electric Field Expression.  

4. Modeling of a cable  fled  in a  ground, 

presumed homogeneous  and  infinitum 

extended  

     The cable is considered composed of four 

coaxial components: a conductive core of ray     , 
an insulating envelope, a metal screen with interior 

ray       and external ray     , a sheath (insulating) 

with external ray     . In the core circulates a 

current       
and in the shield a current      , the 

return is ensured by the ground (figure 2) [10]. 

 

 

 

 

 

 

Fig.2. Cross section of a cable fled in an infinite ground. 

   By considering a cable alone we simplify the 

equations. Besides, the determination of the field 

distribution in a cross-section is made easier. 

 

 

 



 
 

4.1 . The electromagnetic field form   

    

    The ground assumption extended ad infinitum 

around the cable gives to the system a symmetry 

revolution around the      axis. Therefore, all the 

sizes are independent of   and the proximity effects 

are null.  

    Thus, from relation (12), we can draw the 

longitudinal component from the electric field, 

while limiting oneself has the order      . 
   

                               
          (13) 

  

  The other components can be deduced by means 

of the Maxwell's equations from      Indeed if we 

pose that:  

  

               
                                             (14) 

                                      

    The Maxwell's equations (2) and (3) in 

cylindrical coordination and under the conditions of 

a field with symmetry of revolution  
 

  
    are 

reduced, respectively as following:  

 

 
             

  

 
 

   

  
          

           (15)  

                               

 

  And;  

    
   

  
                                                                             (16) 

                                   

  The components   ,      and     are null 

(symmetry revolution around the       axis). 

Utilizing the relation (11), with     we can 

express     and     
according   and the derivative 

of   . 
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    If we exclude the factor     , which translates the 

propagation phenomenon, into the expressions of 

the fields, we generally have.  

 

                                                 (19) 
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               (21)                    

With:                ;    not null.   

  4.2. Propagation Constant - approximation 

    In this section, we consider that the line is 

without losses (perfect conductors and insulators). 

 So we can know the values that the constant   can 

take. 

 

 Line without losses 

  

    Shelkunoff has to clarify well this point in his 

articles on the electromagnetic theory of the coaxial 

transmission lines [4]. In his opinion, the principal 

modes of propagation waves are carried out without 

attenuation at the speed   
 

   
. 

    With the conditions of ideal materials, we can 

summarize the results like hereafter:   

    At the interior of the conductors, the 

electromagnetic field is null (surface phenomenon).  

    In insulators, the magnetic field     is equal by 

simple application of the theorem of Ampere, 

with  
 

   
 ; the current   being the total current 

crossing the cross-section limited by the 

circumference of ray    . 
    The propagation constant is, under these 

conditions, purely imaginary.  

 

             
 
for        

 

    In a perfect dielectric, the electric conductivity   

is null, by consequence    .    

 Real line  

    In the real case, we can accept the following 

approximations:  

 

 The displacement currents can be 

neglected in front of the conduction 

currents, in the conductors. 

 The longitudinal currents in insulators are 

negligible in front of the currents into the 

conductors.  

 Therefore the magnetic field in insulators 

is equal, as in the perfect case of materials, 

with  
 

   
 (consequence of the ampere 

theorem).  

 

4.3.  Electric and magnetic fields in the conductors 

 

    In the conductors, the quantity     takes large 

values in front of    which are generally small (see 

reference [4]). Generally, the displacement currents 

are neglected in front of the current of conduction 

(     ), we take:   

 

       
                                                         (22) 

- Expression of the field in the conductors:  

  

- In the core:  

  
   

                                 (23) 
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With,           
 

 

 



 
 

- In the screen 

  
    

                          

          

    
 

  

  
                          

 

With :           
 

 

- In the soil;  
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                     (26)  

 

With           
 

       and    , being respectively, the conductivity 

of the core, the screen and the ground.   , 

         and    are the integration constants, 

determined by the physical conditions and the 

boundary conditions of the problem.  

Determining integration constants:  

     Constants are determined by applying the 

continuity conditions at the conductor-insulation 

interfaces. Relations continuity of tangential 

magnetic field at the corresponding surfaces,      
    ,      and      are clarified using the 

following relations: 

  

        
  

  
             

  

    
 

 

      
  
  

                           
  

    
 

 

      
  

  
                            

      

    
     

 

          
  

  
              

 

    
 

 

With:          
 

  : is the core current  

   : is the screen current 
 

The first equation relating to the core gives:  

 

   
  

              
                                                  (27)  

                                      

    The resolution of the system consisting of the 

second and the third relation (screen) gives us:  

 

     
          

      
 
        

  
 

    

      
 
        

  
 

 
    

          

      
 
        

  
 

    
      

 
        

  
 

 

 

With:  

 

                                       
 

Finally the last equation (soil) gives:  

 

    
    

      
 

 

        
                                              (28)   

 

In fact, the flow chart of the impedance expression 

is as follow. 
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Fig.3. Flow chart of the impedance calculating. 

 

 
4.4 Linear impedance of the conductor surface: 

4.4.1 Linear impedance of the core: 

  While replacing    given by the equation (27) in 

the relation (23) we obtain the electric longitudinal 

field in the core:  

  
       

    
      

 
       

        
 

 

  The impedance surface of a full cylindrical 

conductor is defined by the ratio of the surface 

electric field to the total current that crosses the 

surface. If we consider that    is the linear 

impedance of the surface of the conducting core so:  

 

  
              

 

Consequently, we have:  

   
  
       

  
 

  

      

        

        
 

For modeling impedance previous work 

have a complex approach [11], but in this paper the 

expression of the core impedance is simple and can 

be straightforwardly simulated.  

 

 

 



 
 

 

 Simulation results:   

We represent on the following figures the 

variation of the module of the core impedance     

and his phase according to the frequency (high 

frequencies are taking account). 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

Fig.4. The core impedance modulus variation versus 

frequency. 
 

 
 

 
 

 

 
 

 

 
 

 

 
 

Fig.5. The core impedance phase variation versus 

frequency. 

        In high frequency, resistance believes 

exponentially with the frequency. Here, we find one 

of the aspects of these high frequency effects, 

namely the skin effect.  

      The basic problem within skin effect is that it 

attenuates the higher frequency components of a 

signal more than the lower frequency components.           

This frequency dependent behavior is fairly easy to 

compute in the frequency domain [12, 13, and 14]. 

It is of same with the imaginaries part (inductive 

reactance of the core).  

      To validate the model we found that the shape 

of the impedance module and the argument is 

almost the same presented in the paper [15]. 

 4.4.2 Linear impedance of the screen: 

   About the screen, the electric field in any points 

of the conductor is obtained by replacing the 

constant data     and     given by the relations 

)23( and )24( in )18( .   

  
       

 
    
      

 
                               

  

 
          

      
 
                               

  
 

 

   For hollow cylindrical conductors, Shelkunoff   

[4] was defined three impedances. When the screen 

is scanned by a total current      
, the return coaxial 

path can be found whether in interior (in the core), 

or, in exterior (under soil).  

In external partly        and in interior partly 

       which applied in the following figure. 

 

Fig.6. Half longitudinal section of a part of the cable - 

current of loop. 

On surfaces         
and        

we write: 

  
                       

  
                       

    If we substitute the currents of loop      and      

currents    and     which are indicated on figure 6. 

 

          And                

 

   Finally, we easily deduce from it the expressions 

of the impedances of interior surface    and 

external surface    and the mutual impedance   .  

  

      

                                 

        
 

 

For determining    expression, we use the 

following property: 

                      
 

 
 

So we have:  

   
 

          
  

And: 

 

     

                                 

         

 

 

 



 
 

 

 Simulation results:   

  

   The following figures show the variation 

according to the frequency of the report/ratio of the 

impedance of    to the resistance of the screen in 

D.C. current. 
 

 

 
 

 

 
 

 

 
 

 

Fig. 7. The impedance modulus of   variation versus 

frequency. 
 

Fig.8. The impedance phase of    variation versus 

frequency. 
 

 
   As shows it figure 8 at the low frequencies    

modulus is equal to the resistance of the D.C. 

current of the screen.  

   The current in the screen is on has through all the 

section in a homogeneous way; there is no skin 

effect. To the approximately        (according to 

the thickness of the screen) the skin effect appear.           

In fact the impedance believes in an exponential 

way with the frequency. 

   These results are very important in the direction 

of simplifying the identification of the current in 

each component examined of the cable. Moreover, 

this identification will be successful in the event of 

default (lightning current), characterized by a 

sudden rise in frequency (transient phenomena). 

5. CONCLUSION 

   The objective of this work is to give a simple 

analytical model of a complex system (cable).  

So, the impedance expression of each element of 

the cable is determined. Then we do the simulation 

in high frequency to take account the transient 

phenomena.   Finally those results can be exploited 

in order to perfectly study the behavior of the return 

current especially, at high-frequency analysis of the 

ground [16] and also in the study of the grounding 

response to lightning currents [17].  
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